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An Empirical Analysis of European Credit Default Swap Spread Dynamics

Leon Specht

Leibniz Universität Hannover

Abstract

I analyze the dynamics of European credit default swap spreads by estimating CDS spreads via an extension of the structural
credit risk models by Black and Cox (1976) as well as Leland (1994), the so called CreditGrades model proposed by Finger et
al. (2002). Using two different procedures in approximating the asset volatility surface of obligors, the models are calibrated
by means of historical equity volatility and volatility extracted out of at-the-money options. I discover that model performance
strongly depends on the distribution of input parameters clustered by economical sectors. Model spreads exhibit significant
correlation with market spreads and seem to predict market spreads contingent on sectors and model calibration techniques.
The gap between model and market spreads, derived model spreads and empirical market spreads are analyzed by running
panel regressions in fashion of Collin-Dufresne and Goldstein (2001) and Bedendo, Cathcart, and El-Jahel (2011). These
show that times of disconnectedness between credit and equity markets, model inherent misspecifications as well as possible
market inefficiencies can contribute to the inability to estimate spreads reliably. Robustness checks show that determinants of
gap, model and market spreads are sector specific, time varying and tenor dependent.

Keywords: Credit Risk; Credit Risk Modelling; Structural Models; Credit Risk Management; Quantitative Finance.

1. Introduction

Credit risk is among the most fundamental economical
risks. It emerges from the act of lending and borrowing cap-
ital as one of the main objectives of the financial system and
allows for an efficient allocation of capital from surplus sec-
tors to sectors in demand for capital, increasing economi-
cal welfare. In this context, the financial system fulfills two
major functions: a reduction in information and transaction
costs as well as the enhancement of trading, diversification
and risk management. Since financial intermediation and
their institutions facilitates the allocation of capital within an
economy mainly due to asymmetric information and accom-
panying comparative advantages in associated monitoring
costs, banks have typically the largest exposure to credit risk
(Allen & Santomero, 1997; Diamond, 1984). Due to this fact,
banks and other financial institutions are in constant need
to quantitatively manage risk via mathematical models, thus
limit the downside of lending not only by internal risk thresh-
olds, but also regulatory requirements, such as Basel III and
accounting loss allowance as well as risk appetite rules. With
the rise of credit derivatives in the 1990s, the need for assess-
ing the risk and deriving fair value pricing emerged. Finan-
cial institutions came up with quantitative models to control

risk in new markets. One of those models is the CreditGrades
model that was developed in the early 2000’s by investment
banks to establish an industry standard open source quanti-
tative credit risk model for publicly traded firms. Besides the
commercial use of those models, the academic world became
more and more interested in their performance. Up to the
year 2010, a lot of researchers considered commercial credit
risk models in academic settings. Since then, commercial
credit risk models decreased in popularity because the mar-
ket of credit derivatives matured over time, so that financial
institutions relied more on well tested and experienced mod-
els. Here my thesis steps in and tries to shed light onto the
CreditGrades model and its performance, as it was primar-
ily tested only in the North American derivatives market in
the early 2000’s with short observation windows. The aim of
my study is to estimate the CreditGrades model for a sample
of European Credit Default Swap (CDS) contracts with long
observation windows, covering multiple crisis and tranquil
periods in order to assess its performance in various econom-
ical conditions. Furthermore I employ different model cali-
bration procedures using information from European equity
as well as option markets to test the hypothesis if the model
performs better with forward-looking information extracted
from option markets as often cited in the literature covering
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the North American market. After the estimation and perfor-
mance evaluation, I proceed with analyzing the gap between
model and market spreads. To do so, I employ panel regres-
sions in order to identify drivers of divergence and shedding
light onto possible model misspecifications. Furthermore I
try to identify drivers of model and market spreads in the
spirit of Collin-Dufresne and Goldstein (2001), who consider
credit spreads on corporate bonds. Related to that, I test if
the CG Model entails predictive behavior, which is exploited
by capital structure arbitrage trading strategies. Additionally
I employ time period panel regressions to reveal whether the
determinants are time invariant or if certain factors are more
influential in specific economical environments.

To the best of my knowledge I provide the largest study
that tests the performance of the CreditGrades model in its
respective specifications and determinants of credit default
swap spreads considering the European credit market. Fur-
thermore I am the first who considers the performance of
the CreditGrades model in the Corona crisis of 2020 and its
determinants of the gap, empirical CDS spreads and model
spreads both on a European and international level.

My thesis is structured as follows. Section 2 deals with
credit risk and associated derivatives. Then, section 3 pro-
vides an overview of the importance of structural credit risk
models and its implication for identifying determinants of
CDS spreads. Afterwards, section 4 outlines the method-
ology of my study, including my model choice, the model
calibration procedures as well as the subsequent correlation
and pricing analysis and the multi-factor model CDS deter-
minants estimation procedure. Section 5 introduces the data
used in my thesis. My empirical analysis is located in section
6 and starts with descriptive statistics on my sample composi-
tion involving respective summary statistics, followed by the
results of my correlation and pricing analysis, showing that
model performance strongly depends on the distribution of
input parameters clustered by economical sectors. These re-
sults are then analyzed in more detail by means of panel re-
gressions covered in subsections 6.3 to 6.6. I proceed with
robustness checks in chapter 7 where I control my results for
different tenors and time periods, finding that determinants
of gap, model and market spreads are sector specific, time
varying and tenor dependent. Finally section 8 concludes.

2. Credit Risk and associated Credit Derivatives

Credit risk describes the possibility that the borrower can-
not meet his/her financial obligations, thus defaults on the
capital amount outstanding. Credit risk is hence not driven
in an aggregate, but consists of individual factors and drivers
which are called mathematical components of credit risk in
the following analysis. The Bank for International Settle-
ments (BIS) depicts these components as credit risk param-
eters in their principles for the management of credit risk
(BIS (2000)) which coincide with Basel regulation as follows.
Probability of Default (PD): the statistical likelihood a default
occurring within the lifetime of the loan contract. The default
is defined by a default event, which is typically measured in

delinquency days or days past due of 90 days. Exposure at
Default (EAD): the amount of capital outstanding and thus at
risk. Loss given Default (LGD): the actual loss contingent on
the default of the obligor measured in percentage points of
the exposure. LGD is typically smaller than 1, since the pro-
ceeds from repossessing, required collateral as well as other
guarantees can mitigate the loss risk and thus the LGD largely
depends upon the type of default and the subsequent settle-
ment. The inverse of the LGD is called Recovery Rate (RR)
and is defined as 1 - LGD. The resulting credit risk is then a
function of all mathematical components

C redi tRisk = f (PD, EAD, LGD).

One could assume that credit risk has to be accepted once
a loan is granted, thus if a loan or bond would be issued, the
risk of failing repayment could not be mitigated ex-post and
hence has to be compensated by either high interest rates or
high coupons ex-ante. The role of risk management would
be constrained to the instruments of limited exposure, ex-
ante time invariant low PDs and high RRs. This situation was
largely present up to the 1990s, since at that time, financial
innovation led to the emergence of so called credit deriva-
tives (Brandon & Fernandez, 2005). These instruments allow
the financial market to allocate and distribute pure isolated
credit risk to those parties, who have risk bearing capacities
and to those who would like to reduce their credit risk ap-
petite. This aspect marks a fundamental difference to trade-
able debt of entities with corresponding credit risk exposure
(e.g. corporate bonds), since credit derivatives enable the
pure/isolated credit risk to be tradeable as they eliminate
the necessity to hold the asset subject to credit risk itself.
Hull (2012) classifies credit derivatives in two main cate-
gories, which are the following: single-name and multi-name
credit derivatives. Since my study considers the dynamics of
CDS spreads, I will not give a detailed overview of multi-
name credit derivatives such as Collateralized Debt Obliga-
tion (CDO) or basket CDS, but rather focus on the single-
name branch of credit derivatives. The most common single-
name instrument is the CDS, which was first introduced by
J.P. Morgan in 1997 (Chan, Guo, Lee, & Li, 2019). CDS offer
protection against the default of corporations or sovereigns.
Corporations are called reference entities upon which the
CDS is issued. These reference entities are not directly part
of the derivatives contract, since they are bilateral negotiated
between the issuer of the CDS (most often investment banks
or insurance companies) and the buyer of the CDS (most of-
ten hedge funds or other banks). This setup allows for credit
risk to be discretely traded and shifted across financial mar-
ket participants. The typical CDS contract consists of two
sides, the buyer and the seller side. The buyer side obtains
credit protection for the issued reference entity in case of de-
fault by paying period premiums to the seller of the CDS,
the so called CDS spread, which is measured in Basis Points
(bps) of the notional amount. The seller of the CDS, how-
ever, has to settle the contract in case of an occurring credit
event either physically or in cash. Thus, the CDS buyer is en-
titled to sell the underlying bonds at their notional amount,
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whereas the CDS seller has to buy the bonds at the notional
amount. These payment streams boil down to exchanging
streams of cashflows wherefore this product is considered as
a swap agreement. The face value of the debt that the CDS
buyer is entitled to sell is called the notional principal. The
debt itself is called the reference obligation (Hull (2012)).

Moreover, CDS products are defined by their maturity or
tenor for which the protection will last. A typical maturity for
a CDS is five years. Thus if the reference entity would expe-
rience a credit event within five years, the buyer of the CDS
would be entitled to receive credit protection by the mecha-
nism described above. Another crucial aspect is the definition
of a default event. The International Swaps and Derivatives
Association (ISDA) defines three main types of credit events:
filing for bankruptcy, defaulting on payment and the restruc-
turing of debt. This differentiation has material impact on
CDS valuation in markets, since they carry different degrees
of default risk profiles dependent on the inclusion of specific
credit events. Berndt, Jarrow, and Kang (2007) find that the
premium for exposure to restructuring risk amounts on av-
erage between 6% and 8% of the value of protection against
non-restructuring default events.

As any derivative, credit derivatives fulfill the three cen-
tral functions of hedging, arbitrage and speculation. The
function of hedging considers CDS as an insurance type prod-
uct for mitigating the exposure to credit risk by paying peri-
odic premiums with the aim to transfer the risk. In a more
precise manner, this allows for instance to create positions of
risk-free corporate bonds since the investor can buy the bond
with its time to maturity and match this by buying a CDS writ-
ten on the same bond issuer with the corresponding tenor.
The aspect of arbitrage covers a specific strategy called cap-
ital structure arbitrage. Capital structure arbitrage is based
on the idea that there exists mispricing between equity and
credit markets and the subsequent exploiting of this diver-
gence from an equilibrium state by applying trading strate-
gies (Wojtowicz, 2014). This type of arbitrage was very pop-
ular during the early 2000s, since at that time hedge funds
started to explore credit derivatives and their applications in
trading strategies. In accordance to the attention in the prac-
titioners world, the academic sphere also took capital struc-
ture arbitrage under closer consideration. The most influen-
tial study was performed by Yu (2006) who have considered
the risk and return profile of capital structure arbitrage by
calibrating a structural credit risk model, the CreditGrades
Model (CG Model), to a sample of 261 North American in-
dustrial obligors between 2001 and 2004. He implements
trades by selling CDS and buying equity when the model pre-
dicts that CDS are overpriced and buying CDS and shorting
equity when the model predicts that CDS are undervalued.
He assumes that the trades eventually convergence when the
model spread is equal to the market spread. Yu (2006) finds
that individual trades are very risky resulting in complete
drawdowns of capital. The convergence rate of trades are
found to be as low as 10% and annualized trading returns
for a 30 day holding period are negative or close to zero. If
a 180 day holding period is implemented, the mean return is

at its maximum 2.78%. Yu (2006) tests his results for statis-
tical arbitrage using the procedure described in Hogan, Jar-
row, Teo, and Warachka (2004) and has to conclude that in
his setting, there are no significant arbitrage returns existent.
The work of Yu (2006) was afterwards extended by the study
of Bajlum and Larsen (2008) who use an advanced version of
the CG Model calibrated to one month at-the-money (ATM)
put option implied volatilities. Cao, Yu, and Zhong (2011)
later support the findingy of Bajlum and Larsen (2008). Ba-
jlum and Larsen (2008) achieve higher and statistical signif-
icant trading returns, in case for speculative grade obligors
up to 4.61%. Huang and Luo (2016) use call option im-
plied volatilities and derive a persistent trading strategy that
produces significant risk adjusted excess returns, hence sup-
porting the finding of Bajlum and Larsen (2008). Duarte,
Longstaff, and Yu (2007) take a different approach in test-
ing an array of different trading strategies, including capi-
tal structure arbitrage. They use the CG Model and are able
to create positive and significant excess returns after trad-
ing costs. Imbierowicz and Cserna (2008) calculate CDS
spreads using the CreditGrades model, the structural credit
risk model by Leland and Toft (1996) as well as the model
by Zhou (2001) and test capital structure arbitrage between
2002 and 2006 on 808 obligors and can support the findings
of Duarte et al. (2007). As with any other structured financial
product, speculation can be one field of application. If a spec-
ulator concludes that the true PD is higher than the market
implied PD, he can buy default protection at a discount that
pays a positive yield in case of default. On the other hand,
if the speculator believes that the true PD is lower than the
market implied PD, he can sell credit protection at a premium
and collect the overvalued spread thereafter.

Regarding the valuation of CDS spreads, there are many
theories, models and methodologies. However there exists
one quantitative approach based on a fair value pricing mech-
anism widely regarded as the main pricing methodology of
individual plain vanilla CDS, called the Hull-White Model.
Hull and White (2000) base their approach of deriving CDS
spreads on the present value of the so called fixed and float-
ing/contingent leg of the CDS cashflow stream. The fixed leg
represents the periodic spread payments transferred from the
buyer to the seller. The floating/contingent leg represents the
seller side, since the seller has to buy the underlying bonds
in case of default. Thus, the cashflow transferred from the
seller to the buyer is contingent on the reference entity expe-
riencing a credit event. The main idea of the model is that the
present value of all premiums payed should equal the present
value of the expected payoff of the CDS for both participants,
resembling no arbitrage conditions. Hull and White (2000)
assume that default events, the risk free rate and the recovery
rate are mutually independent from each other and that the
claim in case of default is defined to be the notional amount
additional to accrued interest. The risk neutral probability of
no credit event happening during the lifetime of the swap is
one minus the probability that a credit event will occur up to
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time T ,

π= 1−
∫ T

0

q(t)d t, (1)

with q(t) the risk neutral default probability density at time
t. The expected present value of the fixed leg is determined
by the payments until a credit event happens or until the ma-
turity of the contract at time T in case no credit event occurs.
If the default occurs at t < T , the Present Value (PV) of the
payments is w[u(t) + e(t)], with w the total payments per
year made by the CDS buyer, u(t) the PV of payments at the
rate of $ 1 per year on payment dates between t = 0 to t and
e(t) the PV of an accrual payment at time t − t∗ with t∗ as
the preceding payment date after t. Hence the expected PV
of all payments is given by

w

∫ T

0

q(t)[u(t) + e(t)]d t +wπu(T ). (2)

The market value of the reference obligation just after the
reference entity has defaulted is the recovery rate multiplied
with the sum of the notional amount plus accrued interest

P − RP[1+ A(t)] = P[1− R− A(t)], (3)

with P as the notional principle, R the recovery rate and A(t)
as the accrued interest up to time t measured in percentage
of the notional amount. If the above described assumptions
apply, the risk neutral expected payoff can be written as

1− [1+ A(t)]R̂= 1− R̂− A(t)R̂, (4)

with R̂ as the expected recovery rate in the risk-neutral world.
Then the present value of this expression indicating the ex-
pected payoff is equation (4) integrated over the lifetime of
the CDS

∫ T

0

[1− R̂− A(t)R̂]q(t)v(t)d t, (5)

with v(t) as the present value of $ 1 received at time t. The
present value of the CDS to the protection buyer is the present
value of the expected payoff in case of default (equation (5))
after subtraction of the present value of the periodic pay-
ments made by the buyer in equation (2)

∫ T

0

[1− R̂− A(t)R̂]q(t)v(t)d t

−w

∫ T

0

q(t)[u(t) + e(t)]d t +wπu(T ).

(6)

Hull and White (2000) conclude that the CDS spread s is the
value of w that is setting equation (6) to zero

s =

∫ T

0 [1− R̂− A(t)R̂]q(t)v(t)d t
∫ T

0 q(t)[u(t) + e(t)]d t +wπu(T )
, (7)

such that the spread is defined as the total amount of pay-
ments within a year measured as an annualized percentage
of the notional amount of the CDS reference entity.

3. Literature Overview

Chapter 3 gives an overview of the most prominent credit
risk models cited in the academic literature. Since my the-
sis considers the use of an extension of a structural credit
risk model, I proceed in outlining the main differences to so
called reduced-form models and provide pricing implications
for credit risk thereafter. Afterwards I shed light into the im-
plications of these models providing guidance for the empiri-
cal determinants of CDS spreads cited in the literature so far,
setting up the rational for the model choice in my empirical
part closer assessed in chapter 4.

3.1. Structural Credit Risk Models and their extensions
In the academic literature, credit risk modeling can be

split into two fundamental types of models. The first type,
called the structural credit risk model, establishes a relation-
ship between the capital structure of a firm and the corre-
sponding default probability. The main intuition of these
models is that corporate liabilities can be viewed as contin-
gent claims on the firm assets (Lando, 2009). The second
strain of credit risk models are called reduced-form models.
They are based on the idea that credit risk is driven by exoge-
nous variables, such as hazard intensity rates or credit migra-
tion and model it by a random stochastic Poisson processes
that is independent of the capital structure of firms (Klieštik
& Cúg, 2015). The main advantage of these types of mod-
els is that they do not require to obtain information on the
capital structure of individual firms (Klieštik & Cúg, 2015).
However, this is also the the biggest drawback of reduced-
form models since they do not allow for interpretation using
economic theory. These types of models deliver mathemat-
ical tractable solutions, but lack the depth and economical
background needed to derive and identify economical drivers
and determinants of default risk. For this reason, I will not
cover these types of models in detail. The most prominent
reduced-form models are formulated by Duffie and Single-
ton (1999); R. Jarrow and Protter (2004); R. A. Jarrow and
Turnbull (1995) and Madan and Unal (2000).

The first and arguably most important structural model
was developed by Merton (1974). He was the first who ap-
plied modern option pricing theory developed by Black and
Scholes (1973) to credit risk modeling by establishing the
methodology that a company’s equity can be modeled as a
call option written on the firm’s assets. Thus model implied
probabilities of default are endogenous to the capital struc-
ture of the firm and are not driven by exogenous shocks or
hazard rates. Since the Merton model relies on option pricing
theory, the so called Black-Scholes assumptions apply (see
appendix A). The main idea of Merton (1974) is that the cap-
ital structure of a company consists out of equity and debt.
Debt is modeled as a single zero-coupon bond outstanding
Dt with face value K and maturity T . Equity is defined as the
market value of equity Et . The assets of a company are de-
rived by the balance sheet identity equation V (t) = Et + Dt .
Merton adjusts the assumptions of Black and Scholes (1973)
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that the value of equity follows a Geometric-Brownian Mo-
tion, since now the assets of a company follow a Geometric
Brownian Motion1

dV (t) = r ft d tV (t) +σV (t)dWt , (8)

with r ft as the continuously compounded risk-free interest
rate determining the asset drift, σ the asset return volatil-
ity determining the firm asset diffusion and dWt a Wiener
process stochastically driving the asset value over time. If
v(t) ≥ K then debtholders are payed in full and the residual
value of v(t) is v(t)−K and thus is distributed among equity
holders. In case of v(t) < K , the debtholders can only be
partially payed and the equity holders receive nothing. The
company has defaulted on its debt at maturity T . This yields
the payoff profile of a European call option written on the
firm assets v(t) with strike K and maturity T

Et = max(V (t)− K; 0). (9)

Now the Black-Scholes formula for a European call can be
applied, giving

Et = V (t)Φ(d1)− Ke−r ft (T−t)Φ(d2) (10)

with

d1 =
ln( V (t)

K ) + (r ft +
1
2σ

2)(T − t)

σ
p

T − t
and

d2 =
ln( V (t)

K ) + (r ft −
1
2σ

2)(T − t)

σ
p

T − t
. (11)

The default event now describes the possibility that the Euro-
pean call of equity holders matures out-of-the-money, which
yields the risk-neutral default probability2

PDt = Prob(V (t)< K) = Φ(−d2). (12)

A common problem addresses the calibration of the Merton
model, since the value of assets v(t) and the corresponding
asset volatility are both unobservable parameters. Merton
(1974) solves this by assuming that Et is also driven by a Ge-
ometric Brownian Motion and by applying Ito’s Lemma, the
identity between observable equity volatility and unobserv-
able asset volatility are given as follows

V (t)σ
∂ Et

∂ V (t)
= Etσe. (13)

By inserting the call delta expression using Black-Scholes in
(13), obtaining

Etσe = Φ(d1)σV (t). (14)

1Because Black-Scholes derive their formula in a risk-neutral world under
the risk-neutral measure Q, the asset drift is now determined by the risk free
rate, thus µ is replaced with r ft .

2Whereas the risk-neutral probability is always smaller than the physical
probability of default, if and only if r ft < µ.

Equation (10) and equation (14) can both simultaneously
solved for v(t) and σ to derive probabilities of default by in-
serting the asset value and asset volatility in equation (12).
The described model setup above relies on an number of sim-
plifying assumptions that do not correspond to the real-world
environment in which firms operate and default risk emerges.
Thus various follow-up models address these shortcomings
by implementing different aspects as follows.

Point of default. The Merton model assumes that a com-
pany can only default on its debt at maturity T . Black and
Cox (1976) relax this assumption by implementing a so-
called exogenous default barrier, active throughout the life-
time of the company. The barrier is derived by exploiting
the fact that there exists a probability distribution with a
corresponding Laplace transformation explicitly known for
the Brownian Motion first hitting a certain level (the default
barrier) assuming time invariant parameters for the asset
drift and diffusion (Duffie & Singleton, 2003). If the firm
assets fall under this barrier, the company is considered to
have defaulted. Hence, this model is frequently referred to as
first passage time model. The default barrier has to be only
hit once to constitute a default event. In Collin-Dufresne
and Goldstein (2001) this first passage model is extended by
modeling a stochastic default barrier which is still exogenous
but time-dependent. The amount of debt is conditional on
the changes in firm value which results in a stochastic mean-
reverting debt-to-equity ratio. Leland and Toft (1996) are
the first who attempted to derive an endogenous structural
credit risk model by considering optimal capital structures of
a firm to maximize the market value of equity Et in order to
optimize the amount and the maturity of its debt.

Debt structure. To characterize the entire debt of firms as
one zero-coupon bond outstanding rarely meets the actual
debt structure of firms. Thus the structural model proposed
by Geske (1977) addresses this aspect and models debt as a
coupon bond, where each coupon is viewed as an option on
the firm value. This enables the firm to default not only at
maturity, but at any coupon date. Since the assumption that a
stable debt structure is maintained throughout the lifetime of
the firm holds, equity is issued to settle the coupon payments.
The firm defaults, if equity holders do not issue new equity
due to unfavorable investor conditions, resulting in a failing
coupon payment defined as a credit event.

Stochastic processes for asset values and interest rates. The
standard structural model by Merton (1974) is derived by
using a Geometric Brownian Motion to drive the asset value
process. A standard GBM cannot account for sudden jumps in
the firm value by construction. Hence, a firm never defaults
due to unexpected short term changes in its firm value. This
aspect was empirically criticized by the assessment of model
estimated short term credit spreads being too low, especially
for low rated companies. Merton (1976) adjusted the stan-
dard GBM asset value process, introducing a jump diffusion
process in form of a Poisson process. This type of model is of-
ten called hybrid credit risk model, since it combines the eco-
nomical foundations of structural models and extends those
by Poisson processes, also found in reduced-form models,
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in order to obtain mathematical tractable results that better
match the empirical data. Zhou (2001) applied the exten-
sion by Merton (1976) to model credit spreads of corporate
bonds and concludes that by incorporating a compound Pois-
son jump diffusion process, the performance of the Merton
model improves significantly. This improvement is especially
achieved by accounting for different term-structures of credit
spreads unique to obligors. The work of Boyarchenko (2000)
as well as Hilberink and Rogers (2002) build on the work of
Zhou (2001) by introducing Lévy jump processes. Besides
the assumptions of the stochastic asset values process, the
assumption of a constant interest rate does not seem realis-
tic, since market rates are typically not time invariant. Kim,
Ramaswamy, and Sundaresan (1993) are the first who con-
sidered stochastic interest rates explicitly by using the influ-
ential CIR short rate model proposed by Cox, Ingersoll Jr, and
Ross (1985). Longstaff and Schwartz (1995) consider the
same methodology but rely on a Gaussian one-factor model
derived by Vasicek (1977) for the short rate.

3.2. Determinants of Credit Default Swap Spreads
The literature covering the empirical analysis of deter-

minants of credit default swap spreads has its roots in the
analysis of credit spreads. Credit spreads are defined as the
difference in yield of corporate bonds and a risk-free bench-
mark yield, such as government bonds (Collin-Dufresne &
Goldstein, 2001). Credit risk models propose that this dif-
ference emerges due to the exposure to credit risk in accor-
dance to different credit risk factors consistent with theoret-
ical models. However, empirical research assesses this as-
sumption by testing other factors driving credit spreads. This
field of research was initiated by the seminal work of Collin-
Dufresne, Goldstein, and Martin (2001) who analyzed the
determinants of changes in credit spreads for different credit
rating groups, leverage groups and maturity groups. They
base their analysis on variables from structural credit risk
models, such as the risk-free rate, slope of the yield curve,
leverage, volatility, the probability of a downward jump in
firm value and business climate. They then regress changes in
credit spreads from 1988 to 1997 on these proposed factors
and conclude that the explanatory power of the regressions
are in general rather low, explaining only 25% of the varia-
tion in credit spreads. Even if other control variables, such as
financial and economic variables, are introduced, the results
do not significantly change relative to the initial model set-
ting. An afterwards conducted Principal Component Analysis
(PCA) of the regression residuals shows that the model lacks
a common risk factor, since the first component accounts for
76% of left over variation in credit spreads. Collin-Dufresne
et al. (2001) conclude that local supply and demand shocks,
independent between treasury and equity markets, can be
one feasible explanation for the missing common aggregated
systematic risk factor.

Tsuji (2005) was the first who called the findings of
Collin-Dufresne et al. (2001) the credit spread puzzle. He
conducts the same econometric analysis for Japanese bonds
considering determinants implied by theoretical models,

illiquidity, risk aversion and expectations, credit ratings,
business cycle and other bond characteristics. Despite this
extensive approach, he mostly confirms the puzzle. Camp-
bell and Taksler (2003) explicitly consider the effect of firm-
level volatility, but employ regressions to explain levels of
credit spreads. They conclude that the idiosyncratic equity
volatility can explain variation in credit spreads compara-
ble to credit ratings. Thus, idiosyncratic risk has significant
explanatory power (Campbell & Taksler, 2003). Cremers,
Driessen, Maenhout, and Weinbaum (2008) support this
finding as they consider option-implied volatilities as the
level of implied volatility and the implied volatility skew
seem to matter for the explanation of credit spreads.

In the subsequent years after the credit spread puzzle
was discovered, the focus of the academic literature con-
sidering determinants of credit risk shifted from analysing
credit spreads to investigating credit default swap spreads.
As outlined in chapter 2, credit derivatives have some ad-
vantages regarding investors/speculators/arbitrageurs when
comparing them with their underlying bonds. But also for
researchers CDS entail advantages when assessing them in
econometric settings. While CDS spreads are comparable to
credit spreads of corporate bonds, they do not require to spec-
ify a risk-free yield curve since the observable price for a CDS
is already expressed as the spread itself. Thus by choosing
CDS spreads as the dependent variable, possible effects aris-
ing from the choice of the risk-free rate can be mitigated.
Houweling and Vorst (2005) show that the choice of a risk-
free rate has substantial impact on the estimation of credit
risk premia. In their study only the usage of swap or repo
rates results in reliable estimation of credit risk premia. Er-
icsson, Jacobs, and Oviedo (2009) also mentions the aspect
of accounting for coupon payments and possible effects trig-
gered by choosing the corresponding framework to remove
coupon payments. Another favorable argument for declaring
CDS spreads as the subject of analysis are liquidity reasons.
Due to the fact that derivatives are in general more frequently
traded, higher observation frequencies (e.g. daily) with a
better data quality favor CDS spreads. In addition, Blanco,
Brennan, and Marsh (2003) show by assessing the rate of
spread change in both markets conditioned on a change in
the credit rating, that a change in credit quality is faster in-
corporated in the credit derivative markets than in the cor-
responding corporate bond market. This hints at a more ef-
ficient incorporation of new information in derivative mar-
kets when considering the likelihood of a credit event. Ad-
ditionally, Di Cesare and Guazzarotti (2010) state that CDS
are inherently more standardized than bonds due to missing
aspects like coupon structure, callability, convertability and
other bond specific factors. Hence, increasing the level of
comparability and standardization within a study design im-
proves the implementation and interpretation of subsequent
empirical results.

The first study considering determinants of CDS spreads
was performed by Aunon-Nerin, Cossin, Hricko, and Huang
(2002). Their study was motivated by the work of Collin-
Dufresne and Goldstein (2001) published in the previous
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year. By considering so called "structural variables" moti-
vated by credit risk pricing theories and applying the same
methodology as Collin-Dufresne et al. (2001), Aunon-Nerin
et al. (2002) find significant explanatory power reaching
82% in R2 for the cross-sectional variation in level CDS
spreads. Furthermore, variables used as proxies for equity
market information (e.g. stock prices and its variance) as
well as stochastic interest rates and credit ratings deliver
robust results when pricing credit risk in the cross-section.
The work of Skinner and Townend (2002) was the first paper
officially published in an academic journal that empirically
examines CDS spreads. The study contains 29 US dollar de-
nominated CDS spread time series observed between 1997
to 1999 and thus also captures the Asian Currency Crisis in
1997. Skinner and Townend (2002) apply the same method-
ology as Aunon-Nerin et al. (2002) by analyzing CDS spreads
in an OLS regression framework. They propose five factors
motivated by option pricing models and test those in their
subsequent regression analysis. They find that four factors,
the risk-free rate, interest rate volatility, time to maturity and
the yield on the underlying bonds are statistically significant,
whereas the exercise price, defined as the payable amount
by the CDS seller in case of default, does not appear to be
significant. Ericsson, Reneby, and Wang (2006) use a set
of structural models to predict CDS spreads and afterwards
regress the residuals on default and non-default proxies, con-
cluding that there are little or no significant factors driving
the residuals. In consequence, credit risk models seem to
adequately price the credit risk in credit derivatives markets.

Besides structural models that identify structural vari-
ables as determinants of CDS spreads, some researchers also
considered volatility and jump risk as factors that contribute
to the explanatory value of the dynamics in credit deriva-
tives markets. These studies are mainly motivated by the
findings of Campbell, Lettau, Malkiel, and Xu (2001), Camp-
bell and Taksler (2003) and Goyal and Santa-Clara (2003).
Benkert (2004) was the first to consider the effect of equity
volatility on default risk in CDS markets. Benkert (2004) fol-
lows Campbell and Taksler (2003) in relying on fixed effects
panel regression analysis that control for time and firm ef-
fects. His final sample includes spreads for 120 reference
entities between January 1999 and May 2000, totaling to
26.478 quotes. In his regression model, he controls for liq-
uidity, interest coverage, firm leverage, profitability, credit
rating, annualized historical equity volatility over 180 calen-
dar days and Black-Scholes option implied volatility derived
from at-the-money stock options. In their setting, option im-
plied volatilities show high statistical significance, contribut-
ing 5 to 10 percentage points to the R2 in reference to the
setting where no volatility control variable is employed. Fur-
thermore, Benkert (2004) confirm the results of Campbell
and Taksler (2003) that historical volatilities are also signif-
icant and have the expected sign. In comparison to implied
volatility, however, the associated R2 is significantly smaller,
indicating higher efficacy of implied volatility in the explana-
tory value of CDS premia. The importance of jump risk was
considered by Zhang, Zhou, and Zhu (2009) who employ

OLS regressions and confirm the results of Benkert (2004).
In their study, volatility risk accounts for 48% of the varia-
tion in CDS spread levels, whereas jump risk alone accounts
for 19%. Hence volatility and jump risk are both the most
important factors driving CDS spreads. Zhang et al. (2009)
also use factors such as credit ratings, macroeconomic factors
and firm specific balance sheet information and are able to
explain up to 73% of CDS spread levels, both valid for invest-
ment grade and sub-investment grade reference entities.

A number of empirical studies assess the role of liquidity
in credit derivative markets, mainly motivated by the seminal
work of Amihud (2002) and Pástor and Stambaugh (2003)
who identified liquidity risk as an important risk factor in
the context of equity asset pricing. Besides illiquidity in eq-
uity markets, debt markets also contain priced illiquidity risk
factors as shown by De Jong and Driessen (2012) and Bon-
gaerts, De Jong, and Driessen (2017). Regarding CDS mar-
kets, Tang and Yan (2007) are the first who examined the
role of liquidity in credit derivatives markets. The CDS data
used in their study cover the period from June 1997 to March
2006, including 27 industries of U.S. corporate senior un-
secured CDS, denominated in US Dollar with a maturity of
5 years. They perform panel regressions with robust stan-
dard errors and monthly time dummies to control for issuer
clustering in time series correlation’s. As a result, they find
that liquidity effects arsing from liquidity characteristics ac-
count for 13.2 bps in the cross-section, whereas in a beta
pricing framework, the liquidity risk premium is estimated to
be about 10.9 bps (Tang & Yan, 2007). In later studies per-
formed by Chen, Fabozzi, and Sverdlove (2010), Bongaerts,
De Jong, and Driessen (2011) and Junge and Trolle (2015),
the role of liquidity in CDS markets was further analyzed,
providing additional evidence on the fact that liquidity risk
has an influence on CDS valuation.

Another obvious CDS determinant that can be controlled
for is the credit rating of the obligor. Hull, Predescu, and
White (2004) consider the effect of rating announcements
on changes in CDS spreads before and after the change in
credit rating. They obtain 233.620 individual CDS spread
observations between 1998 and 2002 and conclude that the
review for a downgrade in credit status contains significant
information, whereas counter intuitively the downgrade it-
self and negative outlooks do not. Positive rating changes do
not exhibit the same significance in the CDS dynamics com-
pared to negative reviews. Given these findings, Hull et al.
(2004) subsume that the CDS market anticipates negative
credit reviews before the actual downgrade happens. Thus,
CDS spreads entail predictive characteristics when the likeli-
hood of a downgrade is considered.

Besides firm-specific factors like volatility, illiquidity and
the usage of structural variables indicating credit risk, also
macroeconomic factors play an important role in the determi-
nation of factors driving CDS spreads. General market condi-
tions and the overall state of the economy can provide mean-
ingful information about the environment in which firms op-
erate and default risk emerges. Due to this fact, a number of
studies exist that consider the explicit explanatory power of
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macro factors such as inflation, GDP growth, unemployment
rate, business climate, consumer confidence and overall mar-
ket sentiment. The role of macroeconomic factors are pre-
dominantly considered in studies that analyze credit spreads,
most prominently in Collin-Dufresne and Goldstein (2001).

The above mentioned determinants need not be time in-
variant. In consequence, several studies examined so-called
regime dependent determinants of CDS spreads. They typ-
ically define specific time periods, such as crisis periods, in
which specific factors contribute more or less to the expla-
nation in CDS dynamics than others. Alexander and Kaeck
(2008) most prominently assess time dependencies in delta
spreads of iTraxx Europe CDS indices by employing a Markov
regime switching regression model. They find that spread
changes exhibit severe regime dependent as well as sector
specific behavior. In times of high turbulence, spreads are
very sensitive to stock volatility, whereas in times of tran-
quility, spread changes are more sensitive to stock returns.
In the volatile regime, the size of regression coefficients are
significantly higher in comparison of the tranquil regime,
contributing to previously unexplained parts of variation in
credit spreads, e.g. in Collin-Dufresne and Goldstein (2001).
In line with Benkert (2004), they conclude that structural
variables of credit risk can contribute to the explanatory
power of the model.

4. Methodology and Model Choice

The following section outlines the methodology used
throughout my study. Section 4.1 starts with the selection
and introduction of a structural credit risk model that is used
as the reference point for the estimation of CDS spreads with
structural input variables. Section 4.2 describes the differ-
ent model calibration procedures employed to fit the model
to market observables. Then section 4.3 assesses the per-
formance of my fitted CG model by means of a conditional
correlation analysis and popular forecasting measures. Sec-
tion 4.4 sheds light on my selected econometric procedures
employed to identify drivers and determinants of credit de-
fault swaps spread dynamics.

4.1. The CreditGrades Model
As outlined in section 3.1, structural credit risk models

have the advantage of economical interpretability and allow
for identification of the drivers and determinants of credit
risk justified by economic theory. As my study aims to iden-
tify drivers of European CDS spread dynamics, I rely on struc-
tural credit risk models. Furthermore, I consider the avail-
ability of data and overall tractability of model implementa-
tion, given the time frame and overall setting of this thesis.
When looking into structural credit risk models used to iden-
tify drivers of credit default swap spreads in more detail, one
model is frequently cited and implemented by researchers.
The so-called CreditGrades model (CG Model hereafter), was
developed in the early 2000’s by the RiskMetrics Group (now
MSCI) in cooperation with the three major investment banks

JPMorgan, Goldman Sachs and Deutsche Bank, to establish
an industry standard open source quantitative single-name
credit risk model for public traded firms. The CG model has
to be seen as a complimentary addition to other commercial
structural credit risk models that provide the same tractabil-
ity and performance like the CreditMetrics model introduced
in 1997 by JPMorgan. The main difference to other commer-
cial structural credit risk models is that the CG model derived
credit risk is determined on the base of CDS spreads and not
probabilities of default. Thus, the model was among the first
to address the need for a framework to capture credit risk in
the credit derivatives market in the early 2000s. It was also
motivated by increased regulation and capital requirements
in that time. In addition to that, 2001 was the year of the
burst of the dotcom bubble with resulting high default rates
and the prominent default of Enron, further increasing the
need for a framework of credit risk management open to any
market participant (Thomas, 2002).

The authors describe the model setup and its implemen-
tation in the technical document by Finger et al. (2002), out-
lining that the CG model belongs to the group of structural
credit risk models that link credit with equity markets. The
model can be seen as an extension to the first passage time
models of Black and Cox (1976) as well as Leland (1994), by
modeling a default event as the market value of firm assets
falling under a defined default barrier. The asset value pro-
cess progresses as a geometric Brownian motion, however,
Finger et al. (2002) assume that the asset drift term is zero,
thus the firm is assumed to maintain a constant leverage ra-
tio over time. The asset value process is defined as follows:

dV (t) = σV (t)dWt . (15)

The authors note that for pricing credit risk through first pas-
sage time models, not the asset drift itself is relevant, but the
asset drift relative to the default barrier. The constant lever-
age is obtained by either issuing more debt or pay dividends
such that the drift of the debt and the drift of equity is the
same. By no-arbitrage conditions, the asset drift should then
also have the same dynamics as the debt and equity drift.
This allows for the conclusion, that the "asset drift relative to
the default barrier is zero."3 The CG model defines the default
barrier as the amount of firms assets that remain in case of
default, which is the recovery value that debtholders receive.
It is defined as L ·D, with L beeing the average recovery rate
on debt and D the firms debt-per-share (Finger et al., 2002).

Another aspect that differs from standard structural
models is that the CG model assumes a random default
barrier. This stochastic threshold addresses the main prob-
lem of estimating artificially low short-term spreads when
using classical Merton style default models, because asset
processes that start above the barrier cannot cross the de-
fault threshold by pure diffusion in very short time inter-
vals. This circumstance is most prominently documented in

3Finger et al. (2002), p.11.
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Jones, Mason, and Rosenfeld (1984) and Eom, Helwege,
and Huang (2004), who conduct extensive empirical work
on comparing the performance of different structural credit
risk models regarding their ability to estimate credit spreads
for different maturities. Even though, Anderson and Sun-
daresan (2000) as well as Ericsson and Reneby (2001) use
various extensions to the original Merton model, they still
conclude a systemic underestimation of short-term credit
spreads. The methodology of the CG model to introduce ran-
domness to the average recovery rate L prevents the authors
from using complex jump diffusion asset value processes or
other advanced adjustments, but yields the same tractable
estimations for short term spreads. Finger et al. (2002) jus-
tify the introduction of uncertainty to recovery rates based
on empirical studies of recovery rates like the one of Hu
and Lawrence (2000). Hu and Lawrence (2000) find large
variability in recovery rates and contingencies depending on
whether the default is due to financial and operational rea-
sons or if the firm will be liquidated or restructured. Based
on that, Finger et al. (2002) assumes that the recovery rate L
is log normally distributed with mean L̄ and corresponding
standard deviation λ

L̄ = E[L] and λ2 = Var(log(L)). (16)

The recovery rate is then denoted by

L = L̄eλZ−λ2/2 (17)

and the recovery value is given by equation (17) multiplied
with the firms debt-per-share

LD = L̄DeλZ−λ2/2, (18)

where λ and L ∈ R+ and Z is a standard normally distributed
random variable that is independent from the Brownian mo-
tion and equation (18) describes the stochastic default bar-
rier. Z is considered to be unknown at t = 0, revealed only
in case of default. Hence, Z can capture uncertainty in the
level of debt-per-share and in its default barrier. Finger et al.
(2002) conclude that there is some true time-invariant value
of L that is not directly observable. This uncertainty in recov-
ery rate allows that the default barrier can be hit suddenly,
thus, implementing the same effect as a jump type diffusion
asset value process (Finger et al., 2002). Figure 1 illustrates
the described asset process and the stochastic default barrier
in a condensed manner.

In summary, the firm will not default for the initial asset
value V0, if the following condition holds ∀t

V0eσWt−σ2 t/2 > DL̄eλZ−λ2/2. (19)

Finger et al. (2002) proceed in deriving the survival probabil-
ity, i.e. the probability that the asset value in equation (15)
will not hit the barrier defined in equation (18) until time t
by introducing a process X

X t = σWt −λZ −
σ2 t

2
−
λ2

2
(20)

to be able to transform equation (19) to

X t = log(L̄D/V0)−λ2 (21)

which is normally distributed with

E[X t] = −
σ2

2
(t+λ2/σ2) and Var(X t) = σ

2(t+λ2/σ2).

(22)

Finger et al. (2002) then approximate the process X by a
Brownian motion X̂ with drift −σ2/2 and diffusion σ2. This
step exchanges the uncertainty in the default barrier by the
uncertainty in the asset value level at t = 0 to implement the
methodology that the distance-to-default (DD)dd, i.e. the
distance between asset value and default barrier, drives the
credit risk in the model setup. The authors note that for
t ≥ 0, the moments of the original process X coincide with
the moments of X̂ and hence provide a valid approximation.
In the next step, the distribution for first hitting time Brown-
ian motions in the process form of Yt = at + bWt

4 is applied
(e.g. in Musiela and Rutkowski (1998))

Prob(Ys > y,∀s < t) = Φ
�

at − y
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b
p

t

�

(23)

by inserting the drift term of X̄ into a = −σ2/2, setting equa-
tion (21) as y and shifting the time from t to t+λ2/σ2. The
closed-form formula for the survival probability up to time t
is given by

P(t) = Φ
�

−
At

2
+

log(d)
At

�

−d ·Φ
�

−
At

2
−

log(d)
At

�

, (24)

with

d =
V0eλ

2

L̄D
(25)

and

A2
t = σ

2 t +λ2. (26)

The survival probability expressed in equation (24) implies
that there exists the possibility that the firm defaults prior
to t = 0 in the interval (−∆t, 0], which is implied by the
assumption that the default barrier is log-normal distributed
and that the uncertainty in the default barrier is shifted to
the Brownian motion starting value (Cao et al., 2011). This
aspect results in the artefact that the probability of default in
t = 0 is not zero. Finger et al. (2002) provide an alterna-
tive estimation of the survival probability addressing this as-
pect by integrating over the default barrier distribution which
yields a survival probability expressed by a cumulative bi-
variate normal distribution. The closed form solution of the

4With constant a and b.
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Figure 1: Illustration of CreditGrades Model, Finger et al. (2002).

exact survival probability was later derived by Kiesel and Ve-
raart (2008). However, Finger et al. (2002) state that the
numerical differences between the two approaches are small
enough, such that for practical purposes, the initial imple-
mentation provides reasonable estimates.

To derive credit default swap spreads, the estimated sur-
vival probabilities must be transformed into a credit price.
This is achieved by introducing two parameters, the risk-free
rate r and the recovery rate of the underlying credit R. The
important difference between L̄ and R is that L̄ describes the
global average recovery rate across all debt classes and oblig-
ors and R depicts the individual recovery rate for the specific
underlying asset subject to credit risk (e.g. the concrete bond
issued by the obligor). A credit default swap is now priced by
using the introduced methodology of Hull and White (2000)
in chapter 2, requiring that the present value of the expected
premium payments by the CDS buyer has to equal the present
value of the expected payouts by the CDS seller in case of de-
fault.5 Given the interest rate r and the survival probability
derived in equation (24), the continuously compounded par
credit default swap spread with maturity t estimated by the
CG model equates to

s∗ = r(1−R)
1− P(0) + erξ(G(t + ξ)− G(ξ)

P(0)− P(t)e−rξ − erξ(G(t + ξ)− G(ξ))
, (27)

where ξ = λ2/σ2 and the G function is given by Rubinstein
and Reiner (1991) as follows

G(t) = dz+1/2Φ
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−
log(d)
σ
p

t
− zσ

p
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+ d−z+1/2Φ
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−
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t
+ zσ
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(28)

and z =
q

1
4 +

2r
σ2 .

5For the complete derivation see appendix A of Finger et al. (2002).

The ability to price credit risk by the above described CG
model is assessed by a hand full of researchers that predomi-
nantly consider the US CDS market. Byström (2006) was the
first who considered the CG model for the European mar-
ket. He uses the CG model to calculate CDS spreads on an
aggregated level for eight iTraxx indices that cover the Eu-
ropean area. All indices consist of 5 year maturity CDS con-
tracts and are grouped into seven sectors (investment grade
obligors) and one crossover index containing sub-investment
grade obligors. He finds that model spreads are highly cor-
related with empirical spreads and constitutes that the CG
model has predictive abilities since theoretical spreads tend
to lead market spreads. This is mostly due to equity mar-
kets being faster in incorporating news than the CDS market
(Byström (2006)). Furthermore he tests for autocorrelation
and finds that market spreads exhibit severe autocorrelation,
whereas model spreads do not. Byström (2006) states that
this result provides reason for possible inefficiencies in the
credit derivatives market, though equity markets seem to be
more efficient. On this basis, Byström (2006) employs simple
trading strategies that yield positive returns before transac-
tion costs. The second most prominent study was performed
by Yu (2006) as already outlined in chapter 2. In addition to
that, Wagner (2008) assess CDS pricing via the CG model
and compares it to the trinomial tree model proposed by
Das and Sundaram (2001). They use a sample of 54 indi-
vidual CDS extracted from the Markit CDX investment grade
index covering the US market and the time period between
May 2004 to July 2006. They find that both models’ out-
of-sample performance is poor with a low mean correlation
in CDS spread deltas. However, when firm stock prices and
CDS spreads highly correlate with the entire CDS market, the
structural model fits better to empirical spreads and thus pro-
vides evidence on the fact that "model spreads fit better to
market spreads given that less company specific credit risk is
involved."6

6Wagner (2008), p. 26.
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Bedendo et al. (2011) fit the CG model to 80 North Ameri-
can non-financial obligors between 2002 and December 2005
and analyse the resulting gap by running panel regressions
for each sector on weekly deltas in the difference between
model and market spreads. They choose to employ an ad-
vanced version of the CG model resting on the extraction of,
not only option implied volatility, but also option implied es-
timates of asset volatility and the financial leverage of the
firm using the implied volatility skew as the model input, tak-
ing option implied jump risk into consideration. Their main
contribution is that the gap between model and empirical
spreads tends to widen especially in crises times with high
volatility. Especially the dynamics in equity implied volatil-
ity and volatility skew are major determinants of weekly gap
deltas. Furthermore, liquidity factors and periods of a gen-
eral disconnect between equity and credit markets result in
high gaps. In line with Byström (2006) and Yu (2006), Be-
dendo et al. (2011) find that model spreads can act as pre-
dictors for changes in market spreads and contribute to the
evidence that the CG model exhibits predictive abilities in
credit markets.

Cao et al. (2011) employ two specifications of the CG
model, one with option implied volatilities and the other with
historical volatility of a 252-day horizon. Their sample con-
sist out of 332 single name US credit default swaps observed
between January 2007 until October 2009 and therefore also
covering the global financial crisis in 2008. In order to assess
the pricing performance of the CG model in respect to the dif-
ferent volatility estimations, Cao et al. (2011) conduct a pric-
ing error analysis in which a pricing error ratio, calculated
as the ratio of the implied volatility RMSE and the historical
volatility RMSE, is analyzed. Afterwards they perform cross-
sectional regressions with this ratio as the dependent vari-
able in order to investigate if firm-level characteristics, such
as spread volatility, credit rating, option volume and open in-
terest, can provide some explanatory value. Their analysis
shows that obligors with a high degree of spread volatility,
option volume and lower credit ratings exhibit significantly
lower pricing error ratios. This illustrates that implied volatil-
ity yields more credit market relevant information as when
using historical volatility. They also tested the robustness of
this finding by implementing different historical volatility es-
timators ranging from 22 to 1000 day horizons.

4.2. Model Calibration
In order to estimate CDS spreads using the CG model,

model variables need to be calibrated to market observables.
These observables cover the initial asset value of firms V0, the
asset volatility σ, the debt-per-share D, the global average
recovery rate L̄, the individual bond specific recovery rate R
and the volatility of the default barrier λ.

Debt-per-share (DPS) is obtained by extracting liabilities
from consolidated financial statements and dividing the lia-
bilities by the number of shares outstanding. I follow Fin-
ger et al. (2002) and define liabilities as all debt issued that
contributes in the financial leverage of a company. Hence all
long- and short-term interest bearing financial obligations are

included, whereas accounts payable do not enter my DPS cal-
culation as they do not contribute to the financial leverage of
the firm. Furthermore, I account for using consolidated fi-
nancial statement data by adjusting the total debt for debt
held by subsidiary companies. Since consolidated financial
statements aggregate all debt, even though the subsidiary is
not necessarily held a 100% by the parent company, I subtract
the minority debt defined as k ·Minori t y Interest from the
total debt, assuming that the debt-to-equity ratio k is equal
to 1 and limiting the total amount of minority debt by not
exceeding more than 50% of the total consolidated financial
debt. The number of shares consist out of common shares
outstanding plus preferred shares. As the number of pre-
ferred shares cannot be retrieved easily, I calculate them by
retrieving the amount of preferred equity and divide it by the
current equity price. Finally, debt-per-share is calculated by
dividing the total debt, corrected for minority debt with the
total amount of shares consisting of common and preferred
shares. To avoid a look-ahead bias of the model, I update
each parameter only when its information becomes available
to the market. Hence, I keep the yearly consolidated financial
data, such as total debt, minority interest and preferred eq-
uity, constant for the respective fiscal year. Common shares
are retrieved quarterly, but are interpolated to obtain daily
values since market participants can back out the number
of common shares on a daily basis by dividing the current
market capitalization by the current stock price. This way of
estimating debt-per-share assures that the model provides an
ex-ante view on the pricing ability of CDS spreads.

The instantaneous asset value V0 and the asset volatilityσ
are both calibrated by assessing how the asset value behaves
close to and far from the default barrier, relating the equity
volatility to the asset volatility using Ito’s Lemma:

σe = σ
V
S
∂ S
∂ V

, (29)

with the equity price of the firm denoted S and the corre-
sponding equity volatilityσe. The distance-to-default is given
by η and is measured as the number of annualized standard
deviations that separates the firms current equity value from
the default barrier

η=
1
σ

log
�

V
LD

�

=
V
σeS

∂ S
∂ V

log
�

V
LD

�

. (30)

The first boundary condition considers how V behaves close
to the default barrier LD by assuming that the value of equity
converges to zero when default becomes more probable. The
value of the firms’ assets then equal the contingent claim of
debtholders in case of default defined as the default barrier
itself

V |S=0 = LD (31)

and close to the barrier adding the marginal rate of change
in V based on a change in S

V ≈ LD+
∂ V
∂ S

S. (32)
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The distance-to-default measure can now be expressed by
substituting equation (32) into equation (30) in order to see
how η behaves near the default barrier

η≈
1
σe

. (33)

The second boundary condition considers how V behaves far
from the default barrier. Finger et al. (2002) assume that the
asset value increases with the same speed as the equity value
S/V → 1. If this relation is substituted into equation (30), it
follows that

η'
1
σe

log
�

S
LD

�

. (34)

Finger et al. (2002) conclude that the most simple expression
considering V and e(t)aa that simultaneously satisfy the two
boundary conditions is that V = S+ LD. Hence, the value of
assets consists of the value of equity plus the contingent claim
of debtholders in times of default. The initial asset value V0
is then given by

V0 = S0 + L̄D, (35)

with S0 as the initial stock price and the corresponding
volatility of assets given in equation (29)

σ = σe

�

S
S + L̄D

�

. (36)

The estimation of σ is performed by a local approximation
of the volatility surface, scaling the equity volatility σe by
a gearing-ratio that accounts for leverage in the assets rel-
ative to equity only (Cao et al., 2011). The estimation of
equity volatility is dependent on the research design. I em-
ploy two estimation procedures for equity volatility in order
to be able to compare the pricing implications of using infor-
mation from equity markets with forward-looking informa-
tion extracted from derivative markets. The first procedure
relies on historical volatility calculated from a 1000-trading-
day moving average of daily equity returns that are after-
wards scaled by

p
252 to obtain yearly volatility estimates.

The choice of the length of the MA window is motivated by
the studies of Duarte et al. (2007), Finger et al. (2002) and
Yu (2006). For the other approach I obtain equity option
implied volatilities derived from put and call options of the
specific reference entities trading at 100% moneyness (at-
the-money) with a remaining time to maturity of one year.
This procedure is motivated by the work of Cao et al. (2011)
and Wagner (2008) who find that the using option implied
volatilies improves the fit of the CG model estimated spreads
to market spreads in comparison to the CG model that uses an
historical volatility estimator. Previous researchers addressed
option implied information in linear settings by regressing
option market variables on corporate bond credit spreads.
They implicitly assume that the relation of equity volatility
is inherently linear to observable market spreads (see e.g.
Cremers et al. (2008) or Cao, Yu, and Zhong (2010)). My

study design deviates from these studies by accounting for
non-linear dependencies of forward-looking option market
information and resulting CDS spreads within the CG model
framework. My work also relates to the study of Stamicar
and Finger (2006) who consider a case-study research de-
sign and price CDS written on Vivendi, General Motors, Ford
and Boeing. However, my study incorporates a larger sam-
ple of reference entities and hence provides a higher degree
of cross-sectional granularity using option implied volatili-
ties. Stamicar and Finger (2006) conclude that using option
implied volatilities improves the performance of the model,
especially in crisis times, by providing credit warning signals
backed out of option markets.

The parameters L̄, R and λ cannot directly be observed
in the market and therefore lead to difficulties in the model
calibration process. Finger et al. (2002) assess the estima-
tion of the global average recovery rate L̄ by relying on
the proprietary Portfolio Management Data and Standard &
Poor’s database also considered by Hu and Lawrence (2000).
This database contains historical recovery rates for 300 non-
financial US firms issued bonds and loans that defaulted in
the period 1987 to 1997. From this data, Hu and Lawrence
(2000) estimate L̄ = 0.5 and λ = 0.3. Since these esti-
mates seem realistic and are by definition time invariant and
global, I proceed by applying the same estimates in my study
considering European non-financial firms.

The calibration of R poses the difficulty, that the recov-
ery rate on the specific underlying bond cannot be observed,
since default of the bond did not (yet) occur. The authors
of the original model and researchers like Yu (2006) use the
methodology of leaving R as a free parameter and calibrate
the model to market spreads by minimizing the pricing er-
rors of some pre-defined goodness-of-fit measure G. For this
purpose I choose the squared pricing deviations as goodness-
of-fit measure defined as:

min
R

G =
n
∑

i=1

�

sModel
i − sEmpirical

i

�2
. (37)

Using this methodology and minimizing G over the first 25
trading days, I find unreasonable values for R most of the
time. As a consequence I follow Yu (2006) who finds similar
values and thus sets R = 0.5 leaving L̄ as the free parame-
ter to fit the model. However, following Yu (2006), I also
find unreasonable values for L̄. Consequently, I fit the model
to sector specific recovery rates as given in Gambetti, Gau-
thier, and Vrins (2019). They publish sector recovery rates
extracted from the proprietary Moody’s Analytics Default and
Recovery Database. I provide more recovery rate specific de-
tails in chapter 5.

The risk-free rate was initially considered to be the short
end of the Euro yield curve using the 3-month EURIBOR of-
fered rate in line with recommendations in the existing litera-
ture for selecting a Euro risk-free reference asset (Remolona,
Wooldridge, et al., 2003). When I have employed this mea-
sure as a risk-free rate, the model sometimes did not pro-
duce any values. Upon closer examination, equation (28)
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demands that the risk-free rate embedded into z =
q

1
4 +

2r
σ2

does not necessarily have to be positive, but cannot be arbi-
trarily negative, such that the expression in the square root
becomes negative. As this is the case for some observations,
I have to choose an alternative risk-free rate that exhibits an
overall higher interest rate level. A reasonable alternative is
to select the US government bond rate since the general in-
terest rate level is typically higher for the US market than for
the European market mainly due to the European sovereign
debt crisis and resulting monetary policy measures taken by
the ECB. Since in the academic literature the US rate is typ-
ically used as a reference risk-free asset, I opt for using the
5 year constant maturity treasury bond middle rate to match
the duration on constant 5 year maturity CDS contracts as
described in chapter 5 in more detail. My selection of the
risk-free asset poses the contextual difficulty that the geo-
graphical location does not match. On the other hand, it can
be argued that international capital mobility can be taken as
a given and thus European market participants can obtain ex-
posure to the US risk-free asset, providing economical justifi-
cation of employing the US government rate as the reference
risk-free rate.

4.3. Correlation and Pricing Analysis
After calibrating the model to market observables us-

ing historical equity and option implied volatility as a proxy
for asset volatility, I assess the pricing performance of each
model specification by means of a correlation analysis and
frequently cited forecast metrics. Similar to the study of
Bedendo et al. (2011), the correlation analysis of model
and empirical spreads is conditioned on sectors in order to
obtain a sector specific view on the pricing performance of
each model specification. I choose parametric as well as
non-parametric methods for measuring the relationship be-
tween market and model spreads to capture linear as well
as non-linear relationships. First, I calculate the Pearson-
product moment correlation coefficient for each time se-
ries. In order to obtain average sector specific correlations,
I transform individual Pearsons r to the Fisher z-transform
by Z = 1

2 ln
�

1+r
1−r

�

. This procedure boils down to normaliz-
ing the sampling distribution with the aim to mitigate the
effect of distribution skew to be able to take the average of
all sector specific z-transformed Z̄ = 1

n

∑n
i=1 Zi . Afterwards,

the average z-transformed variable is converted back using

r̄ = e2Z̄−1
e2Z̄+1

to an average Pearson product-moment correlation
coefficient. This way of obtaining average sector specific
correlations appears to posses superior reliability compared
to taking the simple time series average as proposed by
Hunter and Schmidt (1990) (see e.g. Corey, Dunlap, and
Burke (1998)). This transformation step is then performed
for the Spearman rank-order correlation to capture possible
monotonic non-linear dependencies.

I proceed by assessing possible autocorrelation within the
empirical as well as calculated model CDS spreads for each
obligor in the spirit of Byström (2006) to investigate whether
my sample of reference entities is subject to inefficiencies in

the CDS market. My methodology contributes to the study of
Byström (2006) by analysing single name CDS instead of con-
sidering CDS indices as well as covering different time peri-
ods and obligors. Furthermore, I consider autocorrelations in
model CDS spreads when using option implied volatility and
thus again contribute to the study of Byström (2006). I calcu-
late Ljung-Box test statistics with 5 and 10 lags respectively,
closely following the recommendation of choosing ln(T ) as
the optimal choice of lags to obtain good power properties in
finite samples.

For the performance analysis, I calculate three forecasting
metrics: Bias, the Mean Absolute Error (MAE) and the Root
Mean Squared Error (RMSE). The bias for the time series i
and number of observations n is defined as the average error
following:

biasi =
1
n

∑

n

ei,t with ei,t = sModel
i,t − sEmpirical

i,t

and captures the general tendency of the model to deliver
feasible estimates. However, since negative and positive de-
viations can offset each other, a model can provide a very low
bias but be imprecise at the same time. Thus, I also calculate
the mean absolute error that corrects this issue by taking the
mean of the absolute values of the errors. It is calculated as
follows:

MAEi =
1
n

∑

n

|ei,t |.

In addition, I calculte the root mean squared error (RMSE) as
it provides information on the standard deviation of the error
and thus is a good model accuracy measure. In my study the
RMSE is calculated as follows:

RMSEi =

√

√1
n

∑

e2
i,t .

In order to obtain sector cross sectional pricing metrics, I av-
erage the metric for each time series i within one sector. The
performance of each model specification for each sector and
time period can then be assessed and compared to other stud-
ies that deal with the pricing performance of the CG model.
This comparison provides insight on how the model behaves
for European CDS spreads accordingly.

4.4. Multi-factor Model CDS Determinants Estimation Pro-
cedure

After assessing the model performance, I proceed with an-
alyzing the gap between theoretical and market CDS spreads
using a regression-based analysis. The study I use as ref-
erence point in this section is published by Bedendo et al.
(2011). They analyse the resulting gap by running panel
regressions for each sector on weekly deltas in the differ-
ence between market and model CDS spreads. Following
Bedendo et al. (2011), I calculate weekly gaps for both the
standard CG model calibrated with 1000-day equity volatil-
ity and the calibrated CG model using option implied volatil-
ities. Regarding the observation frequency, I opt for weekly
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observations, since daily observations could be too noisy and
would enable possibilities for statistical inconsistencies and
distorted estimates. Then I employ a one-way fixed effects
panel regression model with the obligor as the reference in-
dex. A one-way fixed effects model is used here, since I as-
sume that there exists obligor specific fixed effects that are
captured by the individual-specific error component. Thus,
I am able to account for unobserved effects that are unique
to individuals, but are also time invariant. Furthermore, I
do not employ a two-way fixed effects model, because I con-
trol for time variant regression estimates by performing panel
regressions grouped according my pre-defined time periods
covering the financial crisis, the European sovereign debt cri-
sis, the tranquil period and the corona crisis.

I conduct my regression analysis in three different ways.
My first approach considers the gap between model and
empirical spread as the dependent variable. This approach
tries to identify economical drivers of the variation in the
error term, hence providing insights into possible miss-
specifications and shortcomings of the CG Model in its re-
spective specifications as well as reveal what drivers move
market and model spreads apart. With this approach I follow
Bedendo et al. (2011) using an updated dataset as well as a
different geographical regions. These regions are described
in more detail in section 5. The second approach considers
the CG Model spread itself as the dependent variable. This
econometric setting allows to identify common character-
istics and variables that contribute to the total explanatory
power of the variation in models spreads. The third ap-
proach considers the weekly changes in the empirical CDS
spread as dependent variable, thus providing additional in-
sights into variables that explain the variation in weekly
market spread independent from my model selection. Thus,
I also shed light into possible model misspecifications and
shortcomings using this approach. For the selection of the
independent variables, I follow the the literature discussed
in section 3 and employ firm specific (individual) as well as
macroeconomic (common) variables in the panel regression
framework.

As firm specific variables, I consider the weekly obligor
(company) return, weekly equity volatility, the weekly delta
of the credit curve expressed as the CDS slope defined as the
mid-spread of a 10-year tenor CDS minus the mid-spread of a
one-year tenor CDS of the same reference entity and the illiq-
uidity factor derived by Amihud (2002). The Amihud (2002)
is defined as follows:

I LLIQ =
1
N

T
∑

t=1

|rt |
€VOt

, (38)

with |rt | the weekly absolute return and €VOt the weekly
equity turnover euro volume from time t − 1 to time t. The
rational behind the inclusion of equity volatility is the con-
nection between the model calibration procedure in section
4.2 and the interconnectedness and spillover effects between
equity and credit markets. The same holds true for equity re-
turns, since equity returns provide important information for

equity markets with implications for credit markets and its
credit quality. The credit curve is incorporated in my regres-
sion analysis, because it captures the variation in obtaining
or providing credit protection for different tenors, indicat-
ing that the spread is dependent on how long the protection
will last. The slope of the credit curve captures market sen-
timent, because when credit curves are upwards sloping, the
likelihood of experiencing a credit event increases due to a
greater degree of credit quality uncertainty in the future. If
the credit curve is flat, the market does not anticipate that the
occurrence of the credit event is more probable in the near
future, nor the distant future and vice versa. A downward
sloping credit curve indicates that the spreads for the near
future are higher than for the distant future due to low antic-
ipated survival rates in earlier periods. The common shape
of the credit curve is the upward sloping curve as survival
rates mostly decreases over time and the probability of the
occurrence of a credit event increases. As I calculate weekly
changes in the slope of the credit curve, I capture market sen-
timent dynamics that can contribute to the overall explana-
tion of the dynamics in the European credit derivatives mar-
ket. Additionally, Bedendo et al. (2011) as well as Bedendo,
Cathcart, El-Jahel, and Liesch (2005) show that the inclusion
of the slope of the credit curve can provide meaningful con-
tributions in predicting future changes in credit spreads with
short forecasting horizons.

The illiquidity factor derived by Amihud (2002) enters
the regression specification because it provides information
regarding illiquidity constraints on equity markets with pos-
sible spillover and contagion effects on credit markets (Be-
dendo et al. (2011)). Therefore, I calculate the weekly abso-
lute return of the reference entity |rt | and the corresponding
weekly euro turnover volume € VOt to derive the illiquidity
measure in equation (38).

Regarding the common macroeconomic variables, I spec-
ify the weekly change in the risk-free rate, defined as the
3-month EURIBOR, the weekly change in the slope of the
yield curve, defined as the 12 month EURIBOR minus the
one month EURIBOR and the weekly change of the VSTOXX
index in my regression analysis. The risk-free rate is included
in my regression framework because influential studies like
the one of Collin-Dufresne and Goldstein (2001) find that
changes in the spot rate are important determinants of the
credit market. They argue that the spot rate is theoretically
motivated by mechanics of the inherent risk-free asset drift
firm value process described in chapter 3.1. An increase
in the risk-free rate, increases the asset drift and thus the
distance-to-default. In consequence it the likelihood of expe-
riencing a credit event decreases. Thereby, most studies that
contribute to this field of research include the risk-free inter-
est rate as a baseline determinant in their regression method-
ology. The variation in the slope of the yield curve also pro-
vides additional information on the inherent default prob-
ability because Collin-Dufresne and Goldstein (2001) argue
the dynamics in the slope of the yield curve can also influ-
ence the interest rate level itself, thus also driving the asset
value process. Consequently an inverse relationship between
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an increase in the slope of the yield curve and a lowering of
credit risk in the overall economy emerges (Collin-Dufresne
and Goldstein (2001)).

As an additional aspect, I try to capture the effect of
counterparty credit risk in my study. This aspect is predomi-
nantly motivated by the work of Arora, Gandhi, and Longstaff
(2012) who find that counterparty credit risk is significantly
priced in the cross-section of non-financial credit default
swap spreads, becoming more statistically significant after
Lehman Brothers defaulted. To be able to depict counter-
party credit risk in my regression framework, I derive and
calculate a counterparty credit risk index (CRI) which closely
resembles the CDR counterparty risk index first introduced in
2008 by Credit Derivatives Research. The CDR index consists
of the largest 15 equally weighted CDS 5 year mid-quotes for
CDS sellers such as Barclays Bank, J.P.Morgan and Goldman
Sachs and is depicted in basis points. I replicate this index
with an updated dataset suitable for the largest CDS dealers
selling European credit derivatives such as Commerzbank,
Deutsche Bank and others closer described in appendix F. Be-
sides the weekly change in the CRI, I further take the change
in the slope of the CRI into account by calculating the weekly
change in the difference between 10-year and 1-year mean
cross-sectional CDS spreads for all index constituents. The
change in the slope acts in the same way it does for the sam-
ple entity CDS slope as an indicator for market sentiment,
but now focusing on the credit protection seller side. This
allows to capture market sentiment not as an aggregate, but
segmented into protection seller and protection buyer side.

In order to address possible autocorrelation, I include
one week and two-week lags of the dependent variable.
This methodology is in line with common regression model
specifications found in the literature such as Bedendo et al.
(2011). I do not include a broad stock market index due to
collinearity issues arising from individual equity returns that
are also included as firm-specific explanatory variables.

Finally, my fixed effects regression model in its three ap-
proaches regarding the gap, the CG model spread and the
empirical CDS spread is estimated as follows:

∆GAPi t = α+ β1∆r ft + β2ri t + β3VOLi t + β4∆SLOPEC DS
it

+ β5 I LLIQ i t + β6∆CRIt + β7∆SLOPECRI
t + β8∆SLOPEY ield

t

+ β9∆VSTOX X t + β10∆GAPi t−1 + β11∆GAPi t−2 + ui t

(39)

∆CGModel
i t = α+ β1∆r ft + β2ri t + β3VOLi t + β4∆SLOPEC DS

it

+ β5 I LLIQ i t + β6∆CRIt + β7∆SLOPECRI
t

+ β8∆SLOPEY I ELD
t + β9∆VSTOX X t

+ β10∆CGModel
i t−1 + β11∆CGModel

i t−2 + ui t

(40)

∆C DSi t = α+ β1∆r ft + β2ri t + β3VOLi t + β4∆SLOPEC DS
it

+ β5 I LLIQ i t + β6∆CRIt + β7∆SLOPECRI
t

+ β8∆SLOPEY I ELD
t + β9∆VSTOX X t

+ β10∆C DSEmpirical
i t−1 + β11∆C DSEmpirical

i t−2 + ui t ,

(41)

with ui t = ψi + vi t , ψi indicating the individual-specific ef-
fect in the variation regarding the dependent variable which
remains constant across time for each individual. vi t depicts
the stochastic disturbance term that varies across individuals
and time. I estimate each equation in (39), (40) and (41)
on the sector level to account for sector specific idiosyncratic
aspects and to compare the model specifications within my
sample clustered by economical activity. Thus, I am able to
identify sector specific drivers of the independent variable
within each regression setup.

Afterwards I proceed with analyzing the error term of
each regression by performing a principal component anal-
ysis (PCA) in fashion of Collin-Dufresne et al. (2001), Cre-
mers et al. (2008) and Bedendo et al. (2011) to be able to
identify any common variables that are not included in my re-
gression specification and are potentially driving variations in
the error term. For this I follow Bedendo et al. (2011), who
define the number components used by the cumulative ex-
plained variance. They incorporate principal components un-
til the cumulative explained variance reaches a level of more
or equal to 80%. This procedure gives a standardized view on
how many components drive the remaining variation in the
error term and can thus indicate any misspecifications of my
regression analysis. I deviate from Bedendo et al. (2011) by
not only assessing the error term of empirical CDS spreads,
but also on the error term of gap and CG model regressions
in equation (39) and (40). With this extension I am able to
examine the regression approach at a broader level.

After the main regression analysis and the subsequent
PCA is performed, I proceed with testing the predictive ability
of the CG model to forecast market spreads by implementing
a sector specific fixed effects model that considers the regres-
sion of weekly changes in market spreads on weekly changes
in model spreads with one and two lags and weekly deltas of
market spreads with lag of one week accordingly defined in
equation (42). This approach is related to the study of Be-
dendo et al. (2011), who also consider the forecasting ability
of the CG model via this approach. The economical inter-
pretation is based on the empirical finding "that relevant in-
formation is usually revealed and absorbed faster in the eq-
uity market rather than in the credit market."7 Studies like
Norden and Weber (2009) and Longstaff, Mithal, and Neis
(2005) support this idea by providing evidence on lead-lag
relationships between equity and credit markets. Thus, CDS
spreads estimated from structural credit risk models should

7Bedendo et al. (2011), p. 673
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be able to exhibit subsequent predictive behavior in the credit
default swap market. Predictive regressions are performed as
follows:

∆C DSEmpirical
i t =α+ β1∆C DSModel

i t−1 + β2∆C DSModel
i t−2

+ β3∆C DSEmpirical
i t−1 + ui t .

(42)

Along the regression estimation process described above,
I compute diagnostic statistics to ensure that the aspect of
stationarity, multicollinearity and heteroscedasticity are ad-
dressed properly and regression estimates are not biased. To
quantify stationarity, I calculate the unit root test for panel
data of Levin, Lin, and Chu (2002) that considers pooling
cross-section time series data for testing the unit root hypoth-
esis. This methodology is still in line with my fixed-effects
model as I test each regression variable individually for sta-
tionarity using the entire dataset. In a second step, I test for
multicollinearity by first estimating a pooled panel regression
for each fixed-effects panel regression I estimate. As again
only the independent regression variables are assessed, the
pooled model does not interfere with the subsequent fixed-
effects estimation procedure. I calculate the Variance Infla-
tion Factor (VIF), since multicollinearity between the predic-
tors is typically indicated by the predictors VIF value above
some pre-defined threshold. The VIF measures the increase
in variance of regression coefficients due to collinearity and
provides an index measure of the inflation in standard errors
emerging from correlations with other predictor variables.
A typical threshold that is often cited in the literature is 3,
such that I also use a VIF reference value of 3 to identify
whether multicollinearity is existent in my regression specifi-
cations. Furthermore, I always correct the standard errors for
heteroscedasticity and spatial correlation by estimating het-
eroscedasticity robust standard errors for panel regressions
with cross-sectional spatial dependence. I rely on Driscoll
and Kraay (1998), who derive a nonparametric covariance
matrix estimator that yields heteroscedasticity and autocor-
relation consistent estimates for standard errors which are
corrected for robustness to forms of any spatial and temporal
dependence. The often cited and popular Newey-West stan-
dard errors are also feasible for panel data regressions, but
do not correct for possible autocorrelation between individu-
als, which is especially important for panel data regressions.
Therefore I report regression estimates with Driscoll-Kraay
standard errors throughout my analysis.

5. Data

Since my study is mainly based on CDS spread, return and
leverage data, I rely on the database of Refinitiv Datastream.
It is the most comprehensive data source for CDS related
data and is widely used for various fields of research with
an emphasis on equity and credit markets. I choose to rely
on Refinitv Datastream data which goes back until the 14th

of December 2007. First, I extract European daily individual
single-name corporate CDS mid-spreads of 5 year tenors of
contracts that include the modified-modified restructuring

clause and start reporting on the 14th of December 2007.
Additionally I rely on senior unsecured seniorities to have
comparable contracts in my sample. My data selection is
motivated by the work of Berndt et al. (2007), who show
that restructuring risk has material impact on the premium,
amounting on average 6% to 8% of the value of protection
against non-restructuring default events. I exclude financial
firms, since the financial leverage of these firms are not com-
parable to non-financial firms, which can be traced back to
the inherent characteristics of the different business models.
The remaining population is afterwards filtered for data qual-
ity purposes, such that contracts in my sample report regu-
larly and I exclude the possibility of distorted estimates due to
illiquidity reasons. Contracts that stop reporting throughout
my observation period are dropped. In general, my sample
period covers daily observations spanning the period from
14th of December 2007 until the 14th of December 2020. My
final CDS dataset consists of 75 obligors and 3392 observa-
tions per obligor, resulting in 254.400 observations. I define
eight economical sectors based on the sector classification
from Refinitiv Eikon. These sectors consist of the following:
Consumer Non-Cyclical, Consumer Cyclicals, Industrials,
Utilities, Technology, Healthcare, Energy and Basicmaterials.
Furthermore I define the following time periods: Full Period
(14.12.2007 - 14.12.2020), Financial Crisis (14.12.2007 -
31.12.2009), European Sovereign Debt Crisis (01.01.2010 -
31.12.2013), Tranquil Period (01.01.2014 - 28.02.2020) and
the Corona Crisis (01.03.2020 - 14.12.2020).

Data for the input variables of the CG model estimation,
calibration and subsequent panel regression analysis are also
retrieved from Refinitv Datastream. I obtain daily total re-
turn index values, actual closing prices, the risk-free rate,
the number of common shares outstanding, total financial
debt, the daily euro turnover volume, daily VSTOXX index
values and minority interest for each obligor. Regarding the
derivation of the counterparty credit risk index (CRI), I re-
trieve CDS quotes in the same fashion as described above
for financial institutions, most prominent known to be major
European CDS dealers (see appendix F). The sector specific
recovery rates are taken from the paper by Gambetti et al.
(2019) displayed in appendix G. Since my second specifica-
tion of the CG model relies on option implied volatilites, I also
obtain Refinitiv Datastream option-implied volatilities from
constant one year at-the-money put and call options of the
respective obligors. As not for all reference entities traded
options exist, I define a subsample for my option implied CG
model estimation to circumvent this problem. Furthermore,
available Refinitv option data does not start reporting on the
14th of December 2007, such that I augment the first period
of the financial crisis and hence shortening the observation
period to be consistent with the other defined time periods.
The subsample period covers the horizon from 1st of January
2010 until the 14th of December 2020 and consists out of
46 obligors with 2857 daily observations totaling to 131.422
data points.
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6. Results

6.1. Reference Entity Sample Composition and Summary
Statistics

In this section I display my reference entity sample com-
position of industry sectors, geographical location and credit
rating with the aim to provide an extensive overview of my
sample. Table 1 gives an overview on the industry sector
composition (Panel A) and the country distribution (Panel B)
of my sample of CDS reference entities. Panel C depicts the
rating distribution of obligors. Considering panel A, it be-
comes obvious that my sample is distributed across all eight
sectors with pronounced weights in consumer non-cyclicals
and cyclicals as well as industrials. Together these sectors
make up more than half to the entire sample sector distri-
bution. On the other hand the remaining sector weights are
rather evenly distributed. Panel B shows that the majority
of my sample contracts is either located in Germany, Great
Britain or France by marking more than 60% of my sample
country distribution. This result is largely driven by the se-
lection process described in section 5, because the most liq-
uid and thus frequently reporting contracts have a tendency
for higher data quality and are more likely to pass the im-
posed data quality filters with a self-selection process tilting
the data set towards the European economies. Panel C re-
veals that the rating distribution is rather homogeneous, be-
cause the majority of my sample reference entities belong
to the investment grade rating, whereas only roughly 10%
can be classified as speculative grade. This fact motivates my
study design to not group the CG model estimation and sub-
sequent panel regressions by credit ratings as done in other
studies like Collin-Dufresne et al. (2001), but by economical
activity and thus sectors. With this classification I am able
to identify sector specific idiosyncratic model performance
and empirical determinants of credit default swap spreads
dynamics.

Since the CG model estimation relies strongly on its in-
put variables, I proceed with providing summary statistics
that should allow for identification of sector specific pat-
terns which might be helpful to understand and interpret the
model performance and pricing analysis in section 6.2. Fur-
thermore, it allows for an Explorative Data Analysis (EDA)
such that the relation between model input variables and
the model output can be assessed. Table 2 reports summary
statistics for all CG model input variables on a per sector
basis. The column named "mean" in table 2 depicts the cross-
sectional means of the model input variables over the model
estimation period. When the columns mean and median are
compared, it becomes obvious that nearly all model input
variables exhibit right skewed distributions, except for the
energy sector with cross-sectional debt-per-share and stock
prices being left skewed. The number of individual variable
observations naturally is constant for all sectors with 3392
observations per obligor as my empirical analysis is based
on a balanced panel dataset. Only for the variable option
implied volatility, the number of observations deviates be-
cause of the shortened observation window for the option

implied volatility CG model estimation explained in chap-
ter 5. Regarding the financial leverage of firms, the sector
consumer cyclicals shows the highest leverage with DPS val-
ues ranging from 8.17 to 47.15, whereas the sector energy
together with technology, utilities and healthcare show low
intrasector leverage. When considering equity volatility, it is
noticeable that consumer cyclicals exhibit the highest degree
of volatility with a mean volatility of 35.42%, whereas in
comparison the sector healthcare exhibits on average close
to 10 percentage points lower equity volatility. All other
sectors show medium volatility with value above 25% but
lower than 30%. The comparison between option-implied
and equity volatility draws a clear picture. Option-implied
volatility shows lower lows and higher highs with overall
both lower median and mean values in comparison to equity
volatility for all sectors. This indicates that option-implied
volatility exhibits a higher degree of sensitivity embedded
into derivative markets rather than volatility in equity mar-
kets, by also providing a lower overall standard deviation for
implied volatility for all sectors. Additionally, the kurtosis
of input variables does not show a clear pattern. The val-
ues mostly remain smaller than one and alternate in signs
between sectors.

This provides evidence on the fact that the data is mainly
mesokurtic, except for option-implied volatility which is lep-
tokurtic with kurtosis values above three ranging from 3.2 to
187.7, except for the sectors technology and basic materials.
Taking kurtosis, skewness and long right tails into account,
the cross-sectional distribution of option-implied volatility is
predominantly described by a small number of positive out-
liers that drive the majority of their time-variation. This sup-
ports the idea of quicker absorption of information in deriva-
tive markets than in equity markets.

6.2. Correlation and Pricing Analysis
In this section I analyze the CG model performance in

its two specifications. In a first step, I estimate each model
and visualize its mean cross-sectional performance over all
sectors. Figure 2 depicts the estimated mean cross-sectional
CDS spread for all sectors using the CG model with an as-
set volatility estimator of 1000-day rolling window equity
volatility. The coordinate axis shows spread in bps, whereas
the abscissa axis depicts the time covering my sample period
from December 2007 to December 2020. It can be seen that
the the model spreads tend to follow the empirical spreads.
The CG model is able to produce sensible spreads in the cross-
section in size and magnitude. After the peak in 2009 with
close to 300 bps resulting from increased credit risk due to
the global financial crisis, model spreads tend to stay higher
than market spreads. This overprediction is mainly due to the
selected moving average window which produces so called
ghost effects when the window is large enough such that ini-
tial shocks remain in the estimated time-series even long after
the shock has died out (see e.g. Penza, Bansal, Bansal, and
Bansal (2001)). This effect is especially prominent when the
shock enters and leaves a system quick, which is the case for
the financial crisis due to government bail-out programs and
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Table 1: Overview of Industry Sector, Country and Rating Sample Composition.

This table gives an overview on the industry sector composition (Panel A) and the country distribution (Panel B) of my sample of CDS reference entities.
Panel C depicts the rating distribution of obligors. Industry sector classifications and country affiliations are retrieved from Refinitiv Eikon. For the rating
composition the credit rating masterscale from Standard and Poor’s Global Ratings is used.

Panel A: Sector distribution of reference entities
Sector Count Sector Count

Consumer Non Cyclicals 13 (17.33%) Healthcare 7 (9.33%)
Consumer Cyclicals 23 (30.67%) Energy 3 (4.00%)

Industrials 10 (13.33%) Basicmaterials 7 (9.33%)
Utilities 7 (9.33%) Technology 5 (6.67%)

Panel B: Country distribution of reference entities
Country Count Country Count

Germany 14 (18.67%) Netherlands 7 (9.33%)
Great Britain 20 (26.67%) Austria 1 (1.33%)

France 17 (22.67%) Greece 1 (1.33%)
Sweden 4 (5.33%) Spain 2 (2.67%)
Finland 3 (4.00%) Austria 1 (1.33%)

Switzerland 1 (1.33%) Italy 3 (4.00%)
Portugal 1 (1.33%) Belgium 1 (1.33%)

Panel C: Rating distribution of reference entities
Rating Count Rating Count

Investment Grade
AAA 0 (0%) A 8 (10.67%)
AA+ 0 (0%) A- 11 (14.67%)
AA 0 (0%) BBB+ 16 (21.33%)
AA- 1 (1.33%) BBB 22 (29.33%)
A+ 2 (2.67%) BBB- 4 (5.33%)

Speculative Grade
BB+ 5 (6.67%) CCC 0 (0%)
BB 0 (0%) CC 0 (0%)
B 1 (1.33%) C 0 (0%)
B- 1 (1.33%) D 0 (0%)

further economical support, reducing uncertainty directly ab-
sorbed in the credit derivatives market as reflected in de-
creasing market spreads. This behavior of model spreads is
mainly due to a mismatch between credit and equity mar-
kets, since equity volatility stays higher for longer. This find-
ing matches the study of Bedendo et al. (2011), who show
the same behavior of the CG model for the American mar-
ket. In comparison to the first peak, the model can, on aver-
age, cope better with the peaks due to sovereign debt crisis
in 2011 and 2012. It yields mean cross-sectional values of
230-250 bps, where in 2013 the model spreads again closely
follow market spreads, declining to 80 bps thereafter in the
defined tranquil period of 2015. Since credit risk increased
gradually over time, the specification of the model allows for
a better performance and estimation of spreads. The peak in
the corona crisis is again picked up by the model with sub-
sequent higher spreads after the initial peak in March 2020,
analog to the peak in the financial crisis, again mainly due to
a ghost effect of the selected window length.

Figure 3 shows the estimated mean cross-sectional CDS
spread for all sectors using the CG model with an asset volatil-
ity estimator of one year at-the-money option-implied volatil-
ity. It is visible that the model is in the cross-section able to
better fit to short term changes in the market spread, espe-
cially noticeable in the two peaks of the sovereign debt crisis
2011 an 2012 with a reduction in market spread between
the two peaks closely followed by the model. Spreads are in
the short run much more volatile than compared to model
spreads in figure 2, supporting the hypothesis that informa-
tion is quicker absorbed in derivatives markets and thus re-
flected in its price. This allows for a better fit of the model
compared to market spreads. The corona crisis of March
2020 shows that model severely overpredicts market spreads
in times of uncertainty and high implied volatilities, leading
to a deviation of model and market spreads. In comparison
to figure 2, this overprediction shows the short term sensitiv-
ity of the model, which is in case of the extreme uncertainty
in March 2020 oversensitive, result in a divergence between
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Table 2: CG Model Input Summary Statistics.

This table presents summary statistics for all CG model input variables on a sector basis. The variable DPS depicts the debt-per-share of each firm for the
sector cross section, estimated as described in chapter 4.2. Equit y represents the sector cross-sectional stock price. Equit yVolat il i t y denotes the 1000
trading-day moving average standard deviations scaled by

p
252 to obtain annualized volatilities. Option− impliedVolat il i t y depicts the Black-Scholes

extracted volatilites of obligor specific at-the-money call and put options with a constant maturity of one year. Risk − f ree − rate represents the 5 year
constant maturity treasury bond middle rate. I report the time-series means of the daily mean (Mean), standard deviation (SD), skewness (Skew), kurtosis
(Kurt), minimum (Min), fifth percentile (5%), 25th percentile (25%), median (Median), 75th percentile (75%), 95th percentile (95%), and maximum (Max)
values of the cross-sectional distribution of each variable. The column labeled n indicates the number of individual variable observations within each sector.

n Min 5% 25% Mean Median 75% 95% Max SD Skew Kurt

Sector Consumer Non Cyclical:
Cross-Sectional Distribution
DPS 3392 12.5509 12.6867 14.3745 18.6058 16.5850 21.7585 30.9187 32.4455 5.8206 0.8447 0.0381
Equit y 3392 13.0485 17.3355 24.0894 32.3930 31.7985 39.6753 49.1130 55.6892 9.8735 0.2423 -0.5877
Equit yVolat il i t y 3392 0.2039 0.2151 0.2389 0.2748 0.2655 0.3218 0.3437 0.3509 0.0442 0.2125 -1.1042
Option− impliedVolat il i t y 2857 0.1272 0.1805 0.1999 0.2261 0.2190 0.2465 0.2919 0.4712 0.0362 1.6403 18.8232
Risk− f ree− rate 3392 0.0019 0.0041 0.0124 0.0170 0.0166 0.0223 0.0295 0.0373 0.0073 0.1386 -0.4580
Sector Consumer Cyclicals:
Cross-Sectional Distribution
DPS 3392 30.4068 30.7789 36.8354 53.4215 49.9450 66.5672 85.9017 86.3647 18.5970 0.5780 -0.0082
Equit y 3392 11.6734 16.9983 28.8271 43.6177 40.4305 57.4919 78.2983 119.2181 19.8188 0.2901 0.3456
Equit yVolat il i t y 3392 0.2345 0.2517 0.2820 0.3542 0.3272 0.4511 0.4937 0.5067 0.0867 0.3507 -1.1581
Option− impliedVolat il i t y 2857 0.1448 0.2101 0.2379 0.2790 0.2639 0.3061 0.4043 0.6673 0.0612 1.7125 11.9964
Risk− f ree− rate 3392 0.0019 0.0041 0.0124 0.0170 0.0166 0.0223 0.0295 0.0373 0.0073 0.1386 -0.4580
Sector Industrials:
Cross-Sectional Distribution
DPS 3392 9.4076 9.4695 11.1595 13.4879 12.9934 15.2042 19.5853 19.7391 3.0362 0.7547 0.0725
Equit y 3392 7.1427 9.1722 12.4001 20.0576 18.1908 26.0221 36.9305 43.8587 8.9835 0.3339 -0.4849
Equit yVolat il i t y 3392 0.2198 0.2372 0.2736 0.3252 0.3101 0.3930 0.4216 0.4422 0.0634 0.2618 -0.9924
Option− impliedVolat il i t y 2857 0.1354 0.2071 0.2291 0.2608 0.2483 0.2813 0.3651 0.6444 0.0493 2.1614 14.9150
Risk− f ree− rate 3392 0.0019 0.0041 0.0124 0.0170 0.0166 0.0223 0.0295 0.0373 0.0073 0.1386 -0.4580
Sector Utilities:
Cross-Sectional Distribution
DPS 3392 7.0131 7.0563 8.6182 10.4272 9.9958 11.5565 14.9362 23.4762 2.9656 1.4362 4.1502
Equit y 3392 6.0838 7.2960 9.3095 12.3694 11.7405 14.68715 20.7756 25.1797 3.9910 0.7698 0.4068
Equit yVolat il i t y 3392 0.1786 0.1911 0.2296 0.2726 0.2705 0.3225 0.3565 0.3707 0.0518 0.0000 -0.6144
Option− impliedVolat il i t y 2857 0.1303 0.1743 0.2021 0.2319 0.2260 0.2570 0.3053 0.9261 0.0460 5.9045 187.7552
Risk− f ree− rate 3392 0.0019 0.0041 0.0124 0.0170 0.0166 0.0223 0.0295 0.0373 0.0073 0.1386 -0.4580
Sector Technology:
Cross-Sectional Distribution
DPS 3392 5.5528 5.5655 6.3523 7.9656 7.6323 9.1944 12.6402 12.6412 2.1152 0.8544 0.3368
Equit y 3392 4.2458 5.2343 7.2683 9.1282 9.0310 10.7312 13.2526 18.1690 2.5503 0.5372 0.6853
Equit yVolat il i t y 3392 0.1938 0.2089 0.2473 0.2885 0.2802 0.3479 0.3742 0.3815 0.0557 0.1007 -0.8781
Option− impliedVolat il i t y 2857 0.1495 0.1691 0.2010 0.2339 0.2322 0.2619 0.3111 0.4370 0.0442 0.7318 1.5499
Risk− f ree− rate 3392 0.0019 0.0041 0.0124 0.0170 0.0166 0.0223 0.0295 0.0373 0.0073 0.1386 -0.4580
Sector Healthcare:
Cross-Sectional Distribution
DPS 3392 8.1712 8.2207 14.7124 24.1644 22.6190 28.3547 45.5704 47.1587 11.9837 0.5914 -0.4910
Equit y 3392 19.3480 23.4768 30.9402 46.7214 45.0141 60.9503 76.5182 89.3498 17.5787 0.2853 -0.8863
Equit yVolat il i t y 3392 0.1948 0.2033 0.2243 0.2627 0.2447 0.3025 0.3820 0.3870 0.0547 0.5686 -0.5580
Option− impliedVolat il i t y 2857 0.1797 0.1970 0.2156 0.2405 0.2348 0.2578 0.3080 0.4669 0.0350 1.2786 3.2485
Risk− f ree− rate 3392 0.0019 0.0041 0.0124 0.0170 0.0166 0.0223 0.0295 0.0373 0.0073 0.1386 -0.4580
Sector Energy:
Cross-Sectional Distribution
DPS 3392 4.9677 4.9989 6.7676 8.0392 8.1252 9.6188 11.3735 11.5489 1.8575 0.1022 -0.9705
Equit y 3392 9.9433 15.3620 19.4333 21.4967 21.5000 23.5862 26.9941 31.4800 3.2282 -0.2396 1.4324
Equit yVolat il i t y 3392 0.1800 0.1927 0.2305 0.2632 0.2522 0.3087 0.3395 0.3440 0.0462 0.2782 -0.9757
Option− impliedVolat il i t y 2857 0.1526 0.1695 0.1885 0.2193 0.2100 0.2433 0.2943 0.5135 0.0408 1.3767 3.9044
Risk− f ree− rate 3392 0.0019 0.0041 0.0124 0.0170 0.0166 0.0223 0.0295 0.0373 0.0073 0.1386 -0.4580
Sector Basicmaterials:
Cross-Sectional Distribution
DPS 3392 12.2274 12.4535 15.7890 19.7934 19.2557 23.2284 33.5750 34.6251 5.9002 0.4108 -0.0740
Equit y 3392 20.7291 29.2467 40.7976 52.4727 51.4565 64.3536 77.4551 86.2350 14.7322 0.2641 -0.6138
Equit yVolat il i t y 3392 0.1932 0.2203 0.2438 0.2872 0.2766 0.3433 0.3789 0.3864 0.0536 0.4270 -1.0931
Option− impliedVolat il i t y 2857 0.1854 0.2047 0.2255 0.2542 0.2491 0.2761 0.3235 0.4375 0.0372 0.8139 0.9872
Risk− f ree− rate 3392 0.0019 0.0041 0.0124 0.0170 0.0166 0.0223 0.0295 0.0373 0.0073 0.1386 -0.4580

equity and credit derivative markets.
In a second step, I consider the sector specific conditional

correlation between market and model spreads for each spec-
ification as a preliminary step in the performance analysis. In



L. Specht / Junior Management Science 8(1) (2023) 1-4220

Figure 2: Estimated mean cross-sectional CDS spread for all sectors using the CG model with an asset volatility estimator of
1000-day rolling window equity volatility.

Figure 3: Estimated mean cross-sectional CDS spread for all sectors using the CG model with an asset volatility estimator of
one year at-the-money option implied volatility.

table 3 panel A depicts each intrasector correlation estimated
with Person product-moment coefficients and panel B depicts
the Spearman rank coefficients. For all sectors, except for En-
ergy in its both specifications and technology in its implied
volatility specification, the full period exhibits strong corre-
lation between market and model spreads.Values range from
0.546 for the option-implied CG model spreads for the sector
consumer non-cyclicals, to 0.814 for the option-implied CG
model spreads for the sector utilities.

Regarding the correlation for the historical volatility spec-
ifications only, panel A shows that the corona crisis period ex-
hibits the lowest correlations, except for the consumer cycli-
cals sector, with low to medium correlation of 0.064 for con-

sumer non-cyclical to 0.309 for the sector healthcare. I esti-
mate negative correlations of −0.135 and −0.372 for the sec-
tor technology in the financial crisis period and the sector en-
ergy for the corona crisis period, indicating that the model is
not able to follow market spreads in times of financial turmoil
for the respective sectors. If only the implied volatility speci-
fication is considered, it is noticeable that model spreads ex-
hibit higher correlation with market spread in times of crisis
when volatility is high and spreads shoot up. The tranquil pe-
riod, on the other hand, shows the lowest correlation for this
specification, indicating that the implied vol model is able to
follow market spreads best. This can be seen by the signifi-
cant changes in both credit and equity markets at the same
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time. Furthermore, the implied volatility estimated spreads
have significantly higher correlation with markets spreads in
the corona crisis period than the historical volatility specifi-
cation for all sectors. This aspect further supports the visual
analysis when comparing figures 2 and 3. Regarding the his-
torical volatility specification, the corona crisis exhibits the
lowest correlation, both leading to the conclusion that the
model is not able to cope with short term increased dynam-
ics in CDS market spreads. Regarding the full sample period,
there is no clear pattern which model specification has higher
correlation with market spreads. The comparable continu-
ous low correlation for the historical volatility corona crisis
period is thereby compensated by changing medium to high
correlations in the European sovereign debt crisis period and
tranquil period. In correspondence to that, it has to be noted
that the full period correlations are not directly comparable,
since the financial crisis is not part of the full period for the
implied vol specification.

The estimated Spearman rank coefficients in panel B
draw the same picture as the Pearson product-moment cor-
relations in panel A with slight different estimates in magni-
tude. Still they are similar enough to exclude the possibility
of biased and distorted results in the subsequent pricing
and regression analysis due to non-linearity. All in all, the
conditional pricing analysis shows that there exists a strong
enough relation between model and market spreads. My re-
sults allow for the detailed pricing and regression analysis in
order to assess the ability of the CG model to price credit risk
in the the cross-section. The previous results are similar in
size and magnitude to the correlations measured by Bedendo
et al. (2011).

Table 17 in the appendix depicts the assessment of possi-
ble autocorrelation in the spirit of Byström (2006). I report
Ljung-Box test statistics for each obligor in the sample of em-
pirical and CG model spreads both estimated with historical
volatility and option implied volatility. LB(5) indicates the
Ljung-Box statistic with 5 lags and LB(10) with 10 lags re-
spectively. For each specification I report the total number
of significant variables defined to equal the 5% significance
level or higher. Regarding empirical spreads, 54 CDS time
series exhibit significant autocorrelation when 5 lags are es-
timated, resulting in 72% of the sample. When 10 lags are
included, 65 CDS time series show significant autocorrelation
accounting for 87% of the sample. This result is in line with
Byström (2006) who also finds that the vast majority of CDS
index market spreads are autocorrelated. Thus I can support
his findings also for individual CDS contracts in the Euro-
pean market. Furthermore, I test estimated model spreads
and find that the degree of autocorrelation is smaller than
for market spreads, however a significant share of the sam-
ple shows significant autocorrelation amounting to 63% for
5 lags and 76% for 10 lags in the historical volatility specifi-
cation and 70% for 5 lags and 78% for 10 lags in the implied
volatility specification. This finding deviates from Byström
(2006), who concludes that CDS index model spreads do not
show high degrees of autocorrelation. Hence, CDS markets
could be subject to inefficiencies. Based on these findings, I

cannot support this hypothesis as even different model spec-
ifications and number of lags do not change the picture dra-
matically. It is to note that, although the degree of autocor-
relation in model spreads is still high, the historical volatility
specification yields a lower share of autocorrelation than the
market or implied volatility model spreads, indicating that
equity markets are less subject to possible inefficiencies if the
narrative of Byström (2006) is applied.

Finally, I assess the actual pricing performance of the CG
model in its respective specifications by means of forecast-
ing metrics. To do so, I calculate the bias, the mean absolute
error and the root mean squared error as defined in chap-
ter 4.3. Table 4 presents the results of the CG model pricing
analysis, whereas Panel A depicts key metrics for the 1000-
day historical volatility specification and panel B depicts key
metrics for the option implied volatility specification. Con-
sidering panel A, over all time periods the highest bias, MAE
and RMSE are measured in the consumer non-cyclical sec-
tor with values of 77.33, 222.09 and 237.80 bps respectively.
The model therefore shows the highest degree of mispricing
in absolute terms for this sector. Table 15 in the appendix
show that this result is not due to high overall spreads which
would relativize the mispricing since median sector spreads
amount to 74.118 bps. Table 1 depicts low leverage by low
debt-per-share median values of 16.586 and comparable low
equity volatility of 0.2665, indicating the model shortcom-
ings of reliably estimating spreads if input variables do not
exhibit enough variation to drive model inherent credit risk.
The consumer cyclicals sector shows the second worst per-
formance with a bias of 77.91 bps, an MAE of 193.3 bps and
a RMSE of 235.86 bps. However, when the overall level of
market spreads are considered, the picture changes in favor
of this sector since it shows the highest median sector spread
amounting to 110.999. Thus, a 50% higher market spread
level shows good relative model performance compared to
the overall market spread level of other sectors. Table 1
again provides insights on how the distribution of model in-
put variables determine model performance, since obligors
for the sector consumer cyclicals show the highest median
DPS value of 49.9450, median equity value with 40.4305
and highest equity volatility value with 0.3272. This further
underlines the initial indication that model performance is
highly dependent on input parameter distribution. In con-
trast to that, the sectors utilities, technology, healthcare, en-
ergy and basic materials all exhibit a negative bias show-
ing that the model tends to underestimate market spreads
for these sectors. The comparison between the bias and the
mean absolute error further indicates a continuous under-
performance of the model relative to market spreads, since
negative bias values turn by construction to positive MAE val-
ues with same magnitude. When again model input param-
eter distributions are compared in table 1, the drawn picture
above remains since DPS, equity and equity volatility exhibit
a too small variation to drive model inherent credit risk.

Comparing different time periods, table 4 shows high
MAE and RMSE values for the financial crisis and European
sovereign debt crisis and corresponding increased variability
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Table 3: Conditional Correlation Analysis.

This table reports the conditional sector specific correlation between daily market and model spreads, whereas model spreads are estimated with the Cred-
itGrades model using 1000-trading-day equity volatility (MA Vol) and option implied volatility (Implied Vol). The sector classification is retrieved from
Refinitiv Eikon and consists out of Consumer Non-Cyclical, Consumer Cyclicals, Industrials, Utilities, Technology, Healthcare, Energy and Basicmaterials. Fur-
thermore, I report intrasector time dependent correlations for the following time periods: Full Period (14.12.2007 - 14.12.2020), Financial Crisis (14.12.2007
- 31.12.2009), European Sovereign Debt Crisis (01.01.2010 - 31.12.2013), Tranquil Period (01.01.2014 - 28.02.2020) and the Corona Crisis (01.03.2020 -
14.12.2020). I augment the time period Financial Crisis (14.12.2007 - 31.12.2009) for the option-implied volatility CG model specification, due to a smaller
subsample and shortened observation window. Panel A presents Pearson product-moment correlations, whereas Panel B reports Spearman rank correlations.
To obtain average sector specific correlations, I follow Corey et al. (1998) and transform individual correlations r to the Fisher z-transform via Z = 1

2 ln
� 1+r

1−r

�

.
Then the average of all sector specific z-transformed is derived Z̄ = 1

n

∑n
i=1 Zi . Afterwards the average z-transformed variable is then back-converted using

r̄ = e2Z̄−1
e2Z̄+1

to obtain an average sector specific correlation coefficient.

Panel A: Pearson Product-Moment Correlation
Consumer Non-Cyclical Consumer Cylclicals Industrials Utilities

MA Vol Implied Vol MA Vol Implied Vol MA Vol Implied Vol MA Vol Implied Vol

Full Period 0.596 0.546 0.636 0.586 0.732 0.700 0.702 0.814
Financial Crisis 0.379 0.598 0.383 0.576
European Sovereign Debt Crisis 0.466 0.516 0.576 0.573 0.555 0.658 0.664 0.831
Tranquil period 0.447 0.488 0.378 0.327 0.583 0.618 0.503 0.675
Corona Crisis 0.064 0.560 0.572 0.709 0.125 0.622 0.308 0.582

Technology Healthcare Energy Basicmaterials

MA Vol Implied Vol MA Vol Implied Vol MA Vol Implied Vol MA Vol Implied Vol

Full Period 0.571 0.317 0.551 0.634 0.319 0.282 0.685 0.736
Financial Crisis -0.135 0.315 0.216 0.431
European Sovereign Debt Crisis 0.611 0.558 0.442 0.484 0.589 0.470 0.660 0.709
Tranquil period 0.594 0.449 0.224 0.383 0.518 0.836 0.660 0.689
Corona Crisis 0.124 0.264 0.309 0.644 -0.372 0.716 0.249 0.765

Panel B: Spearman Rank Correlation

Consumer Non-Cyclical Consumer Cylclicals Industrials Utilities

MA Vol Implied Vol MA Vol Implied Vol MA Vol Implied Vol MA Vol Implied Vol

Full Period 0.613 0.475 0.745 0.698 0.751 0.764 0.708 0.842
Financial Crisis 0.472 0.637 0.406 0.646
European Sovereign Debt Crisis 0.528 0.540 0.642 0.629 0.580 0.624 0.665 0.817
Tranquil period 0.479 0.579 0.542 0.562 0.602 0.711 0.562 0.631
Corona Crisis 0.048 0.552 0.553 0.755 0.043 0.625 0.224 0.722

Technology Healthcare Energy Basicmaterials

MA Vol Implied Vol MA Vol Implied Vol MA Vol Implied Vol MA Vol Implied Vol

Full Period 0.611 0.339 0.625 0.721 0.559 0.429 0.768 0.853
Financial Crisis -0.087 0.373 0.502 0.472
European Sovereign Debt Crisis 0.624 0.574 0.466 0.584 0.754 0.497 0.602 0.669
Tranquil period 0.632 0.572 0.189 0.433 0.441 0.706 0.707 0.734
Corona Crisis 0.210 0.110 0.281 0.542 -0.501 0.678 0.157 0.756

of intrasector pricing measures in crisis times depicted by the
standard deviation of MAE and RMSE. This finding shows
that model spreads from backward-looking equity volatil-
ity are subject to the inability to adjust to new information
quick enough, such that pricing gaps converge over defined
time periods. This implies that the consumer non-cyclicals,
consumer cyclicals, healthcare and basicmaterials sectors ex-
hibit the highest forecasting metrics in the financial crisis,
whereas the sectors energy, technology, utilities and industri-

als show highest mispricing in the European sovereign debt
crisis. Considering time periods with lowest mispricing, the
RMSE seems lowest for the sector consumer cyclicals, indus-
trials and energy, as expected for the tranquil period. Counter
intuitively for all remaining sectors, the model performs best
in the corona crisis compared to all other time periods, indi-
cating a higher degree of adaptation to dynamical changes in
market environments than anticipated.

Turning to panel B, I test the hypothesis that the CG
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model calibrated using implied volatility overall performs
better than the model in panel A. Furthermore, I test the hy-
pothesis whether the model in panel B outperforms in times
of increased volatility, i.e. in crisis periods as indicated by
Wagner (2008) and Cao et al. (2011). Panel B illustrates
that the consumer non-cyclical sector shows the worst model
performance with the highest bias, MAE and RMSE for all
time periods considered. If the performance between his-
torical and option implied volatility is regarded, the latter
performs worse for the full period in the magnitude of 30
to 40 bps between forecasting measures with corresponding
increased variability in pricing measures. This result pro-
vides a first conflicting result, in contrast to the findings of
Wagner (2008) and Cao et al. (2011). Further assessment
shows that my initial findings seem to be highly sector de-
pendent as the consumer cyclicals, industrials, technology
and healthcare sectors exhibit a better model performance
when forward-looking option-implied volatility is used. This
type of volatility reduces the pricing metrics between 20 bps
for technology to about 50 bps in the cross-section for the
consumer cyclicals sector. Besides that, also the variabil-
ity of pricing metrics seem to be highly reduced. On the
other hand, sectors energy and basicmaterials show worse
implied-volatility based model performance besides the al-
ready mentioned consumer non-cyclicals sector. Although
showing slight worse implied volatility model performance,
the utilities sector exhibits decreased variability in the Bias,
MAE and RMSE.

When the performance clustered by time periods is as-
sessed between panel A and B, it turns out that for the ma-
jority of sectors, the European sovereign debt crisis yields the
highest pricing error, consistent with findings of panel A. The
corona crisis in panel A exhibits much higher pricing errors
than in panel B for the consumer cyclicals and technology
sectors with a magnitude of up to 50 bps. If table 1 is con-
sidered, the distribution of model specific parameters again
explain the pricing performance, since for consumer cycli-
cal the median option implied volatility is the highest among
all sectors with 0.2639, closely followed by 0.2322 for tech-
nologies. Thus, again the narrative of my pricing analysis
continuous in which parameter distributions determine the
model performance contingent on model calibration proce-
dures, implying that model performance is by definition in-
herently sector specific due to unique sector specific model
input parameter distributions.

6.3. Model Gap Analysis
In this sub-section, I analyze the model pricing error de-

fined as the gap between model and market spreads in cor-
respondence to section 4.3. For that I implement sector spe-
cific panel regressions on obligor specific and individual fac-
tors as described in chapter 4.4. In appendix E, I report re-
gression diagnostic statistics valid for all regression setups as
staionarity and multicollinearity are analyzed for all regres-
sion variables used. The results of the unit root test based on
Levin et al. (2002) in table 18 show that all regression vari-
ables have p-values of 0, rejecting the null of non-stationarity.

The only exception is the weekly change in the slope of the
yield curve. However, as Bedendo et al. (2011) employ this
variable in their regression procedure and all other variables
are stationary, I proceed with the analysis of VIF values to
a set threshold of 3. The results are presented in table 19.
Panel A shows VIF values for regression variables using his-
torical volatility information, ranging from 1.01 to 2.06 at
maximum, hence indicating no multicollinearity concerns for
these regressions. Panel B depicts the same range for VIF val-
ues, also indicating no evidence of multicollinearity.

The corresponding results for the gap estimated between
the CG model calibrated with equity volatility can be found
in table 5. Table 5 shows that the adjusted R2 ranges from
0.066 for the consumer non-cyclicals sector to 0.687 for the
technology sector, indicating vast sector specific explanatory
power of selected independent variables.

The first finding to discuss is that the weekly change in
the counterparty risk index (CRI) exhibits highly significant
factor loadings for all sectors with negative signs, such that
the weekly change in the gap reduces if the weekly change
in CRI is positive. This result is in line with intuition since
model and market spreads should converge if counterparty
credit risk increases, thus driving the aggregated level of
credit risk higher and therefore increasing model as well as
market spreads. Furthermore, counterparty credit risk seems
to be a highly important determinant of the gap, that is not
controlled for in the regression scope of other empirical stud-
ies. The factor loadings for the weekly change in the VSTOXX
index also reflect this aspect. It captures the overall level of
risk and risk aversion and shows that estimated coefficients
are comparable in size and magnitude, even though they are
only statistically significant for sector regressions (1), (2),
(3), (7) and (8). The weekly change in the slope of the CRI
also has comparable significant coefficients in magnitude and
size. An increase in the change of the slope will reduce the
weekly change in the gap, implying that market sentiment
will increase since the difference in long tenor minus short
tenor spreads increase. Hence default probabilities in the
short run are reduced and default probabilities in the long
run are higher due to a technical reduction in long term sur-
vival probabilities. The results of the company returns are
intuitive and statistically significant at 1% for the majority
of sectors, since a negative sign states that an increase in
returns has a larger reducing effect on market spreads than
on model spreads, supporting the findings of Bedendo et al.
(2011). Equity volatility estimates yield mixed results with
alternating signs for the sectors and only three sectors show
significant coefficient estimates. This results contradicts the
study of Bedendo et al. (2011) who control for option im-
plied volatility and find that volatility is a crucial determinant
of the gap and CDS market and model spreads. Contributing
to this result, I find that changes in the credit curve also yield
mixed results with significant estimates for half of all sectors.
Hence, the credit curve does seem to contribute to the dy-
namics of the gap, but it does not correspond with the effect
described in chapter 4. This result is in line with Bedendo et
al. (2011) who confirm this ambiguity for the North Ameri-
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Table 4: Model Pricing Analysis.

This table presents the results of the CG model pricing analysis. Panel A depicts key metrics for the 1000-day historical volatility specification and panel
B for the option-implied volatility specification. I divide my sample into 8 sectors and 5 time periods. The sector classification is retrieved from Refinitiv
Eikon and consists of: Consumer Non-Cyclical, Consumer Cyclicals, Industrials, Utilities, Technology, Healthcare, Energy and Basicmaterials. I further divde
my sample according to the following time periods: Full Period (14.12.2007 - 14.12.2020), Financial Crisis (14.12.2007 - 31.12.2009), European Sovereign
Debt Crisis (01.01.2010 - 31.12.2013), Tranquil Period (01.01.2014 - 28.02.2020) and the Corona Crisis (01.03.2020 - 14.12.2020). Since my option implied
CG model specifications consists out of a smaller sub-sample with shortened observation window, I augment the time period of the financial crisis to ensure
comparability within each time period as described in chapter 5. I report the following three pricing metrics and their corresponding standard deviations:
the bias (Bias), the mean absolute error (MAE) and the root mean squared error (RMSE). Their estimation procedure is described in chapter 4.3.

Bias Std(Bias) MAE Std(MAE) RMSE Std(RMSE)

Panel A: Historical Volatility Specification
Sector Consumer Non Cyclical
Full Period 77.33 156.10 222.09 144.06 237.50 145.90
Financial Crisis 107.79 211.70 297.97 195.93 309.47 195.87
European Sovereign Debt Crisis 74.73 151.34 215.89 139.59 218.87 140.18
Tranquil Period 72.65 145.38 205.68 134.35 212.84 134.89
Corona Crisis 47.92 126.21 184.57 115.26 188.58 115.80
Sector Consumer Cyclicals
Full Period 77.91 53.34 193.30 42.93 235.86 49.92
Financial Crisis 87.28 92.49 291.31 73.86 327.87 77.34
European Sovereign Debt Crisis 174.24 71.50 255.84 60.25 272.86 62.78
Tranquil Period 12.62 38.49 119.48 29.69 126.90 30.65
Corona Crisis 75.60 60.07 198.40 46.29 210.39 48.05
Sector Industrials
Full Period 6.59 35.18 86.91 25.71 100.77 27.43
Financial Crisis 17.35 49.26 112.99 36.24 130.50 35.38
European Sovereign Debt Crisis 23.35 47.49 105.01 35.77 114.16 36.44
Tranquil Period -8.09 25.48 67.82 16.34 74.65 17.45
Corona Crisis 8.44 35.13 76.52 26.68 81.61 26.82
Sector Utilities
Full Period -86.60 17.90 86.99 17.73 109.30 26.25
Financial Crisis -76.70 13.77 76.70 13.77 92.90 20.17
European Sovereign Debt Crisis -143.57 39.99 143.59 39.99 160.19 47.13
Tranquil Period -59.61 9.86 59.70 9.8 63.50 10.48
Corona Crisis -34.60 10.93 40.17 7.07 41.26 7.18
Sector Technology
Full Period -61.68 34.25 77.33 33.48 129.55 77.21
Financial Crisis -51.43 14.29 65.31 5.93 75.14 6.85
European Sovereign Debt Crisis -115.19 95.76 140.67 89.52 200.02 143.96
Tranquil Period -38.19 10.47 44.59 13.58 50.01 15.96
Corona Crisis -0.73 28.18 43.41 18.19 49.25 20.16
Sector Healthcare
Full Period -14.61 21.18 69.13 22.56 97.00 40.72
Financial Crisis 74.33 115.97 170.39 98.06 183.91 99.87
European Sovereign Debt Crisis -23.74 19.83 75.49 17.70 88.41 26.71
Tranquil Period -37.33 5.87 37.33 5.87 39.03 6.03
Corona Crisis -22.04 2.45 22.26 2.36 24.55 3.03
Sector Energy
Full Period -63.53 8.59 63.55 8.59 73.63 11.40
Financial Crisis -51.74 2.61 51.74 2.61 56.62 3.38
European Sovereign Debt Crisis -85.23 16.32 85.23 16.32 97.51 21.37
Tranquil Period -55.84 7.85 55.84 7.85 59.44 7.98
Corona Crisis -44.41 4.87 44.71 5.16 60.73 8.05

(Continued)
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Table 4—continued

Sector Basicmaterials
Full Period -75.69 15.49 76.44 15.75 88.63 20.32
Financial Crisis -130.32 42.46 130.32 42.46 139.22 44.34
European Sovereign Debt Crisis -81.05 19.56 83.43 18.97 90.07 19.02
Tranquil Period -58.65 9.59 58.70 9.59 62.67 10.89
Corona Crisis -39.56 4.34 39.56 4.34 43.08 4.35

Panel B: Option-Implied Volatility Specification
Sector Consumer Non-Cyclical
Full Period 132.01 207.65 266.27 190.90 274.90 191.47
European Sovereign Debt Crisis 129.18 216.18 283.44 196.92 286.88 197.86
Tranquil Period 136.05 205.31 258.34 190.06 265.01 190.73
Corona Crisis 114.74 185.76 241.21 169.95 245.81 170.57
Sector Consumer Cyclicals
Full Period 27.69 61.34 158.70 44.03 184.50 46.67
European Sovereign Debt Crisis 10.20 69.40 179.47 48.64 193.28 50.02
Tranquil Period 22.92 56.15 134.69 42.41 144.59 44.10
Corona Crisis 153.57 90.42 240.96 77.35 264.73 78.61
Sector Industrials
Full Period -19.35 38.99 86.75 24.14 96.86 27.14
European Sovereign Debt Crisis -24.16 52.84 110.79 33.69 117.36 36.00
Tranquil Period -25.81 30.07 70.71 16.92 74.78 18.00
Corona Crisis 55.49 45.38 90.17 40.47 106.98 43.36
Sector Utilities
Full Period -107.26 7.04 107.67 7.33 129.05 9.16
European Sovereign Debt Crisis -177.08 12.11 177.08 12.11 190.33 12.62
Tranquil Period -70.12 4.44 70.12 4.44 72.19 4.18
Corona Crisis -43.65 3.53 49.34 9.19 72.60 31.98
Sector Technology
Full Period -30.74 13.00 54.26 11.83 62.85 11.02
European Sovereign Debt Crisis -50.19 15.81 65.84 7.23 70.50 5.87
Tranquil Period -33.45 16.97 42.04 13.24 47.15 12.95
Corona Crisis 88.87 30.37 91.00 28.78 104.29 29.90
Sector Healthcare
Full Period -31.57 15.69 63.64 21.74 81.34 30.88
European Sovereign Debt Crisis -23.12 27.92 106.89 40.99 121.47 49.88
Tranquil Period -39.76 13.64 40.75 12.76 43.29 12.56
Corona Crisis -10.45 4.85 23.36 2.70 33.46 7.37
Sector Energy
Full Period -63.38 18.28 64.49 18.44 71.29 21.18
European Sovereign Debt Crisis -87.99 28.68 87.99 28.68 93.24 31.32
Tranquil Period -53.32 13.69 53.32 13.69 55.84 13.80
Corona Crisis -17.29 1.54 32.69 3.69 43.47 3.24
Sector Basicmaterials
Full Period -97.5 26.02 97.52 26.03 109.59 31.27
European Sovereign Debt Crisis -148.51 46.29 148.51 46.29 151.84 46.93
Tranquil Period -71.37 16.45 71.37 16.45 77.17 18.92
Corona Crisis -43.21 6.96 43.53 7.12 45.10 7.38

can credit derivatives market. As the risk-free rate is also a
model input parameter, the interpretation of its contribution
in explaining the changes in the gap is not straight forward.
As in Bedendo et al. (2011), it does not seem to be a determi-
nant of the gap dynamics. The same result holds for the slope

of the yield curve. This slope is statistically significant at the
10% level in model (1) and thus provides no contribution to
explaining the dynamics of the gap. Illiquidity does not seem
to have any significant factor loadings and thus also does not
contribute to the explanatory power of the gap. This result is
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also in line with Bedendo et al. (2011) who discover mixed
results and mostly insignificant regression estimates. How-
ever the finding contradicts studies like the one of Tang and
Yan (2007) who find significant liquidity risk premia in credit
derivatives markets. I conclude that for European CDS gaps,
liquidity spillover from equity markets do not seem to affect
the difference in market and model spreads. As Bedendo et
al. (2011) point out, illiquidity spillover might affect market
and model spreads at the same time and hence does not affect
the gap. In order to test if illiquidity affects market or model
spreads individually, I run subsequent panel regressions on
model and market spreads separately in subsection 6.4 and
6.5. The results related to lagged changes in the gap are in-
conclusive. Most of the coefficients are not significant and
vary in sign. Thus, I cannot say some type of mean reverting
behavior exists and therefore large changes in the gap are re-
absorbed in the following gap spreads. In consequence "con-
vergence is more likely to occur when model spreads move
back towards market spreads"8. As I estimate regression co-
efficients with Driscoll-Kraay standard errors correcting for
spatial and intertemporal dependence, it is to note that this
could also affect the significance of lagged regressions vari-
ables.

To analyse the panel regression specification and the com-
pleteness of the model, table 5 depicts the number of prin-
cipal components extracted from the error term that explain
80% or more of the explained variation. It becomes appar-
ent that common factors are largely sector specific since the
number of extracted variables is heterogeneous. Common
factors explaining 80% of the variation range from 2 in case
of regressions (4) and (6), to 9 factors for regression (3). In
case of regression (2), (7) and (8) 4 factors are extracted
and regression (5) finds 5 principal components that explain
at least 80% in the left over variation of the error term. The
principal component analysis for the gap error term points
out that the regression specification is highly sector specific
with sector common variables missing for model (4) and (6),
when defining up to two components as model misspecifica-
tions. My results are comparable to those of Collin-Dufresne
et al. (2001) who also concludes that common factors are still
missing from regression specifications. Nevertheless, they
do not analyse the gap between some model and market
spreads, but address principal components extracted from re-
gressions with the market spread as dependent variable.

Table 6 shows regression estimates for the same setting as
table 5, where now the gap is estimated using option-implied
CG model spreads. All in all, table 6 allows for similar conclu-
sions as table 5. Counterparty credit risk and equity returns
are still a highly significant determinant of the gap, whereas
the CRI slope has much weaker explanatory power in the
cross-section of sectors. Since forward-looking information
backed out of option markets are already embedded in model
spreads, further variables controlling for market sentiment
might not exhibit the same importance as compared to using

8Bedendo et al. (2011), p. 667.

historical information for derivation of the model spreads in
table 5. The same holds for the slope of the credit curve,
which is also less significant in the cross-section as compared
to table 5. When considering the model completeness via
PCA, I discover that the model error terms are driven by fewer
principal components when imposing the restriction to ac-
count for at least 80% of its explained variance. This suggests
that the model lacks more common factors than the model
specifications in table 5. A feasible explanation could be the
lack of variables from option markets such as volatility skew
or the weekly change in implied volatility. This aspect is also
represented in comparably low adjusted R2 values ranging
from 0.045 to 0.333.

6.4. Model Spread Analysis
To better understand the determinants of the European

credit default swap spread dynamics, I run sector panel re-
gressions similar to those of the previous section. Table 7 re-
ports the estimates for the equity volatility calibrated model
spreads. The difference between the gap regressions of ta-
ble 5 and the model regressions of table 7 is that now inde-
pendent variables are also directly used as input variables to
derive the dependent variable.

The estimated regression coefficients for company returns
are again highly statistical significant and posses the expected
sign. In consequence, the model spreads react inverse to
company returns. This is not surprising since the model is
build on the assumption that credit risk emerges from the re-
lation between the amount of equity and liabilities (financial
leverage). Hence, positive equity returns reduce the risk of
experiencing a credit event by construction, since leverage
would decrease and ceteris paribus the price for credit pro-
tection should fall. The same holds true for equity volatility.
Since the model is calibrated using 1000-day equity volatil-
ity, volatility increases when the risk of hitting the default
barrier increases and thus also the model spreads should in-
crease. This is largely the case for model (1), (3), (4) and
(5) as they posses positive estimates that are statistically sig-
nificant at the 5% level. Another model input parameter is
the risk-free rate. Because the asset drift of the company is
modeled as described in chapter 4.2, I expect that the asset
drift increases when the risk-free rate increases and hence
the asset value deviates from the default barrier if all other
parameters are held equal. In consequence, negative esti-
mates are expected, because credit risk would subsequently
decrease as the distance to default increases. This is also ob-
served in table 7, as I obtain negative coefficients for the ma-
jority of sectors. Nevertheless these estimates are not always
statistically significant. Only models (5), (7) and (8) exhibit
estimates that are also statistically significance at the 5% and
1% level respectively. The weekly change in the slope of the
yield curve is only significant for the sector healthcare, indi-
cating that it does not explain the variation in cross-sectional
model spreads as claimed by Bedendo et al. (2011). Similar
to table 5, the illiquidity factor is not significant except for
model (1) but with a high coefficient estimates and a large
standard error. Therefore I omit this estimate from my study
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Table 5: Determinants of the Gap between Market and Model CDS Spreads - Equity Volatility Calibration.

This table reports the estimates from a panel regressions of weekly changes in the difference between market and CG model 5-year CDS mid spreads calibrated
with 1000-day equity volatility of equation (39). (1) reports estimates for the sector Basicmaterials, (2) for the sector Consumer Non-Cyclicals, (3) Consumer
Cyclicals, (4) Energy, (5) Industrials, (6) Technology, (7) Utilities and (8) Healthcare. Using equation (39), I regress the weekly gap for each obligor (in basis
points) on a sector-specific constant, the weekly change in the risk-free rate defined as the 3-month EURIBOR, the weekly change in the slope of the yield
curve defined as the 12 month EURIBOR minus the one-month EURIBOR and the weekly change of the VSTOXX index, the weekly change in the CRI and
the weekly delta of the CRI slope defined as the mid-spread of a 10-year tenor CRI index value minus the mid-spread of a one-year tenor CRI index value.
As firm specific variables, I consider the weekly obligor (company) return, weekly equity volatility, the weekly delta of the credit curve expressed as the CDS
slope defined as the mid-spread of a 10-year tenor CDS minus the mid-spread of a one-year tenor CDS of the same reference entity and the illiquidity factor
derived by Amihud (2002) estimated by means of equation (38) and using a rolling one week window. I report Driscoll and Kraay (1998) standard errors
that are adjusted for heteroskedaticity and spatial correlation in parentheses below the respective estimate. The adj. R2 is corrected for the fixed-effect and
thus includes the full model. It estimates how much of the variation is explained, since idiosyncratic fixed effects contribute to the explanatory power in
the variation of the depended variable. The number of principal components is determined such that the explained variance amounts to 80% or more. The
sample period covers December 2007 to December 2020.

(1) (2) (3) (4) (5) (6) (7) (8)
∆ Risk free rate 1.359 0.404 −0.277 −0.266 0.393 −0.925 0.984 −0.156

(1.139) (1.261) (1.878) (0.996) (2.156) (1.106) (1.519) (0.601)

∆ Slope yield curve −0.180∗ −0.079 −0.127 0.007 −0.116 −0.061 0.014 0.059
(0.093) (0.088) (0.127) (0.101) (0.084) (0.215) (0.131) (0.061)

∆ VSTOXX −0.214∗∗∗ −0.219∗∗ −0.323∗ −0.019 −0.048 −0.158 −0.263∗∗ −0.170∗

(0.075) (0.097) (0.193) (0.170) (0.072) (0.200) (0.121) (0.094)

∆ CRI −0.342∗∗∗ −0.313∗∗∗ −0.478∗∗∗ −0.298∗∗∗ −0.273∗∗∗ −0.497∗∗∗ −0.483∗∗∗ −0.173∗∗∗

(0.059) (0.050) (0.097) (0.060) (0.037) (0.082) (0.064) (0.034)

∆ Slope CRI −0.223 −0.390∗∗∗ −0.562∗∗∗ −0.375∗∗∗ −0.259∗∗∗ −0.423∗∗ −0.459∗∗∗ −0.162∗∗∗

(0.165) (0.108) (0.165) (0.079) (0.100) (0.184) (0.131) (0.055)

∆ Slope CDS −0.106 0.110 0.446∗∗∗ 0.186 −0.067 0.561∗∗∗ 0.319∗∗ −0.223∗

(0.185) (0.076) (0.059) (0.240) (0.061) (0.042) (0.130) (0.116)

Company returns −0.026 −1.119∗∗∗ −1.377∗∗∗ 0.445∗∗ −0.815∗∗∗ −0.533∗ 0.172 −0.776∗∗∗

(0.121) (0.108) (0.208) (0.214) (0.095) (0.301) (0.131) (0.122)

Equity volatility −0.042 −0.211∗∗∗ 0.268∗∗ −0.117∗∗ 0.001 −0.261 −0.055 −0.003
(0.043) (0.071) (0.109) (0.048) (0.041) (0.214) (0.063) (0.073)

ILLIQ 1,745.408 0.035 0.113 11.445 −0.081 15.091 −0.265 −2.497
(10,798.990) (0.045) (0.320) (58.040) (0.153) (12.552) (0.240) (2.938)

∆ Gap(-1) −0.052 −0.062∗∗ 0.021 0.180∗∗ 0.055∗∗ 0.089 0.020 0.007
(0.049) (0.030) (0.021) (0.074) (0.025) (0.075) (0.046) (0.060)

∆ Gap(-2) 0.042 −0.034 −0.042∗ 0.001 0.006 −0.118 −0.050 0.001
(0.052) (0.028) (0.022) (0.063) (0.029) (0.082) (0.055) (0.053)

Observations 4,056 8,788 15,548 2,028 7,436 3,380 4,732 4,732
Adjusted R2 0.153 0.066 0.283 0.272 0.096 0.687 0.209 0.074
No. of Principal Components 3 4 9 2 5 2 4 4
Significance Levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

as it is most likely driven by data issues for this sector. Upon
closer inspection it turns out that the basicmaterials sector
possesses rather low illiquidity estimates. Hence the regres-
sion estimates for the entire sector are likely distorted by ex-
tremely large coefficients that compensate the low values of
the independent variable. Since the illiquidity measure is cal-
culated uniformly for all obligors as well as sectors and does

appear to provide explanatory power in the remaining mod-
els, I leave estimated values in table 7 as they are with the
note that the regression coefficient should not be subject to
interpretation. I conclude that illiquidity does not explain the
variation in the weekly change of the model spread. The re-
sults related to the VSTOXX variable are counter-intuitive as
their estimates are negative, wherefore the model spreads de-
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Table 6: Determinants of the Gap between Market and Model CDS Spreads - Option-Implied Volatility Calibration.

This table reports the estimates from a panel regressions of weekly changes in the difference between market and CG model 5-year CDS mid spreads calibrated
with option-implied volatility extracted out of at-the-money put and call options with constant maturity of one year in correspondence to equation 39. (1)
reports estimates for the sector Basicmaterials, (2) for the sector Consumer Non-Cyclicals, (3) Consumer Cyclicals, (4) Energy, (5) Industrials, (6) Technology,
(7) Utilities and (8) Healthcare. Using equation 39, I regress the weekly gap for each obligor (in basis points) on a sector-specific constant, the weekly change
in the risk-free rate defined as the 3-month EURIBOR, the weekly change in the slope of the yield curve defined as the 12 month EURIBOR minus the one-
month EURIBOR and the weekly change of the VSTOXX index, the weekly change in the CRI and the weekly delta of the CRI slope defined as the mid-spread
of a 10-year tenor CRI index value minus the mid-spread of a one-year tenor CRI index value. As firm specific variables, I use the weekly obligor (company)
return, weekly equity volatility, the weekly delta of the credit curve expressed as the CDS slope defined as the mid-spread of a 10-year tenor CDS minus the
mid-spread of a one-year tenor CDS of the same reference entity and the illiquidity factor derived by Amihud (2002) estimated by means of equation (38)
and using a one week window. I report Driscoll and Kraay (1998) standard errors that are adjusted for heteroskedaticity and spatial correlation. The adj.
R2 is corrected for the fixed effect and thus includes the full model. It estimates how much of the variation is explained, since idiosyncratic fixed effects
contribute to the explanatory power in the variation of the depended variable. The number of principal components is determined such that the explained
variance amounts to 80% or more. The sample period covers January 2010 to December 2020.

(1) (2) (3) (4) (5) (6) (7) (8)
∆ Risk free rate −0.548 −1.370 0.384 1.984 −1.710 0.422 −3.007 −0.546

(1.677) (2.694) (4.531) (3.269) (4.041) (3.559) (4.606) (1.985)

∆ Slope yield curve 0.061 −0.004 0.202 0.117 0.009 −0.091 0.192 0.284∗∗

(0.142) (0.116) (0.152) (0.121) (0.131) (0.198) (0.233) (0.115)

∆ VSTOXX −0.061 0.079 0.906∗∗∗ 0.553∗ 0.335 0.263 −0.016 0.537∗∗∗

(0.176) (0.181) (0.316) (0.332) (0.267) (0.185) (0.167) (0.145)

∆ CRI −0.329∗∗∗ −0.373∗∗∗ −0.037 −0.507∗∗∗ 0.079 0.079 −0.745∗∗∗ −0.039
(0.117) (0.065) (0.113) (0.080) (0.157) (0.083) (0.125) (0.062)

∆ Slope CRI −0.210 −0.179∗ −0.053 0.138∗ −0.164 −0.041 −0.083 −0.228∗

(0.194) (0.106) (0.148) (0.082) (0.131) (0.144) (0.230) (0.116)

∆ Slope CDS −0.065 −0.127 0.010 −0.027 0.002 −0.061 −0.034 −0.040∗

(0.081) (0.110) (0.096) (0.082) (0.062) (0.121) (0.079) (0.022)

Company returns −0.101 −1.671∗∗∗ −0.980∗∗∗ −0.237 −0.331∗∗ −0.141 −0.072 −0.166∗∗

(0.083) (0.178) (0.151) (0.165) (0.155) (0.330) (0.090) (0.084)

Equity volatility 0.052∗∗ −0.043 0.164 0.511∗∗∗ 0.137 0.415 0.060∗ 0.057
(0.026) (0.127) (0.121) (0.111) (0.126) (0.262) (0.035) (0.066)

ILLIQ 3,941.809 −1.158 0.087 −136,224.900 −0.039 −0.122 1.093 608.030
(15,059.270) (1.059) (0.338) (100,019.500) (0.049) (0.806) (0.937) (6,935.499)

∆ Gap(-1) −0.071 −0.035 −0.029 −0.194∗∗ −0.172∗∗ −0.247∗ −0.082 0.136∗∗∗

(0.044) (0.036) (0.085) (0.081) (0.068) (0.148) (0.052) (0.052)

∆ Gap(-2) 0.026 −0.036 −0.108∗∗ −0.159∗∗ −0.066 −0.149∗∗ −0.040 −0.084
(0.050) (0.031) (0.055) (0.075) (0.071) (0.067) (0.057) (0.086)

Observations 2,276 5,121 7,966 1,138 4,552 1,707 1,707 1,707
Adjusted R2 0.08 0.067 0.045 0.333 0.057 0.096 0.287 0.114
No. of Principal Components 2 3 5 1 3 2 2 2
Significance Levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

crease when the weekly change in VSTOXX is positive. This
would indicate a decoupling of credit derivatives and equity
derivatives markets, such that the aggregated level of risk
implied in option prices would not translate into the credit
risk indicated by the CG model. It could be the case that the
calibration method of the model influences this finding. As
a consequence I control for this aspect in my panel regres-
sions with CG model option-implied estimated spreads. The

corresponding results can be found in table 8. Considering
aggregated risk in more detail, I obtain positive factor load-
ings for the weekly change in the counterparty credit risk in-
dex. These findings are in line with prior expectations, indi-
cating that model spreads increase when counterparty credit
risk also increases. The weekly change in the slope of the
CRI yields mixed results with mostly insignificant estimates
and alternating signs. The regression estimates of the slope



L. Specht / Junior Management Science 8(1) (2023) 1-42 29

from the credit curve however indicates that a steeper slope
is related to the model spreads tending to decrease because
the aggregated level of risk in short term tenors reduces in
comparison to long term tenors. The CG model is thus able
to account for the term structure of credit risk. Lagged vari-
ables are statistically significant at the 1% level for the con-
sumer non-cyclicals sector. They carry negative coefficients
implying that a mean-reverting behavior indeed exists. How-
ever, this effect is not found in other sectors such that its
existence should be considered with caution. On the other
hand, the principal component analysis of model (1) to (8)
shows that the pattern from table 5 remains, although the
degree of misspecification is slightly lower because for each
model, except for model (4), at least one principal compo-
nent more is needed to attain 80% explained variance in the
error term. As I do not account for further granularity in
the PCA by e.g. only considering the first two components,
the results could arise from statistical noise or randomness.
Hence, there are still common sector specific factors missing.
This is also found by Collin-Dufresne et al. (2001) who con-
sider local demand and supply shocks on credit derivative
markets as a feasible explanation as this story would fit the
sector specific variation in components.

Table 8 reports regression coefficients from fixed-effects
panel regressions of weekly deltas in model 5-year CDS mid-
spreads estimated by the CG model that is calibrated with
option-implied volatility that is extracted from at-the-money
put and call options with constant maturity of one year based
on equation (40). The most important change in coefficient
estimates can be seen for the weekly change in VSTOXX, be-
cause now increases in the index are positively related to
model spreads. These estimates are statistically significant
at the 1% level for model (3), (7) and (8). Model (6) ex-
hibits statistical significance at the 5% level, whereas model
(4) is only significant at the 10% level. This shows a fun-
damental aspect in model spread sensitivities contingent on
the model calibration procedure with dependencies on what
type of markets information are extracted from, subsequently
used to estimate the model. My result are thus in line with
prior expectations, supporting the hypothesis that determi-
nants of model spreads are highly dependent on model in-
put variables used. Furthermore, counterparty credit risk
seems much more important in the sector cross-section using
implied volatility as compared to historical volatility. Now
model (1), (3), (5), (6), (7) and (8) show factor loadings
that are statically significant at the 1% level. This fact in-
dicates that the model calibrated with forward-looking in-
formation is much better in picking up counterparty credit
risk than the model that relies on past information by using
historical volatility. This result hints at a close alignment be-
tween credit derivatives and equity markets since the CRI is
measured via market spreads in a way such that increased
counterparty risk is anticipated by equity derivatives mar-
kets before the risk materializes, increasing model spreads.
Related to this, the slope of the CRI is also highly impor-
tant, since the basicmaterials, utilities and healthcare sec-
tors exhibit statistcally significant loadings at the 1% level

with negative estimates. Model spreads decrease when short
term spreads for counterparties decrease and the slope there-
fore increases thus providing lower anticipated counterparty
risk in the short term. Furthermore, model spreads lagged
by one and two weeks accordingly exhibit statistically sig-
nificant negative coefficients, indicating a higher degree of
mean-reverting behavior, which is consistent with the find-
ings of Bedendo et al. (2011). A possible explanation could
be that the reactive nature of option-implied volatilties allows
the model to faster absorb higher spreads in the cross-section
than it is the case with long run volatility windows.

All in all, the comparison between table 7 and table 8
shows that the calibration method has a substantial impact
on the identification of determinants of model spreads. Thus,
model calibration procedures and following regression inter-
pretations should be assessed accordingly. They should al-
ways be tested for different model specifications in order to
determine common factors that drive spreads independent
from the model calibration.

6.5. Market Spread Analysis
In the third and last model specification I consider mar-

ket spreads in order to identify drivers of the variation in
spreads independent from selected model specifications and
calibration methods. To have consistent regression specifica-
tions, I stick with the already employed firm-specific as well
as common macro-factors. Table 9 shows estimates from the
panel regressions of weekly changes in market 5-year CDS
mid spreads using equation (41).

As with the two previous regression model specifications
(equation (39) and (40), both the weekly change in the coun-
terparty credit risk index as well as obligor equity returns
are strongly statistically significant for all sectors at the 1%
level and carrying the expected signs. This result indicates
that the CRI as well as equity returns are important deter-
minants in the cross-section of European credit default swap
spread dynamics. Changes in market spreads, on the other
hand, are not sensitive to changes in the risk-free rate. Here
higher risk-neutral asset drifts due to an increase in the risk-
free rate with corresponding lower default probabilities do
not exist in my sample and sample period. This contradicts
the results found by Collin-Dufresne et al. (2001), Longstaff
and Schwartz (1995) and Duffee (1998) who focus on cor-
porate bond markets. For the term structure of counterparty
credit risk, I estimate positive factor loadings that are sta-
tistically significant at the 1% and 5% level for all sectors
except basicmaterials and healthcare. This result contrasts
previously estimated coefficient, that have been usually neg-
ative with comparable significance levels. Market spreads
tend to increase when the slope of CRI increases, indicat-
ing that the market anticipates future higher counterparty
credit risk in long tenor contracts (here 10 years) increas-
ing spreads for long tenors which would again increase the
slope, by pricing this in to current market spreads. This re-
sult is somewhat surprising, since market tenors are always
constant at 5 years, such that future increased counterparty
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Table 7: Determinants of CG Model CDS Spreads - Equity Volatility Calibration.

This table reports the estimates from the panel regressions of weekly changes in 5-year CDS mid model spreads estimated by the CG model calibrated with
1000-day rolling window equity volatility. The regression specification is performed based on equation (40). (1) reports estimates for the Basicmaterials
sector, (2) for the Consumer Non-Cyclicals sector and (3), (4), (5), (6), (7) and (8) for the sectors Consumer Cyclicals, Energy, Industrials, Technology,
Utilities and Healthcare respectively. Using equation (40), I regress the weekly change in model spreads for each obligor (in basis points) on a sector specific
constant, the weekly change in the risk-free rate defined as the 3-month EURIBOR, the weekly change in the slope of the yield curve defined as the 12 month
EURIBOR minus the one-month EURIBOR and the weekly change of the VSTOXX index, the weekly change in the CRI and the weekly delta of the CRI slope
defined as the mid-spread of a 10-year tenor CRI index value minus the mid-spread of a one-year tenor CRI index value. As firm specific variables, I consider
the weekly obligor (company) return, weekly equity volatility, the weekly delta of the credit curve expressed as the CDS slope defined as the mid-spread of a
10-year tenor CDS minus the mid-spread of a one-year tenor CDS of the same reference entity and the illiquidity factor derived by Amihud (2002) calculated
based on equation (38) over a one week window. I report Driscoll and Kraay (1998) standard errors adjusted for heteroskedaticity and spatial correlation.
The adj. R2 is corrected for the fixed effect and thus includes the full model. It estimates how much of the variation is explained, since idiosyncratic fixed
effects contribute to the explanatory power in the variation of the depended variable. The number of principal components is determined such that the
explained variance amounts to 80% or more. The sample period starts in December 2007 and end is December 2020.

(1) (2) (3) (4) (5) (6) (7) (8)
∆ Risk free rate −0.278 0.118 −0.968 0.182 −0.776∗∗∗ −0.265 −0.485∗∗∗ −1.287∗∗

(0.232) (0.381) (0.784) (0.128) (0.274) (0.323) (0.155) (0.512)

∆ Slope yield curve 0.012 0.056 0.063 0.019 −0.009 −0.046 0.020 0.095∗∗

(0.028) (0.044) (0.071) (0.016) (0.039) (0.046) (0.014) (0.045)

∆ VSTOXX −0.171∗∗∗ −0.031 −0.290∗∗∗ −0.066∗ −0.157∗∗ −0.319∗∗∗ −0.020 −0.060
(0.036) (0.066) (0.093) (0.035) (0.068) (0.071) (0.015) (0.086)

∆ CRI 0.036∗∗∗ −0.034∗ 0.124∗∗∗ 0.011 0.036 0.032∗ 0.011∗ −0.004
(0.010) (0.018) (0.031) (0.008) (0.022) (0.016) (0.006) (0.023)

∆ Slope CRI 0.002 −0.036 0.061 0.037∗∗ 0.003 0.062 −0.008 −0.113∗∗∗

(0.026) (0.029) (0.093) (0.017) (0.036) (0.053) (0.013) (0.038)

∆ Slope CDS −0.003 −0.024 −0.039∗∗∗ 0.012 −0.040∗∗ −0.023∗∗∗ −0.003 −0.068
(0.018) (0.017) (0.010) (0.011) (0.017) (0.007) (0.014) (0.075)

Company returns −0.674∗∗∗ −1.459∗∗∗ −2.519∗∗∗ −0.250∗∗∗ −1.464∗∗∗ −1.577∗∗∗ −0.394∗∗∗ −0.886∗∗∗

(0.054) (0.096) (0.164) (0.045) (0.069) (0.145) (0.037) (0.126)

Equity volatility 0.066∗∗ −0.085∗ 0.277∗∗∗ 0.039∗∗ 0.091∗∗ 0.072 0.001 0.057
(0.031) (0.051) (0.093) (0.017) (0.045) (0.062) (0.021) (0.069)

ILLIQ 5,875.112∗∗ 0.022 0.251 0.286 0.037 4.496 0.110∗ −3.219
(2,776.769) (0.040) (0.301) (5.319) (0.159) (7.294) (0.057) (3.321)

∆ CG(-1) −0.005 −0.106∗∗∗ 0.018 0.058 −0.011 0.134∗∗ 0.058∗ −0.002
(0.036) (0.035) (0.024) (0.052) (0.031) (0.054) (0.033) (0.054)

∆ CG(-2) 0.057∗ −0.071∗∗∗ 0.003 0.004 0.016 0.00005 0.058∗∗∗ 0.028
(0.034) (0.027) (0.026) (0.046) (0.027) (0.041) (0.017) (0.060)

Observations 4,056 8,788 15,548 2,028 7,436 3,380 4,732 4,732
Adjusted R2 0.434 0.122 0.351 0.465 0.441 0.560 0.377 0.102
No. of Principal Components 4 3 10 2 6 3 5 5
Significance Levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

credit risk seems to have market wide spillover effects af-
fecting all tenors and are not picked up by estimated model
spreads in table 7 and 8. For the slope of the credit curve
I obtain estimates in accordance to table 7 and 8, providing
cross-validation that not only model spreads are driven by the
term structure of credit risk, but also market spreads. Con-

sidering equity volatility, factor loadings for basicmaterials
and healthcare are positive and statistically significant at the
10% level, whereas for the energy and industrials sector they
are significant at the 1% and 5% level respectively. Hence
market spreads react to increased equity volatility, support-
ing the finidngs of Collin-Dufresne et al. (2001) who state
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Table 8: Determinants of CG Model CDS Spreads - Option-Implied Volatility Calibration.

This table reports the estimates from the panel regressions of weekly changes in 5-year CDS mid model spreads estimated by the CG model calibrated
with option-implied volatility extracted from at-the-money put and call options with constant maturity of one year based on equation (40). The regression
specification is performed according to equation (40). (1) reports estimates for the Basicmaterials sector, (2) for the Consumer Non-Cyclicals sector and (3),
(4), (5), (6), (7) and (8) for the sectors Consumer Cyclicals, Energy, Industrials, Technology, Utilities and Healthcare respectively. Using equation (40), I
regress the weekly change in model spreads for each obligor (in basis points) on a sector specific constant, the weekly change in the risk-free rate defined
as the 3-month EURIBOR, the weekly change in the slope of the yield curve defined as the 12 month EURIBOR minus the one-month EURIBOR and the
weekly change of the VSTOXX index, the weekly change in the CRI and the weekly delta of the CRI slope defined as the mid-spread of a 10-year tenor CRI
index value minus the mid-spread of a one-year tenor CRI index value. As firm specific variables, I consider the weekly obligor (company) return, weekly
equity volatility, the weekly delta of the credit curve expressed as the CDS slope defined as the mid-spread of a 10-year tenor CDS minus the mid-spread of
a one-year tenor CDS of the same reference entity and the illiquidity factor derived by Amihud (2002) calculated from equation (38) over a one week rollig
window. I report Driscoll and Kraay (1998) standard errors adjusted for heteroskedaticity and spatial correlation. The adj. R2 is corrected for the fixed-effect
and thus includes the full model. It estimates how much of the variation is explained, since idiosyncratic fixed effects contribute to the explanatory power in
the variation of the depended variable. The number of principal components is determined such that the explained variance amounts to 80% or more. The
sample period covers January 2010 to December 2020.

(1) (2) (3) (4) (5) (6) (7) (8)
∆ Risk free rate 0.615 −2.095 7.399∗ 4.964 1.877 2.033 −1.201 −0.276

(1.192) (1.795) (4.471) (3.187) (4.396) (3.419) (1.338) (1.861)

∆ Slope yield curve 0.002 0.059 0.243 0.107 −0.051 −0.141 −0.076 0.253∗∗

(0.082) (0.083) (0.169) (0.106) (0.124) (0.190) (0.060) (0.103)

∆ VSTOXX 0.212 0.260 0.956∗∗∗ 0.629∗ 0.262 0.446∗∗ 0.356∗∗∗ 0.723∗∗∗

(0.142) (0.163) (0.280) (0.326) (0.302) (0.189) (0.098) (0.151)

∆ CRI 0.279∗∗∗ −0.023 0.890∗∗∗ −0.020 0.536∗∗∗ 0.397∗∗∗ 0.186∗∗∗ 0.286∗∗∗

(0.054) (0.034) (0.124) (0.054) (0.188) (0.088) (0.028) (0.066)

∆ Slope CRI −0.245∗∗∗ −0.115 −0.151 0.188∗ −0.143 −0.147 −0.122∗∗ −0.391∗∗∗

(0.084) (0.086) (0.166) (0.108) (0.136) (0.160) (0.056) (0.115)

∆ Slope CDS −0.015 0.028 0.056 0.109∗ 0.051 0.059 −0.008 −0.040∗

(0.065) (0.069) (0.124) (0.066) (0.074) (0.137) (0.033) (0.021)

Company returns −0.216∗∗ −1.892∗∗∗ −1.334∗∗∗ −0.367∗∗ −0.580∗∗∗ −0.132 −0.100∗∗ −0.102
(0.098) (0.187) (0.187) (0.145) (0.175) (0.317) (0.051) (0.074)

Equity volatility 0.054∗ 0.007 0.205 0.661∗∗∗ 0.227 0.426 −0.059∗∗∗ 0.065
(0.027) (0.124) (0.129) (0.134) (0.155) (0.264) (0.022) (0.064)

ILLIQ −8,510.414 −1.041 −0.133 −115,783.700∗ −0.085 −0.164 1.297 −2,155.885
(13,081.930) (1.065) (0.267) (68,406.250) (0.066) (0.769) (0.933) (6,388.933)

∆ CG(-1) −0.167∗∗∗ −0.040 −0.106 −0.119∗∗ −0.160∗∗ −0.234 −0.110 0.085
(0.056) (0.034) (0.067) (0.053) (0.064) (0.147) (0.080) (0.066)

∆ CG(-2) 0.035 −0.054∗∗ −0.002 −0.201∗∗∗ −0.020 −0.134∗∗ 0.011 −0.064
(0.074) (0.027) (0.039) (0.055) (0.060) (0.064) (0.059) (0.093)

Observations 2,276 5,121 7,966 1,138 4,552 1,707 1,707 1,707
Adjusted R2 0.211 0.119 0.195 0.468 0.121 0.135 0.345 0.259
No. of Principal Components 2 3 5 1 3 2 2 2
Significance Levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

that "the contingent-claims approach implies that the debt
claim has features similar to a short position in a put op-
tion. Since option values increase with volatility, it follows
that this model predicts credit spreads should increase with
volatility. This prediction is intuitive: Increased volatility in-
creases the probability of default."9 Illiquidity does only seem

9Collin-Dufresne et al. (2001), p. 2181

to drive spreads for consumer cyclicals for which I estimate a
strongly statistically significant factor loading at the 1% level
with expected positive sign and plausible magnitude, such
that illiquidity equity spillover effects seem to be sector de-
pendent and also for the CG model not detectable. Lagged
market spreads show significant factor loadings primarily in
one week lagged spreads with positive coefficient, indicating
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that mean-reverting behavior does not seem to exist in mar-
ket spreads and thus contrasting the findings from option-
implied derived CG model spreads. This indicates a discon-
nection between equity and credit derivatives markets when
assessing the inter-dependencies and persistence of spreads.
Section 6.6 investigates this relation in more detail. The ad-
justed R2 values are overall significantly higher for market
regressions than for model regressions, ranging from 0.154
for the sector consumer non-cyclicals to 0.702 for technolo-
gies. The PCA reflects this by 3 or more principal components
needed to explain at least 80% in error term variance, except
for model (4) and (6).

6.6. Predictive Power of CreditGrades
In the last step of my main analysis I test the predic-

tive ability of the CG model to forecast market spreads. As
assessed in section 4.4 and pointed out by Bedendo et al.
(2011), empirical evidence exists that new information is
typically priced in faster in equity markets than in credit mar-
kets. To test this hypothesis for the European market I regress
weekly deltas in market spreads on weekly deltas in model
spreads with one and two lags as well as weekly deltas of
market spreads with a lag of one week accordingly. Since
the selection of the number of lags is arbitrary, I stick to the
study design of Bedendo et al. (2011) to have comparable
estimates. Furthermore, I distinguish the predictive ability
of the model in its both specifications to provide additional
insights on the source of the possible lead-lag relationship
between equity and credit derivatives markets. Panel A of
table 10 shows the predictive abilities of the CG model, be-
cause the variation in empirical market spreads are signifi-
cantly driven by current model spreads as well as the first
weekly lag in change of model spreads. Especially the sector
basicmaterials and industrials exhibit significant predictive
patterns up to the second lag in model spreads, providing ev-
idence for sector specific predictive abilities of the model. On
the other hand, also market lagged variables are significant
for both sectors, such that some degree of market inherent
inefficiency could influence the predictive ability of the CG
model. This aspect underlines the findings in market regres-
sions of section 6.5, such that inefficiencies relate to autocor-
relation assessed in section 6.2. When panel A is compared to
panel B, it becomes clear that the CG model calibrated with
option-implied volatility is also subject to predictive abilities,
although now significant for the first lag in changes of the
model spread for basicmaterials and energy. My results are
comparable to the study of Bedendo et al. (2011) in the way
that coefficient estimates are comparable in size and mag-
nitude as well as the overall adjusted R2. This supports the
study of Bedendo et al. (2011) who conclude that significant
noise in the estimation procedure or model misspecifications
could result in low R2 values. Additionally, it is interesting
to note that when comparing the adjusted R2 between panel
A and panel B, the sector technology, utilities and healthcare
show material differences in explanatory power of predictive
regressions as the coefficient of determination increases for

sector technology and healthcare by more than 10 percent-
age points when option-implied volatilities are used in the
model estimation procedure, whereas utilities decreases by
that amount. This aspect provides further evidence on the
fact that the predictive ability of the model is both contin-
gent on sectors as well as on the estimation procedure of the
model itself, leaving the conclusion by Byström (2006) and
Bedendo et al. (2011) who only assess the predictive ability
of the model in one specification with a grain of salt.

7. Robustness

7.1. Analysis for CDS Tenors of one and 10 years
In this section I control my previous results for robustness

by accounting for the length of which the credit protection
will last, namely the tenor of the credit default swap test-
ing results for 1 and 10 year tenors respectively. For this I
retrieve one-year and 10-year CDS mid spreads in the same
fashion as outlined in section 5 using Refinitiv Datastream.
I then proceed with the estimation of determinants of the
gap, market and model spreads as in section 6. Appendix
H shows panel regression outputs for one year tenors (H.1)
and 10-year tenors (H.2). All in all, results are highly simi-
lar for CRI, the risk-free rate and the slope of the yield curve
since the latter two are still statistically insignificant and do
not contribute to the dynamics of gap, model and market
spreads in line with my results using 5-year tenors. The factor
CRI matches the significance and estimated regression coef-
ficient in size and magnitude, since I calculate 1 and 10 year
CRI index values (see appendix F), matching the duration
of dependent variable spreads in the robustness analysis. For
company returns, I find significantly larger coefficients, espe-
cially for 1 year tenors, for gap, model and market spreads,
indicating that 1-year credit protection horizons have sub-
stantial impact on the likelihood of experiencing a default
event by deviating from the default barrier when equity re-
turns are higher. This fact provides further evidence on the
fact that model and market spreads are highly sensitive to
equity development, especially when the credit protection
entails short horizons. In the same fashion I find increased
regression coefficients for the term structure of counterparty
credit risk and the credit curve, pronounced for 1 year tenors.
This underlines that not only obligor equity returns, but also
the aggregated credit risk profile on both the credit protec-
tion seller and buyer side is highly important when consid-
ering the drivers of the cross-sectional cost of credit risk. On
the other hand, long tenors of 10 years do not show increased
coefficients, showing that only short horizons are sensitive to
pivots and changes in the term structure. The 10-year tenor
regression outputs in appendix H.2 show that especially in
option-implied CG-model and market spread specifications,
the factor loadings for the weekly change in VSTOXX are
much higher and most often statistically significant as com-
pared to results in section 6. Thus leading to the conclusion
that long credit protection tenors are driven by aggregated
market wide implied volatility. Consequently, the horizon of
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Table 9: Determinants of Market CDS Spreads.

This table reports the estimates from the panel regressions of weekly changes in market 5-year CDS mid spreads using equation (41). (1) reports estimates for
the Basicmaterials sector, (2) for the Consumer Non-Cyclicals sector and (3), (4), (5), (6), (7) and (8) for the sectors Consumer Cyclicals, Energy, Industrials,
Technology, Utilities and Healthcare respectively. Using equation (39), I regress the weekly change in market spreads for each obligor (in basis points) on a
sector specific constant, the weekly change in the risk-free rate defined as the 3-month EURIBOR, the weekly change in the slope of the yield curve defined
as the 12 month EURIBOR minus the one-month EURIBOR and the weekly change of the VSTOXX index, the weekly change in the CRI and the weekly delta
of the CRI slope defined as the mid-spread of a 10-year tenor CRI index value minus the mid-spread of a one-year tenor CRI index value. As firm specific
variables, I consider the weekly obligor (company) return, weekly equity volatility, the weekly delta of the credit curve expressed as the CDS slope defined as
the mid-spread of a 10-year tenor CDS minus the mid-spread of a one-year tenor CDS of the same reference entity and the illiquidity factor derived by Amihud
(2002) calculated from equation (38) over a one week rolling window. I report Driscoll and Kraay (1998) standard errors adjusted for heteroskedaticity and
spatial correlation. The adj. R2 is corrected for the fixed effect and thus includes the full model. It estimates how much of the variation is explained, since
idiosyncratic fixed effects contribute to the explanatory power in the variation of the depended variable. The number of principal components is determined
such that the explained variance amounts to 80% or more. The sample period starts in December 2007 and ends in December 2020.

(1) (2) (3) (4) (5) (6) (7) (8)
∆ Risk free rate −1.654 −0.409 −0.839 0.431 −1.133 0.622 −1.567 −1.071

(1.117) (1.117) (1.747) (0.978) (1.724) (1.113) (1.480) (0.654)

∆ Slope yield curve 0.184∗∗ 0.106∗ 0.183 0.011 0.099 0.002 0.008 0.037
(0.092) (0.059) (0.120) (0.104) (0.065) (0.205) (0.135) (0.041)

∆ VSTOXX 0.054 0.249∗∗ 0.046 −0.036 −0.042 −0.165 0.240∗ 0.113∗∗∗

(0.068) (0.106) (0.220) (0.185) (0.098) (0.228) (0.123) (0.042)

∆ CRI 0.377∗∗∗ 0.272∗∗∗ 0.602∗∗∗ 0.308∗∗∗ 0.311∗∗∗ 0.531∗∗∗ 0.494∗∗∗ 0.168∗∗∗

(0.055) (0.045) (0.091) (0.060) (0.038) (0.082) (0.066) (0.025)

∆ Slope CRI 0.226 0.333∗∗∗ 0.621∗∗∗ 0.415∗∗∗ 0.271∗∗ 0.489∗∗ 0.450∗∗∗ 0.049
(0.177) (0.100) (0.215) (0.086) (0.107) (0.220) (0.139) (0.056)

∆ Slope CDS 0.106 −0.101 −0.483∗∗∗ −0.174 0.038 −0.586∗∗∗ −0.322∗∗ 0.151∗

(0.190) (0.080) (0.066) (0.246) (0.060) (0.041) (0.129) (0.084)

Company returns −0.648∗∗∗ −0.355∗∗∗ −1.149∗∗∗ −0.690∗∗∗ −0.630∗∗∗ −0.988∗∗∗ −0.566∗∗∗ −0.108∗∗∗

(0.120) (0.075) (0.129) (0.231) (0.103) (0.347) (0.129) (0.034)

Equity volatility 0.105∗ 0.071 0.006 0.155∗∗∗ 0.071∗∗ 0.356 0.058 0.057∗

(0.055) (0.054) (0.036) (0.051) (0.033) (0.251) (0.061) (0.030)

ILLIQ 4,116.700 −0.016 0.138∗∗∗ −13.209 0.087 −10.320 0.380 −0.594
(10,010.510) (0.024) (0.048) (58.866) (0.100) (9.816) (0.251) (1.062)

∆ CDS(-1) −0.026 0.085∗ 0.060∗ 0.188∗∗∗ 0.164∗∗∗ 0.086 0.022 0.022
(0.038) (0.045) (0.033) (0.068) (0.029) (0.073) (0.044) (0.033)

∆ CDS(-2) 0.080∗ 0.050 −0.029 −0.010 0.059∗∗ −0.086 −0.032 0.082∗

(0.044) (0.044) (0.039) (0.059) (0.030) (0.074) (0.054) (0.044)

Observations 4,056 8,788 15,548 2,028 7,436 3,380 4,732 4,732
Adjusted R2 0.268 0.154 0.494 0.332 0.263 0.702 0.250 0.196
No. of Principal Components 3 6 11 2 6 2 4 4
Significance Levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

priced in forward-looking information is much longer than
typically anticipated by studies that assess 5-year tenors only.
On the other hand, VSTOXX factor loadings for 1 year do not
significantly deviate from estimated coefficients in section 6,
underlining the presumption of pricing in forward-looking in-
formation with long time horizons for gap, model and market
spreads.

7.2. Time Period Regressions
Besides the assessment of different tenors, I control my

results for different time periods. With this approach I test
the hypothesis if factor loadings of determinants in gap,
model and market spreads are time dependent, reflecting
different drivers of spreads contingent on the economical
state like crisis and tranquil periods. Since my sample period
covers three crisis times (the financial, sovereign debt and
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Table 10: Predictive Regressions.

This table reports the estimates from the predictive panel regressions of weekly changes in market spreads on weekly changes in model spreads with one and
two lags and weekly deltas of market spreads with a lag of one week accordingly. Panel A reports predictive regressions using equation (42) according to the
CG model calibrated with 1000-day rolling window equity volatility. Panel B reports predictive regressions using equation (42) according to the CG model
calibrated with option-implied volatility using constant one year at-the-money put and call options. (1) reports estimates for the Basicmaterials sector, (2)
for the Consumer Non-Cyclicals sector and (3), (4), (5), (6), (7) and (8) for the sectors Consumer Cyclicals, Energy, Industrials, Technology, Utilities and
Healthcare respectively. I report Driscoll and Kraay (1998) standard errors adjusted for heteroskedaticity and spatial correlation. The adj. R2 is corrected
for the fixed effect and thus includes the full model. It estimates how much of the variation is explained, since idiosyncratic fixed effects contribute to the
explanatory power in the variation of the depended variable. The sample period covers the time span form December 2007 to December 2020 for panel A
and January 2010 to December 2020 for panel B.

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: Historical Volatility Specification

∆ model spread 1.064∗∗∗ 0.061∗∗∗ 0.337∗∗∗ 2.543∗∗∗ 0.353∗∗∗ 1.738∗∗∗ 2.292∗∗∗ 0.065∗∗

(0.118) (0.014) (0.050) (0.363) (0.045) (0.462) (0.494) (0.027)

∆ model spread (-1) 0.452∗∗∗ 0.020 0.068∗∗ −0.114 0.057∗∗ −0.128 −0.867∗ 0.022
(0.130) (0.013) (0.027) (0.356) (0.025) (0.163) (0.456) (0.028)

∆ model spread (-2) 0.420∗∗ 0.014 0.011 −0.376 0.078∗∗∗ 0.309 0.132 0.025
(0.165) (0.011) (0.033) (0.260) (0.027) (0.208) (0.277) (0.018)

∆ market spread (-1) −0.117∗∗ 0.087∗ 0.066 0.205∗ 0.124∗∗∗ 0.020 0.034 −0.017
(0.060) (0.049) (0.073) (0.114) (0.035) (0.045) (0.112) (0.038)

Observations 4,056 8,788 15,548 2,028 7,436 4,732 3,380 4,732
Adjusted R2 0.198 0.015 0.102 0.211 0.140 0.088 0.157 0.015

Panel B: Option-Implied Volatility Specification

∆ model spread 0.533∗∗∗ 0.117∗∗∗ 0.305∗∗∗ 0.308∗∗∗ 0.142∗∗∗ 1.183∗∗∗ 0.049∗∗ 0.162∗∗∗

(0.075) (0.024) (0.046) (0.032) (0.033) (0.247) (0.020) (0.041)

∆ model spread (-1) 0.149∗∗ 0.001 0.033 0.172∗∗∗ 0.016 −0.057 0.010 −0.016
(0.060) (0.015) (0.041) (0.043) (0.016) (0.204) (0.008) (0.026)

∆ model spread (-2) 0.016 0.027 0.019 0.003 0.040∗ −0.074 0.009 0.026∗

(0.074) (0.024) (0.041) (0.030) (0.023) (0.127) (0.007) (0.016)

∆ market spread (-1) −0.012 0.064 0.058 −0.047 0.132∗∗∗ −0.062 −0.019 0.009
(0.057) (0.058) (0.125) (0.071) (0.050) (0.060) (0.084) (0.064)

Observations 2,276 5,121 7,966 1,138 4,552 1,707 1,707 1,707
Adjusted R2 0.187 0.046 0.122 0.240 0.155 0.201 0.058 0.304
Significance Levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

corona crisis) and one tranquil period between 2014 to early
2020, I provide various market conditions in which I test
the hypothesis that regression estimates are time dependent
and measure the degree of explanatory power contingent on
market environment and economical conditions. For this I
perform panel regressions analog to section 6 grouped by
time periods.

Analog to table 5 and 6, table 11 reports estimates from
the panel regressions of weekly changes in the difference be-
tween market and CG 5-year model CDS mid spreads cal-

ibrated using the 1000-day equity volatility for model (1)
to (4). In contrast, model (5) to (7) are calibrated with
option-implied volatilities. Model (1) covers the financial cri-
sis, model (2) the European sovereign debt crisis, model (3)
the tranquil period between 2014 and early 2020 and model
(4) the corona crisis. The same holds true for model (5) to
(7), although the financial crisis time period is augmented
due to limited option data availability. In the first step, only
factor loadings between model (1) and (4) are compared.
When considering the weekly change in risk-free rate and the
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weekly change in the slope of the yield curve, time period re-
sults confirm sector results since no regression estimates are
statistically significant at the 5% level or higher. The change
in VSTOXX index values are strongly statistically significant
for the financial crisis and European sovereign debt crisis
with negative signs such that gap spreads converge when ag-
gregate option-implied volatility is high. Nevertheless this
finding is different for the crisis times as the coronas crisis
exhibits no significant loading. The weekly change in CRI is
always statistically significant for all time periods with nega-
tive signs and hence provides evidence on the fact that coun-
terparty credit risk is a important determinant of CDS spread
gaps. The slope of the CRI is only significant for the finan-
cial crisis and corona crisis time period such that in times of
highly increased short term uncertainty, unique to those time
periods, an increase in the slope will reduce gap spreads. This
result shows that when the term structure of counterparty
credit risk changes, uncertainty and thus also uncertainty in
the counterparties financial health will increase long term
spreads and thus increase the slope. Hence, an increase in
the slope will move model and market spreads upwards and
therefore narrowing the gap. Turning to the credit curve,
only crisis periods exhibit positive and statistically significant
factor loadings implying that an increase in the slope also in-
creases the gap, resulting in time periods where there is a fun-
damental shift in credit risk term structure for which the CG
model derived spreads deviate from market spreads. Com-
pany returns are statistically significant for all time periods
and carry negative signs, underlining that the gap reduces if
returns increase and the asset value of firms deviates from
the default barrier. Equity volatility remains with alternat-
ing signs, implying it is unlikely driving the gap. Illiquidity
is never significant at the 5% level or higher, supporting my
findings from section 5.

For the models (5) to (7) that use option-implied CG
model calibration to calculate the gaps, I obtain factor load-
ings for VSTOXX comparable in significance to models (1) to
(4), but now with positive signs. This implies that gaps in-
crease when the aggregated implied volatility increases. The
risk-free rate is only significant for the tranquil period, sup-
porting the finding in section 6.3 that it does not seem to sys-
tematically drive gap spreads. The same holds true for the
slope of the yield curve since only model (5) yields a signifi-
cant factor loading. Company returns, illiquidity and equity
volatility are mostly in line with the main results, providing
no additional time dependent idiosyncraticies. The lagged
gap variable estimates show that time and calibration spe-
cific mean-reverting tendencies exist, supporting the result
in 6.3 that high option-implied estimated gap spreads seem
to be absorbed in following gap spreads which is indicated by
negative coefficients of the lagged change in the gap that is
statistically significant at the 1% level in model (5) and (6).

Considering table 12 and model (1) to (4), the risk-free
rate, the slope of it and the illiquidity measure are not statis-
tically significant in any time period, indicating that model
spreads are not driven by these factors. This supports the
empirical evidence of my main analysis. Factor loadings are

strongly statistically significant at the 1% level for changes
in VSTOXX in crisis periods (model (1), (2) and (4)), and at
the 5% level for the tranquil period for which the coefficient
estimates are reduced by more than half. Consistent with
my sector specific regressions, I estimate negative coefficients
implying that model spreads decrease when implied volatility
increases. Factor loadings for CRI are statistically significant
only for the financial crisis and the corona crisis, indicating
that model spreads are mainly driven by counterparty credit
risk in times of increased aggregated uncertainty with pos-
sible spillover and contagion effects in dealer CDS markets.
Furthermore, the slope of the CRI index also reflects this find-
ing. The term structure of credit risk is consistent with prior
expectations, such that factor loadings are statistically sig-
nificant when credit risk materializes in crisis times and not
significant for the tranquil period. Signs are negative, indi-
cating that model spreads decrease when the term structure
becomes steeper, which in line with the chapter 6.4. Com-
pany returns are statistically significant for all periods carry-
ing negative signs and thus supporting the evidence that the
CG model is able to capture the decrease in PD’s when asset
values deviate from the default barrier due to increased eq-
uity returns. This finding is valid for every economical condi-
tion and environment. Corresponding to that, factor loadings
for equity volatility show support for the prior expectations
of Collin-Dufresne and Goldstein (2001) by displaying pos-
itive and statistically significant estimates for the variation
in equity volatility in crisis periods only. This fact highlights
that the model captures increased default risk when assets
are more likely to hit the barrier due to greater variability
in equity. The estimates related to the lagged variables are
consistent with the gap time period regressions. Interdepen-
dencies do not seem to exist when assessing the model esti-
mated with historical volatility. When considering model (5)
to (7), the findings change. Analog to table 8, lagged model
spreads seem to cause current model spreads to revert, such
that mean reverting behavior is present in all time periods
affecting one and two week lagged variables. Model calibra-
tion also seems to have impact on CRI, since every time pe-
riod shows statistically significant factor loadings, indicating
that counterparty credit risk seems to be important as also de-
picted in table 13. Regarding VSTOXX factor loadings, the CG
model is now able to react in the assumed direction. Hence,
model spreads increase when aggregated implied volatility
increases.

In the last step of my robustness analysis I consider time
period regressions on market spreads in the same way as for
gap and model spreads. Since market regressions are inde-
pendent from model estimation procedures, the results from
models (1) to (4) cover all four time periods. For the risk-
free rate and the slope of the yield curve coefficients are for
no time period significant at the 5% level or higher. Hence,
estimated model spreads capture the driver of the variation
well. Regarding autocorrelation contingent on market envi-
ronment, I estimate a positive regression coefficient at 1% for
the financial crisis, such that market spreads tend to increase
if prior spreads increased. Market spreads have a higher ten-
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Table 11: Determinants of the Gap between Market and Model CDS Spreads - Time Period Regressions.

This table reports the estimates from the panel regressions of weekly changes in the difference between market and CG 5-year model CDS mid spreads
calibrated with 1000-day equity volatility in models (1) to (4). In models (5) to (7) the model is calibrated using option-implied volatilities extractedfrom
at-the-money put and call options with constant maturity of one year. (1) reports estimates for the financial crisis time period using historical volatility
calibration, (2) for the European sovereign debt crisis time period using historical volatility calibration, (3) for the tranquil time period using historical
volatility calibration, (4) for the Corona crisis time period using historical volatility calibration. Model (5) reports estimates for the European sovereign debt
crisis time period using option-implied volatility calibration, (6) for the tranquil time period using option-implied volatility calibration and model (7) for
the Corona crisis time period using option-implied volatility calibration. I regress the weekly gap for each obligor (in basis points) on a time period specific
constant, the weekly change in the risk-free rate defined as the 3-month EURIBOR, the weekly change in the slope of the yield curve defined as the 12 month
EURIBOR minus the one-month EURIBOR and the weekly change of the VSTOXX index, the weekly change in the CRI and the weekly delta of the CRI slope
defined as the mid-spread of a 10-year tenor CRI index value minus the mid-spread of a one-year tenor CRI index value. As firm specific variables, I consider
the weekly obligor (company) return, weekly equity volatility, the weekly delta of the credit curve expressed as the CDS slope defined as the mid-spread of a
10-year tenor CDS minus the mid-spread of a one-year tenor CDS of the same reference entity and the illiquidity factor derived by Amihud (2002) calculated
from equation (38) over a one week horizons. I report Driscoll and Kraay (1998) standard errors adjusted for heteroskedaticity and spatial correlation. The
adj. R2 is corrected for the fixed effect and thus includes the full model. For model (1) to (4) the sample period covers the time span starting in December
2007 up to December 2020, whereas for model (5) to (7) the sample periods covers January 2010 to December 2020. Hence I expand the financial crisis
time period for the option-implied regressions.

(1) (2) (3) (4) (5) (6) (7)
∆ Risk free rate 0.738 −2.121 −1.423 −1.802 −2.064 −3.602∗∗ −7.306

(1.698) (1.294) (1.496) (3.330) (1.554) (1.692) (10.910)

∆ Slope yield curve −0.856∗ 0.178 0.093 −0.382 0.375∗∗ 0.240 0.601
(0.450) (0.181) (0.150) (0.576) (0.180) (0.230) (1.611)

∆ VSTOXX −0.698∗∗∗ −0.339∗∗ −0.111 0.361 0.462∗∗∗ 0.210∗∗∗ 1.161∗∗

(0.262) (0.137) (0.075) (0.243) (0.178) (0.069) (0.455)

∆ CRI −0.310∗∗∗ −0.422∗∗∗ −0.568∗∗∗ −0.808∗∗∗ −0.185∗∗∗ −0.352∗∗∗ −0.011
(0.080) (0.056) (0.105) (0.056) (0.072) (0.120) (0.208)

∆ Slope CRI −0.445∗∗∗ 0.098 0.080 −1.000∗∗∗ 0.008 0.125 −2.027∗∗

(0.136) (0.089) (0.120) (0.364) (0.087) (0.156) (0.925)

∆ Slope CDS 0.260∗∗∗ 0.547∗∗∗ −0.032 0.503∗∗∗ −0.049 −0.073∗∗∗ −0.002
(0.095) (0.039) (0.167) (0.060) (0.036) (0.022) (0.053)

Company returns −1.104∗∗∗ −1.366∗∗∗ −0.599∗∗∗ −0.944∗∗∗ −0.633∗∗∗ −0.419∗∗∗ −1.069∗∗∗

(0.270) (0.100) (0.049) (0.191) (0.077) (0.047) (0.165)

Equity volatility 0.266∗∗ −0.091 −0.120∗∗∗ 0.085 −0.006 −0.013 0.089∗

(0.119) (0.114) (0.042) (0.063) (0.064) (0.040) (0.049)

ILLIQ 0.156 0.012 0.085∗ 0.004 0.010 −0.018 −0.303∗

(0.410) (0.041) (0.049) (0.171) (0.030) (0.038) (0.155)

∆ Gap(-1) 0.026 0.062 0.001 0.0001 −0.129∗∗∗ −0.120 −0.026
(0.026) (0.053) (0.027) (0.045) (0.030) (0.084) (0.103)

∆ Gap(-2) −0.038 −0.077 −0.018 −0.066∗ −0.030 −0.092∗∗∗ −0.150∗

(0.039) (0.055) (0.023) (0.040) (0.024) (0.033) (0.081)

Observations 7,800 15,525 24,000 2,925 9,476 14,720 1,794
Adjusted R2 0.115 0.489 0.223 0.660 0.052 0.059 0.146
Significance Levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

dency to be more persistent in times of high volatility in line
with findings of Bedendo et al. (2011), although not entirely

consistent with other crisis times as only the financial crisis
exhibits significant estimates. Independent regression vari-
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Table 12: Determinants of CG Model CDS Spreads - Time Period Regressions.

This table reports the estimates from the panel regressions of weekly changes in 5-year model CDS mid spreads estimated by the CG model calibrated with
1000-day equity volatility in models (1) to (4). Models (5) to (7) are then calibrated with option-implied volatilities extracted from at-the-money put and
call options with constant maturity of one year. (1) reports estimates for the financial crisis time period using historical volatility calibration, (2) for the
European sovereign debt crisis time period using historical volatility calibration, (3) for the tranquil time period using historical volatility calibration, (4)
for the Corona crisis time period using historical volatility calibration. Model (5) reports estimates for the European sovereign debt crisis time period using
option-implied volatility calibration, (6) for the tranquil time period using option-implied volatility calibration and model (7) for the Corona crisis time period
using option-implied volatility calibration. I regress the change in weekly model spread of each obligor (in basis points) on a time period specific constant,
the weekly change in the risk-free rate defined as the 3-month EURIBOR, the weekly change in the slope of the yield curve defined as the 12 month EURIBOR
minus the one-month EURIBOR and the weekly change of the VSTOXX index, the weekly change in the CRI and the weekly delta of the CRI slope defined as
the mid-spread of a 10-year tenor CRI index value minus the mid-spread of a one-year tenor CRI index value. As firm specific variables, I consider the weekly
obligor (company) return, weekly equity volatility, the weekly delta of the credit curve expressed as the CDS slope defined as the mid-spread of a 10-year
tenor CDS minus the mid-spread of a one-year tenor CDS of the same reference entity and the illiquidity factor derived by Amihud (2002) calculated using
equation (38) over a one week horizons. I report Driscoll and Kraay (1998) standard errors adjusted for heteroskedaticity and spatial correlation. The adj.
R2 is corrected for the fixed effect and thus includes the full model. For model (1) to (4) the sample period spans the time period from December 2007 to
December 2020, whereas for model (5) to (7) the sample period covers January 2010 to December 2020. Hence I expand the financial crisis time period for
the option-implied regressions.

(1) (2) (3) (4) (5) (6) (7)
∆ Risk free rate 0.096 0.149 −0.449 −0.067 0.490 −3.584∗∗ −0.173

(0.557) (0.674) (0.806) (0.922) (1.307) (1.594) (6.637)

∆ Slope yield curve −0.117 −0.012 0.099 0.123 0.180 0.347∗ −0.736
(0.158) (0.070) (0.082) (0.212) (0.115) (0.183) (0.986)

∆ VSTOXX −0.325∗∗∗ −0.241∗∗∗ −0.120∗∗ −0.218∗∗∗ 0.604∗∗∗ 0.345∗∗∗ 1.029∗∗

(0.120) (0.048) (0.053) (0.047) (0.134) (0.112) (0.379)

∆ CRI 0.064∗∗ 0.015 0.039 0.077∗∗ 0.306∗∗∗ 0.224∗∗∗ 1.545∗∗∗

(0.032) (0.017) (0.037) (0.039) (0.042) (0.077) (0.162)

∆ Slope CRI 0.155∗∗∗ −0.011 0.043 −0.670∗∗∗ −0.206∗∗∗ 0.138 −1.672∗∗

(0.058) (0.031) (0.052) (0.173) (0.066) (0.119) (0.666)

∆ Slope CDS −0.024 −0.017∗∗∗ 0.008 −0.044∗∗∗ −0.066∗∗ −0.004 −0.079
(0.022) (0.005) (0.012) (0.011) (0.026) (0.012) (0.049)

Company returns −2.013∗∗∗ −2.226∗∗∗ −0.975∗∗∗ −2.104∗∗∗ −0.845∗∗∗ −0.479∗∗∗ −0.946∗∗∗

(0.213) (0.074) (0.039) (0.087) (0.085) (0.051) (0.149)

Equity volatility 0.286∗∗∗ 0.131∗∗ 0.060 0.106∗∗ 0.063 0.0002 0.104∗∗

(0.096) (0.057) (0.049) (0.044) (0.062) (0.043) (0.047)

ILLIQ 0.367 0.039 0.049 −0.226 −0.037 −0.038 −0.663∗∗

(0.389) (0.034) (0.037) (0.177) (0.037) (0.040) (0.303)

∆ CG(-1) −0.005 0.012 0.004 −0.083 −0.119∗∗∗ −0.109 −0.193∗∗∗

(0.040) (0.026) (0.027) (0.095) (0.035) (0.085) (0.073)

∆ CG(-2) 0.015 −0.015 −0.025 −0.070 0.014 −0.094∗∗∗ −0.063
(0.046) (0.026) (0.026) (0.053) (0.029) (0.031) (0.044)

Observations 7,800 15,525 24,000 2,925 9,476 14,720 1,794
Adjusted R2 0.302 0.358 0.346 0.593 0.160 0.090 0.360
Significance Levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

ables like the risk-free rate, the slope of the yield curve, coun-
terparty credit risk, the slope of it and company returns re-

main consistent with the sector market regressions in terms
of statistical significance and the magnitued of the estimates.
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Table 13: Determinants of Market CDS Spreads - Time Period Regressions.

This table reports the estimates from the panel regressions of weekly changes in market 5-year CDS mid spreads. (1) reports estimates for the financial crisis
time period, (2) for the European sovereign debt crisis time period, (3) for the tranquil time period and (4) for the Corona crisis time period. I regress the
change in weekly market spread for each obligor (in basis points) on a time period specific constant, the weekly change in the risk-free rate defined as the
3-month EURIBOR, the weekly change in the slope of the yield curve defined as the 12 month EURIBOR minus the one-month EURIBOR and the weekly
change of the VSTOXX index, the weekly change in the CRI and the weekly delta of the CRI slope defined as the mid-spread of a 10-year tenor CRI index
value minus the mid-spread of a one-year tenor CRI index value. As firm specific variables, I consider the weekly obligor (company) return, weekly equity
volatility, the weekly delta of the credit curve expressed as the CDS slope defined as the mid-spread of a 10-year tenor CDS minus the mid-spread of a one-year
tenor CDS of the same reference entity and the illiquidity factor derived by Amihud (2002) calculated with equation (38) over a one week time horizons. I
report Driscoll and Kraay (1998) standard errors adjusted for heteroskedaticity and spatial correlation. The adj. R2 is corrected for the fixed effect and thus
includes the full model. The sample period covers December 2007 to December 2020.

(1) (2) (3) (4)
∆ Risk free rate −0.709 2.105∗ 0.848 1.648

(1.605) (1.210) (1.098) (2.980)

∆ Slope yield curve 0.616∗ −0.180 −0.008 0.479
(0.374) (0.153) (0.132) (0.457)

∆ VSTOXX 0.444∗∗ 0.126 0.001 −0.545∗∗

(0.179) (0.135) (0.058) (0.259)

∆ CRI 0.375∗∗∗ 0.436∗∗∗ 0.603∗∗∗ 0.866∗∗∗

(0.064) (0.061) (0.118) (0.055)

∆ Slope CRI 0.601∗∗∗ −0.103 −0.032 0.514
(0.144) (0.095) (0.115) (0.368)

∆ Slope CDS −0.265∗∗∗ −0.565∗∗∗ 0.038 −0.549∗∗∗

(0.087) (0.039) (0.175) (0.066)

Company returns −0.926∗∗∗ −0.843∗∗∗ −0.378∗∗∗ −1.148∗∗∗

(0.138) (0.093) (0.052) (0.177)

Equity volatility 0.003 0.217∗∗ 0.176∗∗∗ 0.008
(0.037) (0.099) (0.068) (0.059)

ILLIQ 0.191∗∗∗ 0.041 −0.037 −0.213∗

(0.041) (0.041) (0.024) (0.117)

∆ CDS(-1) 0.128∗∗∗ 0.075 0.037 0.006
(0.042) (0.061) (0.040) (0.046)

∆ CDS(-2) −0.028 −0.054 0.010 −0.026
(0.064) (0.061) (0.038) (0.052)

Observations 7,800 15,525 24,000 2,925
Adjusted R2 0.235 0.603 0.221 0.746
Significance Levels: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

From that I conclude that these factors drive spreads regard-
less of the environment in which obligors operate. The slope
of the CDS exhibits negative and strongly statistcally signifi-
cant coefficient estimates in crisis times, whereas it does not
in the tranquil period, thus showing that the term structure
of credit risk has impact on market spreads when credit risk is
more likely to materialize. In contrast to all other previous re-

gressions, I estimate a positive factor loading for equity illiq-
uidity in the financial crisis time period, showing time vary-
ing illiquidity spillover effects from equity to credit markets.
This result illustrates the importance of distinguishing time
periods and provides feasible arguments that drivers of credit
risk are not time invariant, but to a certain extent highly time
dependent.
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8. Conclusion

With this thesis I tried to shed light onto the dynamics of
the European credit derivatives market by assessing the per-
formance of the CreditGrades model used to quantify credit
risk in the cross-section of my sample of reference entities.
The conditional correlations show that strong relationships
between estimated model and market spreads exist but they
seem to be highly sector dependent. This points out that
model performance has be be addressed on a per sector level.
The historical volatility calibrated model cannot follow mar-
ket spreads in times of financial turmoil mainly due to the
ghost effect of constant sliding equity volatility window that
prevent the model to incorporate new information quickly.
On the other hand, the implied-volatility calibration can bet-
ter adjust to new information, thus supporting the hypothe-
sis of quicker incorporation of information in equity deriva-
tives markets formulated by Cao et al. (2011), Bedendo et
al. (2011) and Wagner (2008). Correlations are higher in
times of increased volatility both in equity and credit deriva-
tives markets, together with the pricing analysis of forecast-
ing metrics leading to the conclusion that the model parame-
ter distribution has major impact on the model performance.
This fact underlines the model related downside that credit
risk is driven by the distance between asset value and de-
fault barrier. Thus, sectors which do not exhibit high fi-
nancial leverage and low equity volatility (implied volatility)
show severe model under-performance. Practical model im-
plementation always needs to be assessed together with a
model back-testing to analyse the relation between parame-
ter distribution and the ability of the model to derive credit
risk in the cross-section. When assessing autocorrelations in
model and market spreads, I confirm the findings of Byström
(2006) that market inefficiencies do exist. This is because
market spreads are highly autocorrelated, resulting in effects
on pricing and model performance thereafter. However my
findings deviate from Byström (2006) in the regard that also
model spreads show high degrees of autocorrelation which
is later also addressed in performed panel regressions. Turn-
ing to the determinants of the gap between model and mar-
ket spreads, I discover that structural variables explain vari-
ations well since the risk-free rate and the slope of it are
mostly statistically insignificant. On the other hand, equity
returns and counterparty credit risk are almost always use-
ful to explain the weekly variation in gap, model and market
spreads. Factors like aggregated implied volatility, the term
structure of counterparty credit risk and the credit curve are
highly sector specific in the explanatory value of spreads. The
illiquidity factor of Amihud (2002) does not seem to drive
CDS spreads, thus I can reject the hypothesis that equity illiq-
uidity spillover effects are reflected in gap, model and mar-
ket spreads. Determinants of model spreads depend, as ex-
pected, on model calibration procedures resulting in the abil-
ity of the option-implied volatility to pick up market aggre-
gated implied volatility depicted by positive VSTOXX load-
ings. Mean-reverting behavior of gap and model spreads
found by Bedendo et al. (2011) also depends on model cali-

bration procedures, as option-implied derived model spreads
exhibit stronger mean-reversion and historical volatility esti-
mated spreads show higher persistence. With my sample of
reference entities I can confirm the predictive ability of the
CG model also in the European market as also discovered by
Byström (2006) and Bedendo et al. (2011). However, upon
closer inspection the predictive ability depends on sector and
model calibration procedures such that capital structure ar-
bitrage strategies, exploiting this market inefficiency, have to
be chosen carefully. My robustness analysis shows that de-
terminants of gap, model and market spreads are related to
CDS tenors and time periods. Short term CDS tenors of one
year exhibit higher sensitivities to equity returns, the term
structure of counterparty credit risk and the credit curve.
For long tenors, VSTOXX appears more important, especially
for option-implied gap and model spreads, showing that the
horizon of priced in forward-looking information is much
longer than anticipated when using 5-year tenors. Panel re-
gression grouped by time periods show that determinants of
gap, model and market spreads are, to some extent, time
variant, whereas CRI and equity returns are always statisti-
cally significant with comparable signs. Especially the slope
of CRI and the credit curve contribute over-proportional to
the explanatory value in times of financial turmoil, indicat-
ing the importance of market sentiment on the credit protec-
tion of the buyer and seller side. I can show that illiquidity
spillover effects from equity to credit markets exist for market
spreads in the financial crisis, highlighting the importance of
detecting time variation in determinants. My analysis can be
expanded in future research based on two main aspects. A
first extension might be related to the model calibration itself.
Better data availability with access to proprietary databases
such as Markit, Moodys or S&P could yield more accurate
recovery rates of underlying bonds, thus most likely improv-
ing model performance. Additionally, different asset volatil-
ity approximations could be used such as EWMA-, GARCH
models or different historical volatility windows to derive a
more granular view on the calibration contingent model per-
formance outlined by my results. A second extension might
focus on my regression approach. The frequency of weekly
observations could be adjusted to match observation frequen-
cies for which more macroeconomic variables are reported,
e.g. monthly, quarterly or bi-annually. This would allow fac-
tors like GDP or unemployment rates to enter the regression
specification and could provide additional insights. To com-
pensate the number of reduced data points, a longer obser-
vation period can be defined. This is, however, only possible
if other datasources with long back reaching historical data
are available. Furthermore, different econometric techniques
can be used and compared, such as panel quantile regressions
or Markov regime switching models in style of Alexander
and Kaeck (2008). With these methods it would be possible
to correct results for path dependencies induced by selected
econometric methods, identifying regression model inherent
tendencies. In addition, further liquidity measures, such as
the bid-ask spread, could be used to further assess the role of
possible illiquidity in credit derivatives markets. Finally, fu-
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ture research could test the above mentioned aspects in per-
forming capital structure arbitrage strategies where different
model specifications and subsequent risk-return profiles are
compared.
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