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Abstract

In this study, I investigate the robustness of the idiosyncratic volatility puzzle to the configuration of the research design.
Using the regression- as well as the portfolio-based concept, I start with the replication of the idiosyncratic volatility puzzle
approving the findings of Ang, Hodrick, Xing, and Zhang (2006). However, when idiosyncratic volatility is estimated from
monthly data and a time window spanning 1 or 5 years, the puzzle vanishes, regardless of the research method employed.
Similar result hold if only stocks with a market capitalization above the cross-sectional median or those with a price higher
than 10$ are used. Independent of the weighting scheme, the puzzle is also absent in the regression-based context when
the risk premia are estimated by generalized least squares weighting returns by the inverse of their variance estimates. The
same finding is derived in the portfolio-based context by extending the holding period to 12 months or controlling for the past

month maximum daily return.
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1. Introduction

Common asset pricing models such as the CAPM argue
that systematic market risk is the only type of risk that should
be compensated with a return premium in the equilibrium.
Idiosyncratic risk, on the other hand, should not be priced, as
it is assumed to be perfectly diversifiable by holding a com-
bination of the market portfolio and a risk-free investment.
Nonetheless, some authors claim that perfect diversification
might not be possible, if investors cannot attain the market
portfolio due to market frictions such as transaction costs or
incomplete information (e.g. Malkiel & Xu, 2006; Merton,
1987). Merton (1987) argues that in this case investors no
longer only care for the market, but the total risk which in-
cludes the idiosyncratic volatility (IVOL hereafter) as special
part. Therefore, idiosyncratic risk should be of importance
to the investors decision making process and hence be com-
pensated with a positive risk premium in the cross-section of
average returns from a theoretical point of view. However,
in an influential study, Ang et al. (2006) empirically discov-
ered a negative relation between IVOL and subsequent stock
returns instead. This finding is particularly puzzling when
considering standard asset pricing theory and has started the
debate about the importance of a pricing effect on idiosyn-
cratic volatility. Many papers were published that verified
the negative relation but claim to be able to explain it with
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new theories supported by empirical results, whereas other
studies emerged that completely challenged the finding of a
negative relationship. One example is the study of Fu (2009).
His findings fit to the standard asset pricing theory, as he em-
pirically confirmed a positive link between conditional IVOL
and expected returns. This illustrates that not only the empir-
ical findings of a consistent pricing effect induced by IVOL di-
verge from its theoretical predictions but also that the empir-
ical evidence varies across studies. As there are various stud-
ies that appear to analyze the same theoretical concept, the
question may arise why their results differ so fundamentally
from each other. The research concepts related to the IVOL
puzzle can be classified into two major groups which consist
of the regression- and portfolio-based approach. Whereas
the regression-based concept focuses on the estimation of
the IVOL risk premium by means of monthly cross-sectional
regressions, the portfolio-based method utilizes the idea of
sorting stocks into portfolios based on their exposure to IVOL
and searches for a systematic pattern in portfolio returns re-
spectively. Even though both of these concepts are able to
discover the IVOL puzzle as shown by Ang et al. (2006); Ang,
Hodrick, Xing, and Zhang (2009), not all studies come to this
same conclusion. Since Ang et al. (2006) for example use
value-weighted portfolios for their analysis, Bali and Cakici
(2008) find that using equal-weighted portfolio returns in-
stead, lets the puzzle vanish. Also, in the regression-based
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concept, the IVOL puzzle is sensitive to the research design,
as Bali, Cakici, and Whitelaw (2011) claim that the puzzle no
longer exists when they integrate a control for the maximum
daily return over the past month into their cross-sectional re-
gressions. Hence, the choice of the research design is impor-
tant for answering the question on the existence of an IVOL
puzzle. On this background I aim to answer the question on
how robust the IVOL puzzle is to a specific research design.
To do so, I analyze in what aspects the studies on idiosyn-
cratic volatility mainly differ and how these differences in-
fluence their conclusions. In addition, I incorporate further
adjustments that I consider adequate and try to verify the
robustness of the findings respectively. My analysis is struc-
tured along the regression- and the portfolio-based approach
on the basis of which I investigate the differences in results
that might emerge from adjustments in the research design.
Here I start with implementation of adjustments that are ap-
plicable to both research concepts and afterwards I focus on
those modifications that are related to the methodological
peculiarities of the research concepts. By this methodology,
I intend to settle the dispute on the existence and nature of
the idiosyncratic volatility risk premium as well as to illus-
trate the influence a researcher has on the results obtained
simply by choosing a specific research design. Using the ex-
ample of idiosyncratic volatility, I try to highlight the impor-
tance to also consider the study’s econometric design when
interpreting its result.

My study is structured as follows. In section 2 I start
with a brief overview on the literature related to the pric-
ing effect of idiosyncratic risk as well as the corresponding
research approaches and their findings. Afterwards section
3 sets out the methodology of my study. It begins with the
description on how I measure idiosyncratic volatility, then
gives the explanation on how the reference results based on
the regression- and the portfolio-based research concept are
derived and closes with an explanation on the kind of ad-
justments I consider as well how they are incorporated into
the research concepts. Section 4 introduces the data used
for this study. The empirical analysis starts in section 5 with
some summary statistics on the sample. Afterwards I con-
tinue with the replication of the IVOL puzzle on the basis
of the regression- and portfolio-based research concept that
should later on act as a reference point for the further ad-
justment analysis. The empirical analysis of the general ad-
justments, consisting of idiosyncratic volatility and sample-
related modifications, is located in section 6. In contrast, sec-
tion 7 presents the evaluation of the method-specific adjust-
ments. For the regression-based concept these adjustments
involve changes in the risk-related control variables as well
as the regression estimation procedure, while those adjust-
ments for the portfolio-based method focus on modifications
in the way portfolios are characterized and analyzed, as well
as the interaction of the IVOL puzzle with other firm-specific
effects when these are controlled for by means of bivariate
dependent portfolio sorts. Lastly, section 8 concludes.

2. Literature Overview and Theoretical Motivation

2.1. The Pricing Effect of Idiosyncratic Risk

Markowitz (1952) was among the first to formulate the
idea of a positive relationship between systematic risk and
expected returns. In his study, he allows investors to only
construct a portfolio-based on all stocks available in the mar-
ket and measures risk as the portfolio return variance. His
advice is then to select a portfolio laying on the efficient fron-
tier, as these attain the optimal risk-return trade-off, which
is why he terms them to be "mean-variance efficient" (see
Markowitz, 1952). Mean-variance efficient portfolios con-
tain the part of the variance that remains after diversification
and thus determines the extent of risk that is equal for all as-
sets in the portfolio. This type of risk is called "systematic
risk" and should be compensated by a positive return pre-
mium to make a risky investment attractive for risk averse
investors. Risk that can be diversified away is called "id-
iosyncratic risk" and should not yield any compensation, as
no influence on the diversified portfolio’s payoff is assumed.
Based on the portfolio theory of Markowitz (1952) and his
concept of mean-variance efficiency, Sharpe (1964), Lintner
(1965) and Black (1972) formulate the well-known Capital
Asset Pricing Model (CAPM hereafter). In their model, the
investment strategy with the optimal risk-return trade-off in
equilibrium involves investing in the mean-variance efficient
market portfolio and a risk-free investment such as the risk-
free interest rate. The market portfolio acts as a proxy for
systematic risk and the asset’s co-variation with this portfolio
is captured by the market beta. This market beta allows for
quantification of the asset’s exposure to systematic risk and
determines the part of the risk that requires compensation
by a return premium. Hence, portfolios with a higher market
beta are assumed to contain more systematic risk and should
therefore deliver higher expected returns. In the CAPM, the
linear relationship between securities’ expected returns and
their market betas implies that, in the equilibrium, idiosyn-
cratic risk can be perfectly diversified and thus does not carry
a risk premium.

However, authors have begun to question the CAPM as-
sumptions including the irrelevance of idiosyncratic risk for
pricing purposes and provided theoretical evidence that this
kind of risk is indeed priced under plausible assumptions,
even though the direction of the pricing effect has remained
controversial. Merton (1987), for example, argues that when
investors have incomplete information on the characteristics
of securities, they are prone to hold assets whose risk-return
profile they are familiar with. In consequence, they hold
under-diversified portfolios and no longer care only for
systematic market risk but instead demand a return pre-
mium for the total amount of risk including its idiosyncratic
part. Hence, incomplete information leads to a situation in
which diversifiable risk would be priced as investors require
compensation for their imperfect diversification. Therefore,
Merton (1987) predicts a positive relationship between id-
iosyncratic risk and cross-sectional stock returns. Conversely,
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Miller (1977) sets the framework for an opposite theoreti-
cal prediction. His study is based on the assumption that
investors diverge in their perception of expected returns for
a specific firm and also constrains them in their short-selling
activities. He argues that stocks which are characterized by
dispersed opinions on their future payoffs are likely system-
atically overvalued, as their prices are mainly determined
by market participants who are most optimistic about the
firms expected returns and hence willing to pay the highest
price. When this overvaluation is eventually corrected as
relevant information becomes available to all investors over
time, disagreements on future returns diminish and prices
are corrected which leads to lower subsequent returns (see
Miller, 1977). In addition Miller (1977) claims that this
effect increases with the level of dispersion in opinions on
future returns leading to even lower subsequent returns for
stocks with a higher degree of disagreement. Diether, Malloy,
and Scherbina (2002) measure the heterogeneity of opinions
by the dispersion in analysts’ forecasts and claim that it can
proxy for idiosyncratic risk. They find that expected returns
are negatively related to dispersion in analysts’ forecasts and
thus conclude also on a negative relationship to idiosyncratic
risk which contradicts the notion of Merton (1987).

To support the above mentioned theoretical predictions,
several studies have emerged that try to unveil the true pric-
ing implications of idiosyncratic risk empirically. Among the
first studies to do so is the one of Fama and MacBeth (1973).
In a linear regression-based framework, they measure id-
iosyncratic risk as standard deviation of the least-squares re-
gression residual that was generated by regressing the firm’s
stock excess return onto the CAPM. Based on their market
beta, they sort all stocks into 20 portfolios and regress them
each month onto the portfolio market beta, the squared port-
folio market beta and the average idiosyncratic risk of all
stocks in the portfolio to compute their regression coefficients
that proxy for the variables’ risk premia. They use monthly
returns of all common stocks trading on the New York Stock
Exchange (NYSE hereafter) in the period of January 1926 to
June 1968 and find a statistically insignificant risk premium,
wherefore they conclude that idiosyncratic risk is not priced
in the cross-section of average returns (see Fama & MacBeth,
1973).

In a subsequent replication of the study from Fama and
MacBeth (1973), Tinic and West (1986) use data from 14 ad-
ditional years and conclude that idiosyncratic risk is indeed
priced, carrying a positive risk premium which corresponds
to the predictions of Merton (1987). Malkiel and Xu (1997)
draw the same conclusion. Using portfolios sorted by idiosyn-
cratic volatility they find that portfolios containing stocks
with the highest idiosyncratic volatility also exhibit the high-
est returns. It is of note, however, that they do not report any
statistics for the verification of statistical significance. In their
follow up study, Malkiel and Xu (2006) utilize a regression-
based method comparable to that of Tinic and West (1986)
as well as Fama and MacBeth (1973) and show that the pos-
itive relationship between expected returns and IVOL holds
up in statistical tests. Spiegel and Wang (2005) in addition

to Fu (2009) argue that past realized idiosyncratic risk is not
able to identify the true relationship between IVOL and ex-
pected returns, which is why they suggest to use conditional
IVOL instead that is estimated using an Exponential General-
ized Autoregressive Conditional Heteroscedastic (EGARCH)
model. Both studies define idiosyncratic volatility relative to
the Fama and French (1993) three-factor model (FF3 model
hereafter) again, finding a positive return premium for IVOL
(see Fu (2009); Spiegel and Wang (2005)). The FF3 model
uses a market (MKT), size (SMB) and value (HML) factor for
systematic risk-correction (see Fama & French, 1993).

Even though a positive risk premium for idiosyncratic risk
violates the CAPM assumptions, it still retains the notion of
Markowitz (1952) that risk averse investors require a return
premium for taking on volatility risk. Ang et al. (2006) are
among the first to disagree with previous studies as they pro-
pose a negative relationship between idiosyncratic risk and
expected returns. This relationship is hardly explained by
classic risk-return arguments, wherefore it is also known as
the "Idiosyncratic Volatility Puzzle". Ang et al. (2006) sort all
stocks traded on the American Stock Exchange (AMEX here-
after), National Association of Securities Dealers Automated
Quotations (NASDAQ hereafter) and the NYSE into quintile
portfolios based on their past month idiosyncratic volatility
and point out that the portfolio in the highest IVOL quintile
systematically underperform the one in the lower IVOL quin-
tile by a statistically significant average total return differ-
ence of about -1.06%. This result also holds for risk-adjusted
returns relative to the CAPM and FF3 model as well as when
controlling for various cross-sectional effects in bivariately
sorted portfolios (see Ang et al., 2006). Authors such as
A. G. Huang (2009), Ang et al. (2009) and Duarte, Kamara,
Siegel, and Sun (2014) are able to verify the finding of an
IVOL puzzle. A. G. Huang (2009) uses both, a regression-
based approach in fashion of Fama and MacBeth (1973) as
well as a portfolio sorting approach comparable to that of Ang
et al. (2006) and confirm that the underperformance of the
highest IVOL portfolio remains statistically significant even if
risk adjustment is induced by the Carhart (1997) four-factor
(CH4 hereafter) model that augments the FF3 model by a
momentum factor (MOM hereafter) (see Ang et al., 2006;
Carhart, 1997). Ang et al. (2009) add international evidence
on the IVOL puzzle by analyzing a data set consisting of 23
developed countries spanning a sample period from January
1980 to December 2003. In addition, they discover an in-
ternational co-movement in portfolio returns that goes long
the quintile portfolio containing firms with the highest IVOL
and short those of the lowest IVOL quintile, hinting at sys-
tematic risk that is not captured by standard risk factors (see
Ang et al., 2009). This idea is picked up by Duarte et al.
(2014) who also confirm the negative relationship between
idiosyncratic volatility and expected returns and construct a
risk factor based on the return difference of a portfolio with
high predicted IVOL as well as the one of low predicted IVOL.
Adding this risk factor to the FF3 model, they improve in ex-
plaining the cross-section of returns, wherefore they argue
that the IVOL puzzle arises due to an omitted systematic risk
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factor (see Duarte et al., 2014).

2.2. Regression- vs. Portfolio-Based Method

To understand the contradictory findings on the rela-
tionship between idiosyncratic risk and the cross-section
of expected returns as outlined in the previous section, it
is necessary to get an overview on the research concepts
and adjustments used in different studies. Two branches
have emerged in the literature that investigate the pricing
implications of idiosyncratic risk. The first branch follows
the ideas of Fama and MacBeth (1973) and implements
a regression-based methodology that is based on the risk
premia estimation by means of cross-sectional linear regres-
sions. In contrast, the second branch uses a portfolio-based
methodology as proposed in Ang et al. (2006) where stocks
are sorted into portfolios based on their idiosyncratic volatil-
ity and are then analyzed respectively.

The regression-based approach is based on the ideas of
Fama and MacBeth (1973). They propose a two step proce-
dure that starts with running a time-series regression of all
stocks’ monthly excess returns onto a risk-correction model
which they choose to be the CAPM and compute the firm-
specific risk exposure by the stock-related market beta. Af-
terwards 20 portfolios are formed based on the ranking of all
stocks relative to their estimated market betas. These port-
folios are constantly rebalanced and the stock-specific betas
are regularly recomputed. Then, the simple average over all
stock betas within a portfolio is used to compute the portfo-
lio beta. The standard deviation of the regression residual
from the time-series regression in the first step is used as a
proxy for the stock-specific IVOL that is also averaged across
all firms within a portfolio to generate a portfolio level IVOL
measure. In the second step they compute cross-sectional
regressions in each period and average the estimated coeffi-
cients over their sample time horizon to obtain an estimate
on the expected risk premium for the corresponding regres-
sor. Their study investigates the premium on the market beta
as a proxy for the price of market risk, the premium on the
squared market beta as a measure for non-linearity in mar-
ket risk and the expected risk premium on their IVOL mea-
sure drawing the conclusions already mentioned in section
2.1 (see Fama & MacBeth, 1973). Ang et al. (2009) were
among the first to verify the existence of the IVOL puzzle with
such an approach but using single stocks instead of portfolios
as dependent variable for the cross-sectional regressions.

In subsequent studies authors have begun to adjust the
regression-based methodology to improve it by handling
well-known econometric problems or simply updating the
method based on recent empirical findings and new the-
oretical concepts such as more sophisticated risk-correction
models. Malkiel and Xu (2006) try to handle the well-known
"errors-in-variables" problem which arises in the IVOL esti-
mation on the firm level. For this they use the ideas of Fama
and French (1992) and apply the portfolio IVOL on all stocks
within the portfolio. First they sorted all stocks into 200
portfolios based on its exposure to size and market beta.
Thereafter they calculate the portfolio IVOL and assign this

value to all stocks located in the specific portfolio. This IVOL
is then used in the cross sectional regression with individual
stocks (see Malkiel & Xu, 2006). Subsequently, Ang et al.
(2009) measure IVOL relative to the FF3 model and pick up
the idea of using single stock returns instead of portfolios in
the cross-sectional regressions. They are also among the first
to correct the t-statistics of the average cross-sectional risk
premia estimates for serial correlation and heteroskedas-
ticity using the adjustment from Newey and West (1987).
Z. Chen and Petkova (2012) use two different techniques for
the estimation of time-series risk factor loadings that focus
on different degrees of time variation in these estimates.
One method uses the complete sample for this time-series
regression, whereas the other implements 60-months rolling
estimation windows for that purpose which allows for better
characterization of the dynamically changing firm-specific
risk exposure. Furthermore, changes in the cross-sectional
regression estimation technique have also been considered
throughout the literature. Among others Ang et al. (2009)
as well as Han and Lesmond (2011) suggest to incorpo-
rate value weighting into the regression approach of Fama
and MacBeth (1973), as they weight all stock returns with
the corresponding firm size at the beginning of the month to
avoid small firm effects distorting their risk premia estimates.
Moreover, some authors consider adjustments related to the
control variables used in cross-sectional regressions. Vari-
ous studies show that the choice of the risk-related control
variables capturing systematic or firm-specific risk can have a
notable impact on the IVOL risk premium. Boyer, Mitton, and
Vorkink (2010) among others regress portfolio excess returns
not only onto the firm’s CH4 model risk factor loadings to
account for systematic risk but also add those on a liquidity
and a coskewness risk factor respectively. Additionally they
include variables such as expected idiosyncratic skewness,
size, the book-to-market ratio, momentum and turnover into
their cross-sectional regressions to account for firm-specific
risk which was not considered in the study of Fama and
MacBeth (1973) (see Boyer et al., 2010). L. H. Chen, Jiang,
Xu, and Yao (2012) propose the idea of a subsample analy-
ses to dissect the finding of an IVOL puzzle from the effect
of other firm characteristics. Hence they conduct part of
their regression-based analysis in subsamples constructed
based on attributes such as size, price and calendar time (see
L. H. Chen et al. (2012)).

In contrast, the general idea of the portfolio-based re-
search method is to sort stocks based on their idiosyncratic
volatility into a pre-specified number of portfolios and rebal-
ance these portfolios regularly. For all portfolios, the next pe-
riod’s return (total or in excess of the risk-free rate) as well as
the Jensen’s alphas relative to a select risk-correction model
are computed each period. Based on the long-short portfo-
lio, which goes long the portfolio of stocks with the highest
IVOL and short the one containing those stocks with the low-
est IVOL, the alpha and return difference between high and
low IVOL portfolios is computed which should deliver evi-
dence on the pricing implications from idiosyncratic risk (see
e.g. Ang et al., 2006; Bali & Cakici, 2008; Rachwalski & Wen,
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2016). Ang et al. (2006) are among the first to conduct such
an analysis. They measure idiosyncratic volatility as stan-
dard deviation of the residual from a time-series regression
of the stock-specific excess return onto the FF3 model using
daily data over the past month. Based on this IVOL measure,
they sort stocks into monthly rebalanced quintile portfolios
for which they compute the value-weighted (VW hereafter)
monthly total returns as well as the Jensen’s alpha relative
to the CAPM and the FF3 model that they then average over
time for presentation purposes. Lastly, by investigating the
return patterns from the quintile and the long-short portfo-
lio, they discover the IVOL puzzle (see Ang et al., 2006).

The portfolio-based research concept has also been ad-
justed by various studies. Ang et al. (2006) argue that the
trading strategy used for portfolio construction can influence
the findings, which is why they implemented other strate-
gies for robustness purposes but were not able to identify
any influence on the IVOL puzzle in their study. In addition,
also the number of univariate portfolios analyzed was sub-
ject to change. While Ang et al. (2006) and later Duarte et
al. (2014) propose quintile portfolios for the analysis, Spiegel
and Wang (2005) use decile portfolios and find a positive re-
lationship between IVOL and expected returns instead. Bali
and Cakici (2008) show that the choice of the return weight-
ing scheme, the breakpoints necessary to subdivide stocks
into portfolios and the data frequency used for IVOL esti-
mation can lead to different conclusions on the existence of
the IVOL puzzle. Their analysis of equal-weighted (EW here-
after), instead of VW portfolio returns, delivers no evidence
on an IVOL puzzle. Neither do portfolios formed from IVOL
breakpoints that should account for potential size effects and
hence are calculated from stocks traded on the NYSE only,
or are set such that stocks are subdivided into portfolios that
each make up an equal market share. They draw the same
conclusion when using monthly data over the past two or five
years to estimate IVOL (see Bali & Cakici, 2008). Other stud-
ies also differ in the choice of the risk-correction model used
for computation of the Jensen’s alpha. Ang et al. (2006), Bali
and Cakici (2008) and Fu (2009) report alphas that correct
for the risk factors from the CAPM or FF3 model, whereas
Spiegel and Wang (2005) as well as Rachwalski and Wen
(2016) use the CH4 model for that purpose. Cao, Chordia,
and Zhan (2021) adds the alpha relative to the Fama and
French (2015) five-factor model (FF5 model hereafter) that
augments the FF3 model by an investment (CMA) and a prof-
itability (RMW) factor. Furthermore, Ang et al. (2006) and
A. G. Huang (2009) use bivariate dependent sorted portfo-
lios to investigate the robustness of the IVOL puzzle to firm
characteristic effects. For that, they choose a control vari-
able based on which they sort all stocks into portfolios first.
Then all stocks within each of these portfolio are sorted again
into portfolios based on their IVOL. Lastly, each of these IVOL
portfolios is averaged across the control variable sorts result-
ing in average portfolios that capture the IVOL puzzle effect
which is robust to the effects of the selected control (see Ang
et al., 2006; A. G. Huang, 2009).

3. Methodology

This section introduces the methodology used through-
out my study. Section 3.1 starts with the definition of my id-
iosyncratic volatility measure. In section 3.2 and 3.3 I present
my benchmark specification for the regression- as well as the
portfolio-based research approach, on the basis of which I
replicate the IVOL puzzle finding and implement further ad-
justments. Lastly, section 3.4 sets out my adjustment analy-
sis.

3.1. Estimation of Idiosyncratic Volatility

Usually idiosyncratic volatility is computed as the stan-
dard deviation of the residual from the regression of the
firm’s excess returns onto to a risk-correcting model like the
FF3. Regardless of the model used, the following general
time-series regression is run for each firm to obtain the cor-
responding idiosyncratic volatility estimate:

ri=a' +pX, +e, (€D)

where r;' is the return of stock i at time ¢ in excess of the
risk-free rate and a' stands for the time-series intercept for
stock i. BiX, is a 1 x k vector of risk factor loadings for firm
i that are estimated relative to the k x 1 vector of risk factors
X, that should proxy for systematic risk. eit presents the re-
gression residual for firm i at time ¢, on the basis of which
idiosyncratic volatility is generally computed as follows:

IVOLY(t;t —s) = y/var,,_(eD). @)

Here IVOLf(t; t —s) presents the IVOL of firm i at time
t measured relative to risk-correction model X over the time
horizon from t —s to t. The right-hand side of the equa-
tion states that IVOL is measured as the standard deviation
of the time-series regression residuals over the time horizon
from t —s to t. Equation 1 allows for the integration of var-
ious risk-correcting models to compute IVOL which becomes
important in the later adjustment analysis. If not otherwise
stated, I use the FF3 model for risk-correction and compute
IVOL from the following time-series regression for each stock
separately while using daily data:

rl=a'+ B MKT, + By, SMB, + Bl HML, +€., (3)

/51‘;,[” refers to the time-series regression factor loading on
the MKT risk factor of firm i. fg,,, and f3;,,, stand for the
factor loadings of firm i on the SMB and HML risk factor re-
spectively,. MKT,, SMB, and HML, represent the level of
the corresponding risk factor at time ¢. For estimation of the
IVOL measure utilized throughout most of my analysis, I use
the daily residuals from equation 3 and compute it as follows:

IVOLH3 = y/var(el). 4

I VOLf f 3 is then defined as the idiosyncratic volatility rel-
ative to the FF3 model of firm i in month t that is measured
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as the standard deviation of the daily residuals from regres-
sion 3 over the current month. For firms with less than 15
daily return observations, the IVOL measure is considered as
missing. If not otherwise stated, this definition is used when
referring to idiosyncratic volatility. Modifications to this def-
inition are considered in the later adjustment analysis.

3.2. Regression-Based Approach

L use the study of Ang et al. (2009) as a reference point for
implementation of the regression-based research approach,
as it is among the first to verify the existence of the IVOL puz-
zle using a linear regression framework comparable to that
of Fama and MacBeth (1973). This procedure is subdivided
into two steps: a time-series regression and a cross-sectional
regression step.

In the first step, a time-series regression equal to that of
equation 1 is run for every firm. Here a pre-defined time win-
dow as well as risk-correction model are used to obtain the
firm-specific risk exposure measured by the risk factor load-
ings. If not otherwise stated, I compute the risk factor load-
ings relative to the FF3 model based on equation 3. Similar
to the IVOL estimation, monthly factor loadings of firm i are
computed using rolling windows of one month that contain
daily data. These factor loadings are then used in the second
step of the procedure.

In the second step, I compute cross-sectional regressions
at every month t across all firms for which data are available
at that month. These have the following form:

ri(t;t+1) = c+)/IVOLlX(t; t—s)+l‘b b;(¢t; t+1)+k‘zzi(t)+ei+1,

()

where r;(t; t + 1) is the stock’s excess return from time ¢t to
t +1, c is the cross-sectional regression intercept, b;(¢t;t+1)
is the m x 1 vector of time-series risk factor loadings for firm
i computed over the window from time t to t + 1, z;(t) is
the k x 1 vector of firm characteristics for firm i observable
at time t and e‘; 41 is the cross-sectional regression residual
of stock i at time t + 1. y, A, and A_ define the 1 x 1, 1 x
m and 1 x k vectors of cross-sectional regression coefficients
on idiosyncratic volatility, the time-series risk factor loadings
and the firm characteristics respectively. These coefficients
should approximate the monthly risk premia for the corre-
sponding regressors. Subsequently, I use the time series of
monthly risk premia and the intercept to test whether the av-
erage premium on the chosen idiosyncratic volatility measure
is statistically different from zero. For that I use a standard
t-test where I correct the standard errors of the coefficient
estimates for serial correlation by the methodology of Newey
and West (1987). Lags are selected based on the maximum
value proposed by the quadratic spectral or the Bartlett ker-
nel that is then rounded downwards to the next integer value.
In addition, I calculate the average monthly R?> and number
of stocks used in the corresponding regression.

Whereas the previous explanations are given generally to
enhance the understanding of the later adjustment analysis, I

will now concretize the regression-based research methodol-
ogy that is used as reference point throughout my empirical
analysis. I use monthly data to estimate the cross-sectional
regression of equation 5 at each month t by means of the or-
dinary least squares (OLS hereafter). On the left-hand side
of this equation, I use the next month excess return for stock
i measured from the end of month ¢ to t + 1. As IVOL mea-
sure, I utilize the one defined in equation 4 that is computed
from daily data over the current month. Risk-correction is
implemented by usage of the time-series risk factor loadings
on the FF3 model from equation 3 that are obtained from
daily data over the next month t + 1. For the calculation
of the time-series risk factor loadings, I again require each
stock to report at least 15 daily return observations during the
month. As I rely on the concept of Ang et al. (2009) for the
regression-based methodology, I apply almost the same firm
characteristics and start further adjustment analyses from
there on. Hence, my vector of firm characteristics at each
t consists of the firms’ size measured by the natural loga-
rithm of market capitalization, the firm’s book-to-market ra-
tios of equity (BM hereafter) calculated based on Fama and
French (1992) and the total return measured from the end
of the previous month t — 1 until the end of current month
t to control for the one-month return reversal effect discov-
ered by Lehmann (1990) and Jegadeesh (1990). In addition
to these firm characteristics I augment the study by sequen-
tially rotating among further firm-related control variables
that might be interrelated with the IVOL puzzle effect. To
reduce the arbitrariness in selecting these variables, I rely
on the findings of L. H. Chen et al. (2012) as well as Hou
and Loh (2016) who evaluated the pervasiveness of the IVOL
puzzle across different explanations found in the literature.
Barberis and Huang (2008) claim that investors have pref-
erences for extreme events when evaluating stocks that they
quantify by stock return skewness. Consequently I consider
this effect by controlling for the skewness of stock returns
over the current month, the expected idiosyncratic skewness
measure of Boyer et al. (2010) and the coskewness measure
over the recent past 5 years computed based on the proce-
dure of Harvey and Siddique (2000). Lastly, I also account
for the liquidity-related IVOL puzzle explanation and include
the Amihud (2002) illiquidity measure as a control variable
(see Han & Lesmond, 2011). At this step of the analysis I
use 7 lags for the standard error correction based on Newey
and West (1987). I term the above explained method as
equal-weighted Fama-MacBeth regression procedure. How-
ever, similar to Ang et al. (2009) I also consider a value-
weighted approach. For this I use a weighted least squares
(WLS) method to estimate risk premia in the cross-section
regression of equation 5, where all returns are weighted by
the firm’s current month market capitalization (MTCAP here-
after) in U.S. dollars. I call this procedure the value-weighted
Fama-MacBeth regression.

3.3. Portfolio-Based Approach
For implementation of the portfolio-based research meth-
od I rely on the study of Ang et al. (2006). Here the idea
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is that all stocks traded on the NYSE/AMEX/NASDAQ are
sorted into a pre-defined number of portfolios based on their
past idiosyncratic volatility. These portfolios are rebalanced
regularly and analyzed, additionally to a long-short portfolio,
to identify the relationship between IVOL and expected cross-
sectional returns non-parametrically. The procedure starts by
defining the trading strategy. Such a strategy consists of an
estimation period E, a waiting period W and a holding pe-
riod H. Using this notation, an E/W /H trading strategy can
be computed as follows. At month t the IVOL measure is com-
puted for each firm over the E-month period from t — E — W
to month t — W based on equation 2. Afterwards it is annu-
alized by multiplication with +/250. Based on the calculated
IVOL, at each month t breakpoints are determined that sub-
divide stocks into a pre-defined number of portfolios. These
portfolios are then held for the next H-months. As proposed
by Ang et al. (2006), for portfolios with E > 1 and H > 1
I follow Jegadeesh and Titman (1993) and compute portfo-
lios with overlapping holding periods. Hence, for a 6/1/6
strategy at month t the pre-defined number of portfolios are
constructed from the IVOL estimate over the past 6 months
ending 1 month prior to the formation date t and using daily
return data. The same number of portfolios is constructed
based on the IVOL estimate over the past 6 month but ending
2 months, 3 months up to 6 months prior to t. Then a simple
average across all the sets of portfolios with different ending
periods are calculated, such that only the set consisting of the
number of pre-defined portfolios constructed from the aver-
aging procedure remains. Consequently, 1/6th of the compo-
sition of these portfolios changes each month. Furthermore,
each 1/6th of these portfolios consists of the portfolio from
1 month ago and 1/6th of the portfolio from 2 month ago up
to the last 1/6th that consists of the portfolio from 6 month
ago. In addition, I construct a long-short portfolio that goes
long the portfolio of the highest IVOL firms and short the one
with the lowest IVOL firms. This portfolio should directly re-
veal the effect of IVOL on the cross-section of expected re-
turns. After having constructed the monthly time-series of
IVOL portfolios introduced above, measures such as the port-
folio’s monthly average equal- and value-weighted total and
excess returns as well as the Jensen’s alphas are computed.
Lastly, these averages are tested for significance by a standard
t-test where standard errors are corrected by the concept of
Newey and West (1987). The objective is to find out whether
the average difference of the alphas from the long-short port-
folio as well as its average equal- and value-weighted total
and excess returns are statistically significant different from
zero and have a negative sign which could be interpreted as
finding of the IVOL puzzle in the data.

After having explained the general portfolio-based ap-
proach, I will now clarify the specification used as a ref-
erence point for the adjustment analysis. I mostly use a
1/0/1 trading strategy where IVOL is computed over the
past month and equal- as well as value-weighted portfolio re-
turns are computed over the subsequent month. Stocks are
sorted based on their past month IVOL relative to the FF3
model into quintile portfolios. Then the long-short portfolio

is constructed from the quintile portfolio containing stocks
with the highest past month IVOL minus the one containing
stocks with lowest IVOL. All these portfolios are rebalanced
monthly. For all portfolios I compute the equal- and value-
weighted total and excess returns as well as their time-series
alphas relative to the FF3 and the Fama and French (2018)
six-factor model (FF6 model hereafter) based on the equal-
and value-weighted portfolio excess returns respectively. The
FF6 model augments the FF5 model for better risk-correction
with the momentum factor from Carhart (1997) (see Fama
& French, 2018). Value-weighted monthly returns are calcu-
lated by averaging the returns of all stocks within the portfo-
lio at month t while weighting them with their corresponding
MTCARP Alphas are calculated from equation 1 over the com-
plete sample time span where the dependent variable is now
the monthly equal- or value-weighted portfolio excess return.
As further portfolio characteristics I calculate the time-series
average of the monthly size and BM of stocks within the port-
folio. The average monthly size and BM are computed as
simple averages over the respective values for all stocks in
the portfolio at the specific month. Furthermore, I compute
the standard deviation of the monthly excess returns for ev-
ery portfolio. For the t-tests of the average portfolio alphas
and returns, I implement the Newey and West (1987) correc-
tion using 7 lags.

3.4. Adjustment Analysis

I proceed with the explanation of the adjustments to both
reference research concepts introduced above with the aim of
finding out how these affect the IVOL puzzle finding. I cate-
gorize them into the following three groups: general adjust-
ments, regression-related adjustments and portfolio-related
adjustments. The general adjustments are explained in sec-
tion 3.4.1 and consist of all modifications that are applicable
to both research methods. Sections 3.4.2 and 3.4.3 present
the regression- and the portfolio-related adjustments, which
contain alterations that are only employable in their respec-
tive research frameworks.

3.4.1. General Adjustments

In this section I introduce all adjustments which are ap-
plicable independent of the underlying research approach.
These allow me not only to identify how research findings of
a single approach are changing but also facilitates a cross-
concept comparison of the effect from the same adjustment
on both approaches respectively. I classify my general ad-
justments into the following two categories: idiosyncratic
volatility-related adjustments and sample-related adjust-
ments. They are applied sequentially and independently
from each other to both reference concepts. Alongside these
modifications, I investigate how findings on the IVOL puzzle
change.

The idiosyncratic volatility-related general adjustments
focus on the IVOL estimation procedure. Section 3.1 shows
that several decisions have to be made by researchers when
defining their IVOL measure. Among one of such decisions
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is the choice of estimation window and the data frequency
used for estimation of equation 2. Ang et al. (2009) use dif-
ferent estimation windows for their IVOL estimate showing
that their evidence of an IVOL puzzle is robust to these ad-
justments in the regression-based research approach. In con-
trast, Bali and Cakici (2008) claim that when they change the
data frequency used for the IVOL computation from daily to
monthly data they are not able to find any significant rela-
tionship between IVOL and the cross-section of expected re-
turns. Consequently I modify these two dimensions as well,
while I keep using the FF3 model for risk-correction purposes.
I begin by extending the estimation window using daily data
over the past 12 months where I require a minimum of 200
days of stock return data for the estimation. Afterwards I es-
timate IVOL from monthly data using a rolling window of 1
and 5 years where I require at least 10 and 24 monthly stock
returns to exist.

Another IVOL-related adjustment focuses on the choice of
risk-correction model that is usually assumed to be the FF3
model. Malkiel and Xu (2006) use the FF3 model and the
CAPM for IVOL estimation and find a positive relationship
between IVOL and expected returns. So if the FF3 model in-
sufficiently captures the relevant systematic risk, then some
of it might remain in the risk that is assumed to be idiosyn-
cratic and consequently could be the cause of the IVOL puz-
zle. Newer models have emerged that claim to explain re-
turns better than the FF3 model does, which is why I decided
to also use them for the IVOL estimation and analyze these
estimates respectively (see e.g. Fama & French, 2018; Hou,
Mo, Xue, & Zhang, 2020). Again I use daily data over the
current month and compute for each stock i equation 1 us-
ing the respective risk-correction model to obtain the residu-
als, which are then used in equation 2 to compute the corre-
sponding IVOL measure. As additional risk-correction mod-
els I use the FF6, the four-factor model proposed by Stam-
baugh and Yuan (2017) (SY4 model hereafter) and the five-
factor model of Hou et al. (2020) (HOUS5 model hereafter).
The SY4 model consists of the MKT and the SMB factor from
Fama and French (1993) as well as two mispricing-related
factors, which are constructed from bivariate sorts of stocks
relative to a total of 11 prominent asset pricing anomalies.
One of these factors captures the exposure to anomalies re-
lated to quantities such as net stock issues that can be affected
by the firms’ management, whereas the other is directed at
performance-related anomalies like momentum that cannot
directly be influenced by the management (see Stambaugh
& Yuan, 2017). With this model I try to account for the
mispricing-related explanation of the IVOL puzzle put for-
ward by Stambaugh, Yu, and Yuan (2015). They argue that
only the overpriced stocks show an IVOL puzzle which is even
more pronounced for overpriced stocks that are put under
short selling restrictions (see Stambaugh et al., 2015). Hence
I try to investigate whether researchers accounting for that
fact can resolve the IVOL puzzle finding. On the other hand,
the HOUS model takes an investment-based asset pricing ap-
proach. The model consists of factors related to the mar-
ket excess return, size, investment-to-assets, profitability as

well as an expected-growth factor. The first four factors are
constructed from triple sorting stocks according to a 2 x 3
x 3 strategy on size, investment-to-assets and return on eq-
uity, whereas the last factor is constructed by independent 2
x 3 double sorts related to market equity and the expected
1-year-ahead investment-to-assets changes (see Hou et al.,
2020; Hou, Xue, & Zhang, 2015). I include the model here
to incorporate the investment-based asset pricing idea and
because Hou et al. (2020) argue that it outperforms most of
the other asset pricing models including the FF6 model.

Besides the IVOL-related adjustments I investigate adjust-
ments related to the sample used for the analysis. Here I sort
all stocks into subsample based on stock-specific criteria and
conduct my analysis within each of these subsamples sepa-
rately. I form two kinds of subsamples based on the follow-
ing criteria: price and size. Price-related subsamples should
account for the fact that the IVOL puzzle might be specific to
low price stocks and excluding these stocks from the analysis
can diminish or even resolve the puzzle completely (see Bali
& Cakici, 2008). To disentangle this relationship I subdivide
stocks according to their price into three groups using the cut-
offs from L. H. Chen et al. (2012). The first group contains so-
called "penny stocks" with a price lower than 5%, whereas the
second group contains low price stocks with a price higher
than or equal to 5% but lower than 10$. Lastly, high price
stocks have a price higher than or equal to 10$ and hence
form the last group. The prices used for subsample forma-
tion are adjusted for delisting based on the ideas of Shumway
(1997). Bali and Cakici (2008) argue that size-related effects
also affect the IVOL puzzle, wherefore I analyze size based
subsamples as well. Size groups are constructed in reference
to Fama and French (2008) who classify stocks as microcaps,
small or big stocks based on the cross-sectional distribution
of MTCAP at each month. Hence, each month the break-
points used to categorize stocks are calculated as the 20th
and the 50th percentile of the cross-sectional distribution of
the market capitalization for all stocks traded on the NYSE.
Consequently, stocks with a MTCAP lower than this 20th per-
centile are classified as microcaps during the corresponding
month. In contrast a MTCAP within the 20th and the 50th
percentile classifies stocks as small, whereas one larger than
the 50th percentile characterizes them as big stocks.

3.4.2. Regression-Related Adjustments

This section presents all adjustments that are only appli-
cable in the regression-based research concept as they ad-
dress methodological peculiarities. I summarize them in the
following two categories: risk-related control variables and
estimation procedure.

The category named "risk-related control variables" refers
to modifications in the variables that are used for risk-
correction in equation 5. These variables can be grouped into
two classes where the first consists of all variables that are
related to the risk-correction model responsible to capture
the systematic risk and the second class subsumes all the firm
characteristic control variables that should characterize the
left over firm-specific risk. Systematic risk-correction model-
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related adjustments consist of modification to the time-series
risk factor loadings used in equation 5 that should correct
for risk when estimating the risk premia. In the reference
concept explained above, the FF3 model was used for that
purpose. Now I rotate independently among four further
risk-correction models. Nevertheless, the computation of
time-series factor loadings and their incorporation into the
cross-sectional regression remains similar as explained in
section 3.2. I employ the following models as an adjust-
ment here: the FF6, the SY4 and the HOU5 model and a
model that augments the FF3 model by a short and long-
term reversal factor. These two short and long-term reversal
factors are calculated as proposed by French (2021) from
double sorting stocks relative to their past returns over the
last month or the prior months from t — 60 to t — 13 and
size respectively. I call the FF3 model augmented with the
reversal factors the augmented Fama-French model (FFA
hereafter). The second class of risk-related control variable
adjustments focuses on the firm characteristic control vari-
ables from the vector of firm characteristics used in equation
5. Here I integrate 3 additional control variables. First I
include the stock’s monthly trading volume to account for
possible trading volume-related effects that have also been
considered in Ang et al. (2006). The effect of trading volume
on expected returns was first discovered by Gervais, Kaniel,
and Mingelgrin (2001). As a further control variable related
to the liquidity effect, I include the monthly average over the
daily bid-ask-spreads calculated from the difference between
the ask and bid price, as Han and Lesmond (2011) argue that
bid-ask bounces are among the drivers of the IVOL puzzle.
If one or both of the bid and ask prices are not available for
a specific day, I use the lowest and highest trading prices,
or if these do also not exist, I choose the closing bid and
ask prices for approximation of the bid-ask spread from that
day instead. Lastly, I control for the maximum daily return
during the current month computed based on the ideas of
Bali et al. (2011) as an additional proxy for the investor’s
skewness preferences. I again rotate among all additional
firm characteristic control variables sequentially such that
they are integrated independently from each other to the
benchmark setting and shifts in results can be investigated
accordingly. In a last step, I integrate all additional control
variables jointly and analyze the IVOL premium respectively.

The estimation procedure-related adjustment, on the
other hand, refers to all modifications in the estimation of the
first step time-series regressions and the second step cross-
sectional regressions introduced in section 3.2. Related to the
time-series regression step, I adjust the horizon over which
the risk factor loadings are estimated. This idea is based on
the arguments of Z. Chen and Petkova (2012) who claim that
estimates over the full-sample would be most precise if the
risk factor loadings are truly constant but as risk exposure
of firms is likely not constant over time, the optimal time
horizon maximizing the precision of the estimate remains an
unsolved question. Therefore, I allow for varying degrees of
time-variation in the risk factor loadings by using different
window sizes for the estimation of equation 1 instead of the

usual one month period. I choose window sizes covering
the full-sample, the past 12 months and the past 60 months
for which the existence of at least 800, 200 and 800 daily
stock return observations are required. The cross-sectional
regression step adjustments focus on the technique used for
estimation of the risk premia by the cross-sectional regres-
sion of equation 5. This idea is motivated by the studies of
Bali and Cakici (2008) as well as Hollstein and Prokopczuk
(2020) who point out that findings and estimation precision
of the risk premia change if returns are weighted differently.
Hollstein and Prokopczuk (2020) claim that relying less on
highly volatile stocks might improve the estimation precision
of the risk premia, which is why they use a weighting matrix
based on the empirical variances. I pick up this idea and
apply a generalized least squares (GLS) technique where a
diagonal weighting matrix consisting of the inverse of the
estimated stock return variances is utilized. The estimation
of the return variance is conducted over the past 1, 12 and
60 months as well as the complete sample using daily data
where I require a stock to report at least 15, 200, 800 and
800 past daily return observations to allow for a valid esti-
mate of the firm return variance at the specific month. These
estimates are then annualized by multiplication with 250
and used in the weighting matrix respectively.

3.4.3. Portfolio-Related Adjustments

In the following I present all adjustments unique to the
portfolio-based research concept that I consider in my study.
I separate them into the following two groups: portfolio char-
acterization and bivariate portfolio sorts.

In the category named "portfolio characterization" I sub-
sume all modifications that are related to the way the univari-
ate IVOL portfolios are computed and analyzed as explained
in section 3.3. More precisely, I adjust the breakpoints used
for portfolio sorting, the number of portfolios analyzed, the
computation of risk-adjusted portfolio returns as well as the
trading strategy used to construct portfolios.

Adjustments to the breakpoints used for sorting stocks
into portfolios are primarily motivated by mitigation of the
size effect that might distort the findings related to the IVOL
puzzle as pointed out by Bali and Cakici (2008). These ad-
justed breakpoints again define the IVOL cutoffs on the ba-
sis of which I assign all stocks in my sample to portfolios
subsequently. For the calculation of the breakpoints I first
use only stocks traded on the NYSE and afterwards focus on
breakpoints that sort stocks into equal market share portfo-
lios. For the equal market share breakpoints I follow Bali and
Cakici (2008) and rank all stocks in the sample according
to their idiosyncratic volatility in the specific month. Based
on this ranking, I adjust the breakpoints such that within all
IVOL quintile portfolios the stocks in these portfolios together
make up the same share of the total market capitalization.
This means that, for example, the lowest IVOL quintile port-
folio consists of all the stocks with the lowest IVOL that to-
gether account for approximately 20% of the total MTCAP

In addition to the different breakpoints, the number of
univariate portfolios is a further aspect that is adjusted here.
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The idea is to vary the degree of dispersion in the data and
hence also the measures of comparison including returns and
alphas by increasing the number of portfolios analyzed. Ad-
ditionally to the standard quintile portfolios, I sort all stocks
into 10 and 15 portfolios respectively and implement the ref-
erence research concept accordingly. Ten portfolios have also
been selected in the study of Spiegel and Wang (2005) who
found a positive IVOL risk premium.

The adjustment in risk-adjusted portfolio returns ad-
dresses the choice of the risk-correction model used to cal-
culate the portfolio alphas. These models are responsible for
capturing the systematic risk in stock returns and should be
able to explain the stock return differences by their exposure
to the model specific systematic risk. As various studies use
different models for this purpose, the choice might influ-
ence findings consequently (see e.g. Bali & Cakici, 2008;
Bali, Del Viva, Lambertides, & Trigeorgis, 2020; Boehme,
Danielsen, Kumar, & Sorescu, 2009). In addition to the mod-
els used in the reference concept, I consider the SY4, the
HOUS5 and the model proposed by Daniel, Hirshleifer, and
Sun (2020). The Daniel et al. (2020) (DANIEL3 hereafter)
model consists of three factors where one is the market factor
also used in the Fama-French models and the other two are
theory-based behavioral factors that should capture short-
and long-term mispricing dynamics which are induced by
investor behavior. The short-term mispricing factor is re-
lated to the post-earnings announcement drift phenomenon,
whereas the long-term mispricing factor is derived from in-
vestors issuance and repurchase activities as well as related
misperceptions (see Daniel et al. (2020)).

Lastly, the trading strategies are also modified and an-
alyzed as done by Ang et al. (2006). In addition to the
usual 1/0/1 strategy, I compute the results related to the
following trading strategies: 1/1/1, 1/1/12, 1/0/12, and
12/0/12. These are implemented based on the procedure of
Jegadeesh (1990) as explained in section 3.3. I include the
strategies that include a one month waiting period to find
out whether this waiting period would allow researchers to
mitigate the IVOL puzzle effect and hence deliver evidence
on a short-term reversal effect based explanation as argued
by W. Huang, Liu, Rhee, and Zhang (2010). The longer hold-
ing period of 12 months should account for the explanation
that the IVOL puzzle is driven by a short-term overreaction
and can even reverse over a period longer than one month, as
found by Rachwalski and Wen (2016). Similar to the study of
Ang et al. (2006), the 12 months formation period is included
again to mitigate the effect of potential short-term events.

As previously only univariate IVOL portfolios were con-
sidered, effects from further firm characteristic-related vari-
ables that might influence the IVOL puzzle were not taken
into account. Hence, I now construct average portfolios out
of bivariate dependent portfolio sorts, as also proposed by
Ang et al. (2006) and Boyer et al. (2010), that should ac-
count for further firm-specific effects. I control for the follow-
ing variables: size, BM, the stock’s current month return, the
Amihud (2002) illiquidity measure calculated over the cur-
rent month, return skewness over the current month, the ex-

pected idiosyncratic skewness measure of Boyer et al. (2010),
the Harvey and Siddique (2000) coskewness measure com-
puted over the past 5 years, the stock’s monthly trading vol-
ume, the current month average daily bid-ask-spreads and
the maximum daily return of the current month as proposed
by Bali et al. (2011). Based on each of these control variables
I form the bivariate portfolios using the usual 1/0/1 strat-
egy and again compute EW and VW portfolio returns. First I
sort all stocks each month respective to the control variable
currently considered into quintile portfolios. Within these
quintile portfolios, the stocks are again sorted into quintile
portfolios relative to their IVOL on the basis of which also
the corresponding long-short portfolios are formed. To dis-
entangle the IVOL effect from those of the control variables, I
calculate the average IVOL quintile portfolios where each has
the same dispersion in the control variable. So every month
I average each IVOL quintile portfolio, as well as the long-
short portfolio, over all the quintiles of the control variable
to obtain the monthly time-series of these six IVOL-related
average portfolios. Finally the time-series average across the
monthly average IVOL portfolios is calculated. With these
average portfolios I can investigate the return pattern of the
quintiles IVOL portfolios that remains after controlling for the
effect of the control variable.

4. Data

My study is primarily based on US-based individual stock
data that is derived from the Center for Research in Security
Prices database database (CRSP hereafter). From CRSP I ob-
tain the closing stock returns, their closing prices, trading vol-
ume and end-of-period market capitalization on a daily and
monthly basis. I use all stocks that are traded on the NYSE,
AMEX and NASDAQ regardless of their security type cap-
tured by the share code. Further information on the stocks
including information on the security type, the exchange on
which the corresponding stocks are listed, the Standard In-
dustrial Classification (SIC) code that classifies the compa-
nies into industry groups as well as the shares outstanding
are also derived from the CRSP database. To calculate the
bid-ask spreads I derive the daily and monthly bid and ask
price as well as the corresponding lowest bid and the high-
est ask price again from CRSE The lowest bid (highest ask)
price either consist of the lowest (highest) trading price or
the closing bid (ask) price during the time interval respec-
tively. Throughout the analysis I generally use delisting ad-
justed returns and prices following the methods of Shumway
(1997) for which I obtain delisting data such as the delisting
code, the delisting date, the delisting price and the delist-
ing return from CRSP as well. The accounting data includ-
ing stockholders equity, deferred taxes, investment tax credit,
preferred stock redemption value, preferred stock liquidating
value and preferred stock par value are obtained from the
CRSP/Compustat Merged (CCM) database. In general my
sample period covers the horizon from July 1963 until De-
cember 2020. This starting point is chosen, as at that point
in time most of the accounting-related and factor data are
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available for the majority of the models. Data on the risk fac-
tors from the FF3 and FF5 as well as the MOM, long-term
and short-term reversal factors are obtained on a daily and
monthly basis from the Kenneth French’s Data Library (see
French (2021)). From here also the data on the risk-free
rate, that is the one-month Treasury Bill rate, is acquired.
Daily and monthly factor data for the SY4 and HOUS model
come from Robert Stambaugh’s and the global-q webpage re-
spectively (see Hou, Xue, & Zhang, 2021; Stambaugh, 2021).
Howevey, it is of note that the SY4 model data is only avail-
able until December 2016 and hence a shorter sample is used
when this model is applied. The factor data related to the
DANIEL3 model are only available at a monthly frequency up
to December 2018 and are obtained from Kent Daniel’s web-
page (see Daniel, 2021). Lastly, the data related to the ex-
pected idiosyncratic skewness measure of Boyer et al. (2010)
is obtained from Brian Boyer’s webpage until December 2016
and is afterwards calculated manually based on their pro-
posed concept until December 2020 (see Boyer, 2021).

5. Reference Results

In this section I replicate the findings of the IVOL puzzle
using the reference research concepts introduced in section
3.2 and 3.3. Prior to that I provide cross-sectional summary
statistics on the data used for replication in section 5.1.

5.1. Summary Statistics

The summary statistics for all relevant variables from the
reference concepts can be found in table 1. These allow for a
preliminary explorative analysis that can reveal first insights
on interactions between the IVOL puzzle and related firm
characteristic effects. Panel A provides the time-series av-
erage of all parameters that characterize the monthly cross-
sectional distribution of the corresponding variable, whereas
Panel B shows the time-series average of their monthly cross-
sectional Pearson product-moment and Spearman rank pair-
wise correlations.

The mean column in Panel A shows the cross-sectional
means of the variables in the average month that can be in-
terpreted as the level of the respective variable for the aver-
age stock in the sample. Hence, the average stock has risk
factor loadings relative to the MKT, SMB and HML of about
0.806, 0.643 and 0.202, an annualized IVOL of 40.83%, a
size measured as the natural logarithm of the MTCAP of
4.601, a book-to-market ratio of equity of 3.214, a monthly
total return of 0.966%, a one-month ahead excess return of
0.596%, a monthly return skewness of 0.209, an Amihud
(2002) illiquidity measure over the current month of 5.396,
an expected idiosyncratic skewness of 1.157 and a coskew-
ness of -1.085. Comparing mean and median it can be seen
that the median values are mostly smaller than the cross-
sectional means on average except for CoSkew and that they
lay rather close together. The only exceptions are BM, R,,
r.+1 and Illig,,, that have a median in the average month of
0.711, 0.019%, -0.352% and 0.310 respectively. However, all

these values remain within a bandwidth of one standard devi-
ation from their corresponding mean. About half of the vari-
ables including IVOL, BM, R,, 1,1, Illiq,,; and CoSkew are
positively skewed with an average monthly cross-sectional
skewness ranging from 2.085 for CoSkew up to 32.125 for
BM, whereas the remaining variables are rather symmetric
around the mean. Additionally, almost all variables except
for Size are leptokurtic with an average cross-sectional ex-
cess kurtosis ranging from 2.634 for Skew,; to 1337.492 for
BM when excluding Size. The high level of kurtosis and the
positive skewness of IVOL, BM, R,, 1,1, I1lig;); and CoSkew
shows that the cross-sectional distribution of these variables
is characterized by a small number of extremely positive ob-
servations which also cause most of their variability. This
can also be seen by the percentiles of their distribution as the
right tails are longer than their left tails because the aver-
age distance between the 95th percentile and the maximum
value is larger than the one between the 5th percentiles and
the minimum in all these cases. The extreme observation
might also cause the differences between the mean and me-
dian values of the BM, R,, r,,; and I1liq,,,. Nevertheless, it is
of note that the distribution of IVOL, BM, R, 1,,.; and Illig
has heavy right tails partly due to the mechanical reason, as
these variables have a lower bound and are unbounded from
above because IVOL, BM and Illiq;,, are not defined for val-
ues below zero and R, as well as r,; cannot become smaller
than -100%. All other variables except for Size are more
concentrated around their means as they are leptokurtic but
barely skewed. However, they have a heavy tailed distribu-
tion as the average distance between the minimum and 5th
percentile as well as 95th percentile and maximum exceeds,
except for Skew,,;, a distance of three standard deviations.
The last column of Panel A depicts the average number of
stocks for which the corresponding variable is available. Ex-
cluding BM these values range from 4646 for EIdioSkew to
5730 for r,,;. BM has on average 3727 valid observations.

Panel B of table 1 presents the average monthly cross-
sectional pairwise correlations for all variables, where the
upper-diagonal matrix present the Pearson product-moment
and the lower-diagonal one the average Spearman rank cor-
relations. The aim is to understand the cross-sectional rela-
tions between the variables with a focus on the relationship to
IVOL. The Pearson product-moment correlations reveal lin-
ear relationships, whereas the Spearman rank correlations
detect monotonic but not necessarily linear dependencies. I
begin with the analysis of the pairwise correlations involv-
ing IVOL to derive insights on potential drivers of the IVOL
puzzle. Then I briefly repeat the analysis for r,,; to investi-
gate the variables return predictability properties. Finally I
comment on some of the remaining correlations.

The Pearson product-moment (Spearman rank) correla-
tion between IVOL and the MKT, SMB and HML risk factor
loadings are low with values of 0.064 (0.138), 0.096 (0.148)
and 0.000 (0.010) indicating that the information content
captured by these variables and IVOL is likely different. Nev-
ertheless, stocks with high IVOL are also more likely to have
a high loading on the MKT and SMB. The correlations to the
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Table 1: Cross-Sectional Summary Statistics

This table presents summary statistics for all variables of my sample that are related to the replication of the reference research concepts. The sample covers the period from July 1963 until December
2020 and includes all stocks traded on the NYSE/AMEX/NASDAQ. B(MKT), (SMB) and S(HML) refer to the time-series loadings onto the MKT, SMB and the HML risk factors respectively that were
calculated for each stock based on daily data over the current month using equation 3. IVOL is the annualized idiosyncratic volatility (in percentage points) calculated via equation 4 by benchmarking the
daily excess returns to the FF3 model over the current month. Size refers to the natural logarithm of the firm’s market capitalization. BM gives the firm’s book-to-market ratio of equity for the specific
month. R, is the stock return at the current month. r,; is the excess stock return over the next month. Skewy,,; reports the total return skewness calculated over the current month. I1liqq,, is the Amihud
(2002) illiquidity measure computed over the current month. EIdioSkew reports the expected idiosyncratic skewness of a stock calculated by the method of Boyer et al. (2010). CoSkew stands for the
firm’s coskewness measure computed as proposed by Harvey and Siddique (2000). Panel A presents the time-series means of the monthly mean (Mean), standard deviation (SD), skewness (Skew), excess
kurtosis (Kurt), minimum (Min), fifth percentile (5%), 25th percentile (25%), median (Median), 75th percentile (75%), 95th percentile (95%), and maximum (Max) values of the cross-sectional distribution
for each variable. The column labeled n indicates the average number of stocks for which the corresponding variable is available. Panel B reports the time-series averages of the monthly cross-sectional
Pearson product-moment and Spearman rank pairwise correlations between each of the variables. Here the above-diagonal entries present the average Pearson product-moment correlations, whereas the
below-diagonal entries present the average Spearman rank correlations.

Panel A: Cross-Sectional Distribution

Mean SD Skew Kurt Min 5% 25% Median 75% 95% Max n

B(MKT) 0.806 1.996 -0.071 67.008 -26.265 -1.804 -0.060 0.695 1.625 3.736 26.523 5716
B(SMB) 0.643 2.906 0.379 56.398 -37.052 -3.115 -0.560 0.432 1.748 4.966 38.887 5716
B(HML) 0.202 3.437 -0.017 77.171 -47.098 -4.561 -1.095 0.156 1.511 4.989 46.163 5716
IVOL 40.833 37.413 5.567 110.012 0.785 9.259 19.455 31.354 50.661 101.802 820.888 5715
Size 4.601 1.935 0.297 -0.015 -2.294 1.644 3.229 4.473 5.858 8.002 11.771 5734
BM 3.214 41.670 32.125 1337.492 0.005 0.146 0.405 0.711 1.167 3.168 1893.320 3727
R, 0.966 15.165 3.555 84.860 -83.581 -18.509 -5.848 0.019 6.249 22.654 292.276 5725
Tei1 0.596 15.164 3.527 83.627 -83.822 -18.888 -6.222 -0.352 5.883 22.297 291.173 5730
Skewqy, 0.209 0.990 0.061 2.634 -4.000 -1.354 -0.276 0.182 0.688 1.851 4.155 5662
Illigqy 5.396 40.307 22.698 902.555 0.000 0.007 0.056 0.310 1.809 19.288 1883.481 4885
EldioSkew 1.157 0.664 0.616 16.003 -2.659 0.258 0.684 1.089 1.590 2.219 7.409 4646
CoSkew -1.085 9.442 2.085 86.961 -77.130 -14.323 -4.909 -0.952 2.609 11.543 151.906 4744
Panel B: Correlations

B(MKT) B(SMB) B(HML) IVOL Size BM R, Te1 Skewqy Illigypy EldioSkew CoSkew
B(MKT) 0.213 0.296 0.064 0.108 -0.007 0.020 -0.011 0.030 -0.039 -0.100 0.011
B(SMB) 0.237 0.211 0.096 -0.035 -0.012 0.021 -0.010 0.028 0.001 0.011 -0.003
B(HML) 0.280 0.197 0.000 -0.010 0.004 0.005 -0.003 0.010 0.009 -0.001 0.005
1VOL 0.138 0.148 0.010 -0.382 -0.004 0.150 -0.026 0.195 0.366 0.386 -0.039
Size 0.168 -0.018 -0.002 -0.412 -0.091 0.058 -0.005 -0.032 -0.284 -0.674 0.077
BM -0.069 -0.029 0.078 -0.014 -0.252 0.001 0.001 -0.005 0.084 0.128 0.007
R, 0.023 0.011 0.010 -0.011 0.109 0.020 -0.037 0.350 -0.009 -0.019 0.005
Teg1 -0.007 -0.014 -0.002 -0.078 0.051 0.021 -0.030 -0.010 0.009 -0.007 -0.002
Skewqy 0.038 0.030 0.011 0.179 -0.042 0.010 0.351 -0.024 0.025 0.076 -0.005
Illigq -0.155 0.047 0.021 0.478 -0.915 0.269 -0.067 -0.044 0.059 0.201 -0.017
EldioSkew -0.132 0.021 -0.001 0.441 -0.742 0.121 -0.081 -0.057 0.077 0.696 -0.069
CoSkew 0.020 -0.007 0.005 -0.069 0.117 0.022 0.010 0.005 -0.013 -0.116 -0.122
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BM and CoSkew amount to -0.004 (-0.014) and -0.039 (-
0.069), showing that these variables likely capture different
information than IVOL does, wherefore they are improba-
ble to explain the IVOL puzzle. Conversely, Skew,,, I1lig;y,
and EIdioSkew show correlations to IVOL of 0.195 (0.179),
0.366 (0.478) and 0.386 (0.441) respectively. Hence, stocks
with higher IVOL likely exhibit high average return skew-
ness, expected idiosyncratic skewness and are highly illiquid.
To phrase it differently, it might be stocks with high skew-
ness, high expected idiosyncratic skewness or those which
are highly illiquid that drive the IVOL puzzle. Following the
arguments of Barberis and Huang (2008) as well as Boyer et
al. (2010), the low returns from high IVOL stocks might in-
deed be explained by their strong exposure to Skew,, and
EldioSkew, as stocks with high levels of these characteristics
are assumed to have low returns respectively. The liquidity-
related explanation of Han and Lesmond (2011) could also
explain the IVOL puzzle, as high IVOL stocks also appear to
be illiquid and for these stocks the bias in the IVOL estimate
from microstructure effects is often high. An illiquidity pre-
mium as found by Amihud (2002), however, is unlikely ex-
plaining the puzzle, as then the high IVOL stocks would have
to be liquid in order to posses low returns. Sige is the only
variable with a non-negligible negative correlation to IVOL
of -0.382 (-0.412), indicating that mainly small stocks ex-
hibit high IVOL and consequently drive the IVOL puzzle. Ul-
timately, IVOL is positively correlated to the current month’s
return and negatively to the one-month ahead excess return
with correlations of 0.150 (-0.011) and -0.026 (-0.078). De-
spite that the correlations to the next month excess returns
are low, they still hint at the existence of the IVOL puzzle. It
is of note that, even though the Pearson product-moment and
the Spearman rank correlations to R, have a different signs,
they are low in magnitude wherefore an impact on the results
is unlikely. For all variables the Pearson product-moment
and Spearman rank measures are similar enough such that
no non-linearity concerns in the relations arise that might
distort the results.

Considering the Pearson product-moment correlations
between r,,; and all other variables as evidence on the di-
rection of return predictability, I find that (MKT), B(SMB),
B(HML), IVOL, Size, R,, Skew;, EIdioSkew and CoSkew
negatively predict the cross-section of next-month returns,
whereas BM and I1lig,,, do so in a positive direction. These
relations are all in line with their theoretical predictions from
the literature (see e.g. Amihud, 2002; Ang et al., 2006; Bar-
beris & Huang, 2008; Boyer et al., 2010; Fama & French,
1993; Harvey & Siddique, 2000; W. Huang et al., 2010). It
has to be noted that all correlations involving r,,; are low
ranging from -0.057 in case of the Spearman rank correla-
tion with EIdioSkew up to 0.009 for the Pearson product-
moment correlation with I1liq;,,; and hence can only provide
a rough evidence on the corresponding return predictability,
meaning that there might be economically relevant relation-
ships that are not found here.

The negative correlations of Size to BM, Illiq,,, and
EIdioSkew show that small stocks often have a high BM,

high EIdioSkew and are less liquid than big stocks. Es-
pecially the relationship to Illiq,), and EIdioSkew with
correlations of -0.284 (-0.915) and -0.674 (-0.742) has to
be highlighted. The Spearman rank correlation between
Size and Illiq;,, exceeds the Pearson product-moment cor-
relation significantly and therefore indicates a non-linear
relationship between the variables. BM is positively related
to Illiq;), and EIdioSkew, wherefore value stocks are likely
less liquid and have a high expected idiosyncratic skewness.
R, is only non-negligibly positively related to Skew,, im-
plying that stocks with high returns in the current month
also have on average positively skewed returns during that
month. Finally illiquid stocks seem to exhibit on average a
high expected idiosyncratic skewness and low coskewness.

5.2. Regression-Based Analysis

In this paragraph I empirically implement the regression-
based reference research concept introduced in section 3.2
with the objective to replicate the IVOL puzzle that implies
a negative cross-sectional relationship between stocks’ IVOL
and their expected returns. The corresponding results can
be found in table 2. Here I display the average coefficients
from the monthly cross-sectional regressions of equation 5,
where I regress the next-month stock excess returns onto the
stock-specific risk factor loadings relative to the FF3 model as
well as further firm characteristics. In Panel A I use an OLS
regression-based approach in the cross-sectional regression
step to estimate the risk premia where all stock returns are
weighted equally. Conversely, in Panel B I repeat the cross-
sectional regression step with a WLS method where the stock
excess returns are weighted by their contemporaneous MT-
CAP

Panel A of table 2 shows that the average coefficient on
IVOL is negative and significant in all regression settings ex-
cept for the simple regression in column (1) that includes
IVOL as unique independent variable. No matter which con-
trol variable is added to the benchmark regression in column
(2), the IVOL puzzle from Ang et al. (2006) can successfully
be replicated. I discover that the effect is strongest, with a
coefficient of -1.248 and a Newey-West robust t-statistic of -
4.843 indicating statistical significance at the 1% level, when
the Amihud (2002) illiquidity measure is added as control in
column (6). In contrast, excluding the simple model of col-
umn (1), the effect is least significant in column (5) where I
control for the coskewness measure of Harvey and Siddique
(2000). There the average coefficient is -0.456 and has a ro-
bust t-statistic of -1.907 making it statistically significant at
the 10% significance level. Considering all IVOL coefficients
in Panel A, their magnitude ranges from -0.389 in the simple
regression of column (1) to -1.248 when controlling for illig-
uidity in column (6). To interpret the economic magnitude of
the IVOL puzzle, I compute the excess return effect related to
a one standard deviation change in IVOL while all other char-
acteristics are held constant. For that I multiply the average
IVOL coefficients with the average cross-sectional standard
deviation of IVOL computed in Panel A of table 1. Hence,
a one standard deviation increase in IVOL is associated with
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Table 2: Regression-Based Results - Reference Results

This table presents the average coefficients from monthly Fama and MacBeth (1973) cross-sectional regressions for individual stocks where each column refers to a different cross-sectional regression
specification. Using equation 5, each month I regress the next-month excess firm returns (in percentage points) on a constant, the annualized idiosyncratic volatility measure (in decimals) calculated from
equation 4 using daily data over the current month, the stock-specific risk factor loadings relative to the FF3 model over the next month, the end of month firm size defined as the natural logarithm of
the market capitalization, the end of month firm book-to-market ratio of equity, the monthly return (in percentage points) computed from the end of the previous month to the current month, as well as
additional control variables related to further firm characteristics that are incorporated into the regression equation successively. Among these firm characteristic variables are the following: Skewy,; which
is the monthly return skewness measured over daily return data from the current month, EIdioSkew that is the expected idiosyncratic skewness measure from Boyer et al. (2010), CoSkew which is the
coskewness measure from Harvey and Siddique (2000) and Illig,); being the Amihud (2002) illiquidity measure computed over the current month. In Panel A I use simple stock excess returns to run
the OLS regression wherefore this procedure is named to be the equal-weighted Fama-MacBeth regression as all stocks are weighted equally. On the other hand, in Panel B I estimate the Fama-MacBeth
regression with a weighted-least squares approach, where all individual monthly stock returns are weighted by their current month market capitalization, which is why this method is named value-weighted
Fama-MacBeth regression. I report the t-statistics testing the null hypothesis that the average coefficient is equal to zero in parenthesis below each coefficient where corresponding standard errors are
corrected for autocorrelation and heteroskedasticity by implementation of the Newey and West (1987) method using 7 lags. *, ** , and *** indicate significance at the 10%, 5%, and 1% level, respectively.
The row "Adjusted R%" reports the time-series average of the cross-sectional adjusted R?’s. The last row reports the average number of stocks used for the monthly cross-sectional regressions. The sample
period covers July 1963 to December 2020.

Panel A: Equal-Weighted Fama-MacBeth Regressions Panel B: Value-Weighted Fama-MacBeth Regressions

(€] 2) 3) “@ 5) (6) @ (€] ) 3) [©)] 5) (6) @
Constant 0.706%+*  1.328%¥%  1.326%**  1.779%%  1318%%*  1389%**  1845%** | Constant 0.546%+%  1.096%%  1.104%**  1.523%%  1.096%FF  1.062%%%  1.531%*
(3.151) (3.594) (3.579) (4.140) (3.546) (3.828) (4.579) (2.913) (3.529) (3.574) (4.062) (3.522) (3.365) (4.104)
VoL -0.389  -0.616%*  -0.627%%  -0.431**  -0.456%  -1.248%**  -0.975*** | IVOL 0660  -0.927%%F  .0.967%%  -0.747%%  -0.799%%  -0.963%**  -0.795%*
(-1.369)  (-2.520)  (-2.567)  (-2.010)  (-1.907)  (-4.843)  (-4.133) (-1422)  (-2.665)  (-2738)  (-2.241)  (-2295)  (-2.720) (-2.287)
B(MKT) 0.253%%%  0.249%** 0.197+ 0.237%%  0.268%** 0.193* | B(MKT) 0.191 0.190 0.105 0.178 0.202 0.096
(2.645) (2.615) (1.709) (2.494) (2.738) (1.649) (1.442) (1.433) (0.649) (1.348) (1.501) (0.593)
B(SMB) 0.077+* 0.079** 0.019 0.079%* 0.067* 0.005 B(SMB) -0.009 -0.009 -0.081 -0.016 -0.011 -0.087*
(2.009) (2.072) (0.382) (2.198) (1.703) (0.104) (-0.215)  (-0.216)  (-1.599)  (-0.361)  (-0.252) (-1.748)
B(HML) -0.038 -0.041 -0.073 -0.036 -0.039 -0.066 B(HML) -0.011 -0.009 -0.031 -0.009 -0.013 -0.027
(-0.871)  (-0.965)  (-1.352) (-0.910)  (-1.113) (0.150) (-0.131)  (-0.325) (-0.179)
Size -0.160%%%  -0.160%**  -0.186%** 0.134%%%  0.159%** | Size -0.0725%%  0.073%%*  -0.082%* -0.070%*
(-4176)  (-4199)  (4.752)  (-3.990)  (-3.664)  (-4.349) (-2.688)  (-2.720)  (-2.497) (-2.566)
BM -0.001 -0.001 02227 0.002 0.007 0.140%* | BM 0.002 0.002 -0.016 0.013
(-1.282)  (-1.308) (3.302) (0.628) (1.063) (2.222) (0.596) (0.620) (-0.172) . (0.785)
R, -0.0475%%  0.050%%*  -0.041%%%  .0.049%**  -0.048%**  -0.043*** | R, -0.026%%%  -0.020%%*  -0.022%%%  -0.027%%*  -0.026%%%  -0.025%**
(-11.273)  (-11.421)  (-10.217)  (-11.323)  (-11.103)  (-10.694) (-6.174)  (-6.687)  (-4.896)  (-6.173)  (-6.250) (-5.350)
Skewy 0.068%** 0.102%** | Skewsy 0.092+* 0.105%**
(2.808) (4.129) (3.074) (3.308)
EIdioSkew -0.353%*+ -0.302%* | EIdioSkew -0.249 -0.237
(-2.778) (-2.561) (-1.621) (-1.572)
CoSkew -0.004 0.011** | CoSkew -0.006 -0.016%
(-0.953) (-2.307) (-0.786) (-1.959)
Iligyy 0.046%+*  0.035%** | Illiqyy 0.042 0.001
(4.880) (3.492) (1.601) (0.096)
Adjusted R 0.017 0.061 0.061 0.060 0.064 0.070 0.067 Adjusted R 0.027 0.124 0.127 0.142 0.132 0.128 0.153
n 5648 3676 3647 3520 3366 3234 3056 n 5644 3676 3647 3520 3366 3234 3056
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a decrease in expected excess returns ranging from 0.146%
(0.389 x 0.374) to 0.467% (1.248 x 0.374) per month. In-
vestigating the same one standard deviation IVOL increase
in context of the model from column (7) that incorporates
all controls simultaneously, the expected returns decrease by
about 0.365% per month. This effect remains economically
relevant and proves the negative relationship between IVOL
and expected excess returns implied by the IVOL puzzle.

The average coefficients for the remaining variables are
mostly in line with their theoretical predictions. Here the av-
erage risk premia for all FF3 model risk factor loadings, ex-
cept for the on B(HM L), carry a positive sign as predicted by
Fama and French (1993). However, it is of note that only
B(MKT) achieves a positive risk premium that is statisti-
cally significant in all regressions with Newey-West robust t-
statistics between 1.649 and 2.738. The 3(SMB) premium is
not statistically significant when the models of column (4) or
(7) are considered, whereas the one of f(HM L) is not signif-
icant in any of the models. A negative size premium ranging
from -0.134 in column (6) to -0.186 in column (4) is verified
in all regression models and is furthermore always highly sig-
nificant at the 1% level where the robust t-statistics lay be-
tween -3.664 when controlling for illiquidity and -4.752 in
the regression that controls for EIdioSkew. In contrast to
that, the BM risk premium ranges from 0.222 to -0.001 and
is on average only significant at the 1% level when control-
ling for EIdioSkew or at the 5% level in the complete re-
gression model of column (7) with t-statistics of 3.302 and
2.222 respectively. As predicted by Jegadeesh (1990), I find
a negative risk premium for R, that is significant at the 1%
level in all regression models and varies between -0.050 in
column (3) and -0.041 when controlling for EIdioSkew. In
addition, I confirm the negative return premium of expected
idiosyncratic skewness found by Boyer et al. (2010) that is
statistically significant at a level not less than 5% and the
positive illiquidity premium found by Amihud (2002) which
is significant at the 1% level in all regressions. CoSkew car-
ries a negative premium consistent with Harvey and Siddique
(2000) that is, however, only significant at the 5% level in the
complete regression model. Only the estimates on Skewy,
do not match the predictions of Barberis and Huang (2008).
Here I find a positive premium that varies between 0.068 and
0.102 and is always significant at the 1% level.

Panel B confirms most of the findings from Panel A, how-
ever, the IVOL risk premia are higher in magnitude for most
of the regression models even though the overall maximum
has reduced slightly. Now these premia range from -0.660 in
the simple model to -0.967 when controlling for Skew,, and
are statistically significant at a level not less than 5%, except
for the simple model where it is not significant at any rea-
sonable level. The economic magnitude computed by a one
standard deviation increase in IVOL, when holding all other
characteristics constant, amounts to a decrease of expected
returns ranging from 0.247% to 0.362% per month respec-
tively. In consequence I discover the IVOL puzzle found by
Ang et al. (2006) again.

The remaining coefficient estimates are mostly in line

with those from Panel A. However, all the FF3 model factor
loadings risk premia are no longer significant at any reason-
able level except for the one on the B(SMB) that is signifi-
cant at the 10% level in column (7). In addition, the 3(SMB)
premium has switched signs for all models and is, therefore,
no longer in line with the predictions of Fama and French
(1993). The size-related risk premium decreased in magni-
tude to values ranging from -0.070 for regressions (5) and (6)
to -0.082 in regression (4) with robust t-statistics of -2.566
or -2.608 and -2.497 respectively. It is of note that when con-
trolling for illiquidity, expected idiosyncratic skewness or in-
corporating all controls, the premium is now only significant
at the 5% level. On the other hand, BM is no longer signifi-
cant in any model and the R, premium remains negative and
highly significant at the 1% level in all settings, however, it
has decreased to values between -0.025 and -0.029. Lastly,
the negative premium on EIdioSkew and the positive pre-
mium on Illiq;,, are no longer significant at any reasonable
level, no matter which model is considered, whereas the neg-
ative premium of CoSkew is now only significant at the 10%
level in the complete regression model with an estimated risk
premium of -0.016.

When comparing the average fit of the cross-sectional
models by means of the adjusted R?, I find a better fit for
all models in Panel B as the adjusted R? are largely almost
twice as large as the corresponding values from Panel A. This
indicates that value-weighting enhances the model fit on av-
erage and therefore the results from the VW Fama-MacBeth
regressions might be slightly more reliable than those of the
EW Fama-MacBeth regression. From the last row of table 2 I
conclude that, on average, approximately the same number
of stocks is used for the monthly cross-sectional regression es-
timation, regardless of the weighting scheme employed. This
number ranges from 5648 stocks in the simple model to 3056
stocks in the complete regression model, hence allowing, on
average, for a valid risk premia estimation.

To sum up the results from Panel A and B, the negative
relationship between IVOL and the cross-section of expected
returns, implied by the IVOL puzzle, can be found in the risk
premium estimates of the EW as well as the VW context. The
effect is robust when controlling for skewness preferences
and illiquidity measured by Skew,,;, EIdioSkew, CoSkew
and Illiqq), respectively and it is always statistically signif-
icant except when analyzing the simple regression model.
Hence, in the regression-based reference setting, the findings
of Ang et al. (2006, 2009) can be verified.

5.3. Portfolio-Based Analysis

This section deals with the replication of the IVOL puzzle
using the portfolio-based concept introduced in section 3.3.
If the puzzle exists, the portfolio of highest IVOL stocks has to
underperform compared to the one with lowest IVOL stocks.
Table 3 presents the average portfolio returns, Jensen’s time-
series alphas relative to the FF3 and the FF6 model, the stan-
dard deviation of portfolio excess returns as well as the aver-
age size and BM of all stocks within the corresponding port-
folio. All stocks traded on the NYSE/AMEX/NASDAQ are
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Table 3: Portfolio-Based Results - Reference Results

This table presents the average results from the univariate portfolio sorting procedure as explained in section 3.3 covering all stocks traded on the
NYSE/AMEX/NASDAQ. Every month stocks are sorted into quintile portfolios based on their idiosyncratic volatility relative to the FF3 model over the
past month that has been calculated by the usage of daily data for the respective month. These portfolios are rebalanced monthly according to the 1/0/1
trading strategy. Portfolio 1 (5) contains all stocks with lowest (highest) IVOL over the past month. The column labeled ”5-1” refers to the long-short portfolio
that goes long the portfolio of stocks with the highest IVOL and short the respective portfolio of stocks with the lowest IVOL, which is then also rebalanced
monthly according to the 1/0/1 trading strategy. In the first four rows I report the average monthly total and excess returns for the portfolios (in percentage
terms) and below each return in parenthesis the corresponding Newey and West (1987) adjusted t-statistics where I use 7 lags for the adjustment. Here it is
of note that return differences for the long-short portfolio are the same for total and excess returns, wherefore I report them only once in the row for the total
returns. SD illustrates the monthly standard deviation of the portfolio excess returns also denoted in percentage terms. The Size and BM report the average
natural logarithm of the market capitalization for firms within the portfolio as well as their average book-to-market ratio respectively. The a3 and the
afFé denote the monthly average of Jensen’s time-series alphas relative to the FF3 and the FF6 model that were calculated by equation 1 using the monthly
portfolio excess returns over the complete sample horizon. Below each of these alphas I provide the corresponding t-statistics that were again corrected by
the procedure of Newey and West (1987) using 7 lags. In Panel A I use the equal-weighted portfolio returns for the analysis, where all firms are getting the
same weight. On the other hand, Panel B uses value-weighted portfolio returns that were calculated by weighting the stock returns within the portfolio by
their market capitalization which is observable at beginning of the month in order to give higher weights to bigger stocks respectively and therefore diminish
the effects that might be explicitly related to small stocks. The complete sample period covers July 1963 to December 2020.

Panel A: Equal-Weighted Portfolio Sorts by Idiosyncratic Volatility

1 2 3 4 5 5-1
Total Return 0.868 1.094 1.158 1.046 0.886 0.018
(3.893) (4.510) (4.169) (3.167) (2.216) (0.064)
Excess Return 0.495 0.721 0.785 0.674 0.514
(2.227) (2.977) (2.823) (2.028) (1.273)
SD 5.128 6.038 6.877 8.001 9.680 6.786
Size 7.465 7.099 6.320 5.488 4.413
BM 3.220 4.268 3.518 2.695 2.479
affs 0.018 0.056 0.010 -0.200 -0.455 -0.474
(0.093) (0.393) (0.087) (-1.614) (-2.314) (-2.712)
affe -0.070 0.018 0.079 0.082 0.129 0.199
(-0.343) (0.135) (0.665) (0.579) (0.523) (0.965)
Panel B: Value-Weighted Portfolio Sorts by Idiosyncratic Volatility
1 2 3 4 5 5-1
Total Return 0.804 0.838 0.905 0.648 0.126 -0.678
(4.146) (3.911) (3.492) (2.067) (0.350) (-2.425)
Excess Return 0.432 0.466 0.532 0.275 -0.246
(2.219) (2.178) (2.053) (0.872) (-0.672)
SD 5.342 5.970 6.880 8.035 9.288 6.659
Size 7.465 7.099 6.320 5.488 4.413
BM 3.220 4.268 3.518 2.695 2.479
aff3 -0.024 -0.108 -0.160 -0.510 -1.145 -1.122
(-0.192) (-0.515) (-1.052) (-3.244) (-6.143) (-6.574)
affe -0.149 -0.165 -0.036 -0.182 -0.599 -0.450
(-1.714) (-0.412) (-0.166) (-0.807) (-2.556) (-2.924)

sorted each month into univariate quintile portfolios based
on their past month IVOL calculated from daily data. The
column named "5-1" reports the long-short portfolio results.
It is of note that I report the long-short monthly average re-
turns just in the row of total returns as the return difference
between portfolio 5 and 1 is the same regardless of the re-
turn type used for its calculation. Panel A analyzes the EW
and Panel B the VW portfolio returns respectively, where in
both cases the 1/0/1 trading strategy is used for portfolio
formation.

Panel A shows that the EW total (excess) portfolio re-
turns increase monotonically from 0.868% (0.495%) per
month for portfolio 1, which contains the lowest IVOL stocks,

until portfolio 3 with a average total (excess) returns of
1.158% (0.758%) per month and declines afterwards again
to 0.886% (0.514%) per month for portfolio 5 that contains
the stocks with the highest IVOL. All total returns are sta-
tistically significant at the 1% level, except for the one of
portfolio 5 which is only significant at the 5% level. On the
other hand, the excess returns for portfolio 2 and 3 are sta-
tistically significant at the 1% level with t-statistics of 2.977
and 2.823 respectively, whereas for portfolio 1 and 4 they
are only significant at the 5% level and for portfolio 5 they
are not significant at any level. Comparing total and excess
returns shows that significant results are more likely when
analyzing the total returns which might be one reason why
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researchers tend to report these in their studies respectively
(seee.g. Ang et al., 2006; Bali & Cakici, 2008). Nevertheless,
the long-short portfolio return shows that the return differ-
ence between portfolio 5 and 1 is only 0.018% per month
and not significant at any reasonable level. In line with Bali
and Cakici (2008), the return pattern from the IVOL puzzle
cannot be detected in my equal-weighted setting regardless
of analyzing total or excess returns.

Nonetheless, the previous conclusions change when in-
vestigating the alphas instead. The aff® decrease almost
monotonically from portfolio 1 to 5 with values ranging from
0.018% to -0.455% per month respectively, but only the one
of portfolio 5 is also statistically significant at the 5% level.
Nonetheless, the alpha difference from the long-short port-
folio amounts to -0.474% per month, which is not only eco-
nomically relevant but also statistically significant at the 1%
level with a t-statistic of -2.712. So in terms of the alphas rel-
ative to the FF3 model, I can verify the existence of an IVOL
puzzle as found by Ang et al. (2006), especially when consid-
ering the long-short portfolio. Therefore, my results contra-
dict those of Bali and Cakici (2008) who negate its existence
in the equal-weighted portfolio context. Their conclusion is
only supported by the analysis of the af"®. Here alphas in-
crease monotonically from -0.070% for portfolio 1 to 0.129
for portfolio 5, albeit none of them are statistically significant
at any level. Also the long-short portfolio alpha is no longer
significant at any level and is even positive. In conclusion,
the FF6 model seems to most appropriately capture the risk
dynamics behind the IVOL puzzle as it produces insignificant
alphas only. Hence, researchers that decide to compute the
alf6 instead of the aff® can modify their results in a way
such that they find no evidence of the puzzle.

The portfolio excess return standard deviations show
that portfolio return volatility is monotonically increasing
with portfolio IVOL, such that the portfolio with highest
IVOL stocks is also the most volatile one. Also the average
size of the portfolios exhibits a distinct pattern. Like Ang
et al. (2006), I find that stocks with higher IVOL are mostly
smaller than low IVOL stocks as the average size decreases
across portfolios from 7.465 in portfolio 1 to 4.413 for port-
folio 5. In this case, the size effect predicts higher returns
for small stocks, which would correspond to higher returns
for portfolio 5 compared to portfolio 1 (see Fama & French,
1993). This is indeed observed when looking at the total or
excess portfolio returns, but at the same time it contradicts
the return pattern implied by the IVOL puzzle. Neverthe-
less, this size effect is not found in the aff® as they show
lower average returns for portfolio 5 compared to portfolio
1. The average BM increases from 3.220 in portfolio 1 to
4.268 in portfolio 2 and declines afterwards monotonically
to 2.479 contradicting the increasing pattern found by Ang et
al. (2006). When comparing the BM of portfolio 5 and 1, the
value effect predicts lower returns for portfolio 5 as it shows
a lower BM relative to portfolio 1. While this effect does
not match the EW total or excess portfolio return pattern, it
indeed fits to the aff® pattern. Therefore, the IVOL puzzle
found when considering the FF3 alphas might be related to

a underlying value effect in the stocks.

Panel B delivers clearer evidence on the existence of the
IVOL puzzle, as now all different alphas and the return on
the long-short portfolio confirm the underperformance of the
highest IVOL portfolio compared to the lowest IVOL one.
The VW returns show a similar pattern as the EW ones from
Panel A. Here the total (excess) returns increase from 0.804%
(0.432%) per month for portfolio 1 to 0.905% (0.532%) for
portfolio 3 and afterwards they decline again to 0.126% (-
0.246%) per month for portfolio 5. However, the average
total return on portfolio 5, as well as the excess returns on
portfolios 4 and 5, are not statistically significant at any plau-
sible level, whereas the remaining portfolios show significant
returns at a level not less than 5%. The portfolio return differ-
ence between portfolio 5 and 1, captured by the long-short
portfolio return, illustrates that stocks with high IVOL un-
derperform those of low IVOL by about -0.678% per month
which is significant at the 5% level with a Newey-West robust
t-statistic of -2.425. In line with Ang et al. (2006), the VW
total and excess returns computed here verify the existence
of the IVOL puzzle.

Investigating the portfolio alphas delivers the same re-
sults. Moving from portfolio 1 to portfolio 5, alphas to all
risk-correction models decrease monotonically indicating
that the average risk-adjusted performance of the portfo-
lios decreases in IVOL. The only exception is the aff® that
increases from portfolio 2 to 3 but decreases again after-
wards. Regardless of the risk-correction model used, all
portfolios seem to underperform relative the correspond-
ing risk-correction model, as all alphas in Panel B carry a
negative sign. The aff® ranges from -0.024% for portfolio
1 to -1.145% per month for portfolio 5, whereas the af®
spans the interval from -0.036% per month for portfolio 3 to
-0.599% for portfolio 5. However, only the af*® of portfo-
lio 4 and 5 are statistically significant at the 1% level with
t-statistics of -3.244 and -6.143. In contrast, only portfo-
lio 1 and 5 carry a statistically significant aF® with robust
t-statistics of -1.714 and -2.559. The long-short portfolio
alpha is also statistically significant at a level of 1% now,
regardless of the risk-correction model employed. It ranges
from -0.450% for the af*® to -1.122% per month for the a3
with t-statistics of -2.924 and -6.574 respectively. Therefore,
I can economically and statistically verify the existence of
the IVOL puzzle from these risk-adjusted returns as well.
Comparing the alphas of different risk-correction models
also delivers evidence on their attractiveness for researchers
to integrate them into their study. The fact that long-short
portfolio alphas are largest in magnitude when correcting
for the FF3 model, no matter whether EW or VW returns are
used, might incentivise researchers to use this model for risk-
correction in their studies if they seek to discover the IVOL
puzzle. This tendency can indeed be observed throughout
the literature (see e.g. Ang et al., 2006, 2009; Bali & Cakici,
2008; Boyer et al., 2010).

From the SD the same positive relationship between IVOL
and portfolio excess return volatility as in Panel A appears.
As portfolios are still sorted similarly to Panel A and only
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the return-weighting has been modified, the average portfo-
lio size and BM remain the same. However, as the high IVOL
portfolio underperforms the low IVOL one when VW returns
are analyzed, this pattern is in line with the predictions of the
value effect because high IVOL portfolios have a lower BM on
average and should hence have lower returns. As portfolio 5
contains the smallest stocks on average, the size effect would
argue for higher returns in the high IVOL portfolio relative to
the low IVOL one instead. Nevertheless, this effect seems to
be dominated by the value effect, as the size effects might be
accounted for by the value-weighting.

In summary, the IVOL puzzle is more apparent in Panel
B as here all long-short portfolio performance measures ap-
prove its existence. For the EW portfolios of Panel A only
the afF? gives evidence on the existence of the IVOL puzzle.
However, the EW long-short portfolio return and its af®,
albeit not statistically significant, predict higher returns for
portfolios with higher IVOL respectively. These results point
out that, in contrast to the previous regression-based results,
the IVOL puzzle finding in the portfolio-based analysis is sen-
sitive to the choice of the weighting scheme.

6. General Adjustments

After having empirically analyzed the IVOL puzzle with
the reference research concepts, I start with adjusting them
in a way that is independent of the concrete approach imple-
mented as explained in section 3.4.1. In section 6.1 I modify
the way the IVOL is estimated. Section 6.2 then presents all
changes related to the sample used for the analysis respec-
tively. All adjustments implemented here are explained in
detail in section 3.4.1. Due to space constraints I present
only a subset of the regression- and portfolio-based results
depicted in tables 2 and 3. However, this selective reporting
behavior preserves all information that is necessary for inves-
tigation of the IVOL puzzle finding and how it evolves across
adjustments.

6.1. Idiosyncratic Volatility-Related

I start with the modification of the way IVOL is esti-
mated by changing the time-window and the data frequency
that is used for its computation as well as the underly-
ing risk-correction model towards which it is measured.
These adjusted IVOL estimates are then analyzed using the
regression- and the portfolio-based approach respectively.
For the regression-based method I report the complete model
results of column (7) from table 2 that includes all control
variables simultaneously.

Table 4 presents the regression-based results where each
column corresponds to the findings from a specific IVOL es-
timate used in the analysis accordingly. The columns labeled
IVOL4y,y, IVOL,,, IVOLs, depict the results for the IVOLs
that are computed relative to the FF3 model but using rolling
windows over the past 12 month of daily data as well as the
past 1 and 5 years of monthly data respectively. In the re-
maining columns, IVOLFF® [vOLSY* and IVOL"OUS show

the results when IVOL is computed from daily data over the
current month but using the FF6, SY4 or the HOU5 model
for risk-correction. Panel A displays the EW and Panel B the
VW regression results. Panel A shows negative average IVOL
risk premia that are statistically significant at the 1% level
regardless of the IVOL estimate considered. Since I use the
complete regression model for this analysis, these results are
robust when controlling for the effects from the control vari-
ables introduced previously. The IVOL risk premia estimates
fluctuate around -0.238 when using IVOL,, in the regres-
sion and -1.189 for IVOL,,,, with corresponding robust t-
statistics of -3.529 and -3.119. Considering the economic
significance of the risk premia estimates, a one standard de-
viation increase in the respective IVOL measure, holding all
other variables constant, translates into a reduction of ex-
pected returns between 0.281% per month for IVOL,, to
0.391% per month for IVOL;,,. So no matter which mea-
sure is used, the IVOL risk premium remains economically
and statistically relevant in the EW Fama-MacBeth regres-
sions and hence verifies the existence of the IVOL puzzle. The
standard deviations used for the previous calculation and fur-
ther summary statistics of the adjusted IVOL estimates can be
found in table A.1 of Appendix A (vgl. Anhang, Tabelle A.1).
However, it is of note that while the risk premia estimates for
all risk-correction models are largely similar and vary from
-1.019 for IVOLHOUS to -1.038 for IVOLS"*, this is not true
for the IVOLs that use different estimation windows and data
frequencies. Comparing the IVOL estimates over the same es-
timation window of one year but with different data frequen-
cies, I find that the risk premium from IVOL,,,,, which uses
daily data, is -1.189, whereas the one of IVOL,, that uses
monthly data is only -0.238. Nonetheless, when considering
the economic significance of these estimates by a one stan-
dard deviation increase in the respective IVOL measure, both
predict a decrease in expected returns that is close together
with values of 0.391% and 0.281% per month. This is most
likely explained by the fact that IVOL,, is more volatile than
IVOL,,,, with values of 118.230% and 32.883% as shown
in table A.1 of Appendix A (vgl.Anhang, Tabelle A.1). When
keeping the data frequency fixed and adjusting the estima-
tion window only, the risk premia estimates hardly change as
can be seen by the results from IVOL,, and IVOLs,. Hence,
in contrast to Bali and Cakici (2008) as well as Spiegel and
Wang (2005), the IVOL estimate from monthly data still pos-
sess a negative risk premium here. So in line with the find-
ings of Ang et al. (2009), the IVOL puzzle exists in this EW
regression setting regardless of the IVOL estimate analyzed.
The patterns, as well as the magnitudes, of all other risk pre-
mia are almost similar to the reference results of table 2, no
matter which IVOL estimate is considered.

Panel B shows that all estimated IVOL risk premia remain
negative in sign, but the t-statistics decrease notably when
value-weights are used. Only the risk premia from modified
risk-correction model IVOL estimates remain significant but
only at a level of 5% and with t-statistics around -2.176 for
IVOLFF% and -2.570 for IVOLSY4. In absolute terms, they are
slightly weaker then in the EW context and range from -0.780
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to -0.959 respectively. Matching the results from Bali and Ca-
kici (2008) as well as Rachwalski and Wen (2016), the risk
premia estimates decrease remarkably and are no longer sta-
tistically significant when IVOL is estimated with a modified
data frequency or estimation window. Comparing IVOL,,,,
IVOL,, and IVOLs,, the IVOLrisk premium increases mono-
tonically from -0.689 for IVOL;,,, to -0.004 for IVOLs,,. Us-
ing monthly data for IVOL estimation also seems to lead to
a risk premium that is not only statistically insignificant but
is also very close to zero in absolute terms. This pattern is
likewise found when analyzing the economic significance of
the IVOL risk premium estimates by a one standard deviation
increase in the corresponding measure, holding all other vari-
ables constant. The average decrease in expected returns by
such an effect amounts to 0.005%, 0.030% and 0.223% per
month for IVOLs,, IVOLg, and IVOL,, correspondingly up
to 0.263%, 0.296% and 0.341% per month for the IVOLFF
IVOLHOUS and IVOLSY#. Thus only the IVOL from daily data
and these of the different risk-correction models have eco-
nomically significant risk premia estimates in the VW regres-
sion context.

The risk premia pattern of the remaining variables has
changed slightly compared to the results from table 2. The
B(SMB) risk premia remain all negative and similar in mag-
nitude but are now only statistically significant for IVOL;,,,
and IVOLHOUS, B(HML) carries a positive risk premium
when using IVOLSY# that is still not statistically significant.
For size, the risk premium remains negative in all cases
and similar in magnitude to the reference setting but is no
longer significant for IVOL,, and IVOLs, and in contrast
significant the 1% level for IVOLSY*. While the negative
coskewness risk premium increased in significance to a level
of 5% for IVOLy,, IVOL,,, IVOLs, and IVOL"?Y>, it is
no longer significant when using IVOLSY4. Also interesting
is that when using the IVOL,,, and IVOL,,, the illiquidity
premium is now negative albeit not significant.

The above findings show that, using the EW Fama-
MacBeth regressions, a researcher is more likely to detect
an IVOL puzzle, no matter which data frequency, estima-
tion window or risk-correction model is used and therefore
makes its implementation more attractive to researchers that
seek to find the IVOL puzzle in their study. Conversely, when
using the adjusted IVOL estimates in the VW Fama-MacBeth
regressions, the results less frequently deliver evidence on
the existence of the IVOL puzzle, which is why this method is
more attractive to researchers that try to negate the presence
of the IVOL puzzle. Ang et al. (2009) use also different esti-
mation windows to estimate the IVOL measure and conclude
that the existence of the IVOL puzzle is robust to all these es-
timates. However, it is of note that they implemented an EW
Fama-MacBeth regression approach which is, as revealed
earlier, more likely to approve this finding and leave the
VW results unreported. This again highlights that the IVOL
puzzle finding can be influenced by the choice in research
design.

Table 5 presents the average total portfolio returns as

well as the time-series alphas relative to the FF3 and the FF6
model from the portfolio-based approach for portfolios 1, 5
and the long-short portfolio respectively. Each column corre-
sponds to the portfolio-based results when using one of the
modified IVOL measures introduced above for the construc-
tion of the corresponding monthly quintile portfolios. Panel
A depicts the results of the EW and Panel B those of the VW
portfolio returns respectively. In both cases the 1/0/1 trading
strategy is used for portfolio formation.

Panel A shows almost identical results to those from the
reference analysis in table 3 which are independent of the
IVOL measure analyzed. The long-short portfolio shows pos-
itive, albeit not statistically significant, total returns around
0.049% to 0.296% per month for all IVOL measures except
for IVOLSY* and IVOLHOUS that display negative total re-
turns instead. But these negative returns are economically
small with values of -0.001% and -0.011% per month and
are not statistically significant at any reasonable level. The
portfolios 1 and 5 total returns are both positive and sta-
tistically significant at a level not less than 5%, no matter
which IVOL measure is employed. Consequently, from the
EW total portfolio returns only, a researcher finds no IVOL
puzzle irrespective of the data frequency, estimation window
or risk-correction model he uses for IVOL estimation. The
a3 results, on the other hand, do mostly not match those
from table 3 showing that the choice of the IVOL estimate
influences the alpha pattern of the EW portfolio-based anal-
ysis and hence potentially also the conclusions drawn from
it. Even though the aff® of the long-short portfolios are all
negative, they are not always statically significant at the 1%
level. Only the long-short portfolio af"® of the IVOLSY*
sort that has a return of -0.465% per month with a robust
t-statistic of -2.612. Conversely, the IVOL,,, IVOL"*® and
IVOLHOUS sorts show a negative average long-short a3
around -0.362% to -0.465% that are significant at the 5%
level, whereas those from the IVOL;,, and IVOLs, sorts are
not significant at any reasonable level. In contrast to the a3
from the reference setting of section 5.3, here it are mostly
the comparatively high and statistically significant a"*3 from
portfolio 1 that drive the long-short portfolio aF® and not
the statistically significant low alphas from portfolio 5. The
positive a"® from the long-short portfolio in table 3 is robust
to all the modified IVOL estimates, as this alpha remains posi-
tive, no matter which IVOL estimate is considered. Neverthe-
less, it is not statistically significant, except for the portfolios
that are constructed from the IVOLs, which possesses a long-
short aff® of 0.414% per month with a t-statistic of 2.047
that implies statistical significance at the 5% level. Here port-
folio 1 and portfolio 5 seem to drive the long-short a/*® as
both are positive and statically significant at a level not less
than 5% for all sorts, except for those on IVOLHOU> and
IVOLFF® that show a significant alpha for portfolio 5 only.
Hence, the positive, albeit statically insignificant, afF® of the
long-short portfolios imply an overperformance of the high
IVOL portfolio relative to the low IVOL one independent of
the IVOL measured considered which is directly opposite to
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the pattern implied by the IVOL puzzle.

The VW portfolio sorts from Panel B show a total return
pattern that is almost identical to the one from section 5.3,
irrespective of the IVOL measure used. Here the long-short
portfolio returns are all negative but only statistically signifi-
cant for the risk-correction model adjusted IVOL estimates at
a level not less than 5% with corresponding returns around
-0.618% and -0.739% per month. Among the estimation win-
dows and data frequencies adjusted IVOLs, only the IVOL,,,,
long-short portfolio return is statistically significant at the
10% level and amounts to -0.577% per month. So when us-
ing monthly data for the IVOL estimation, the VW total return
differences, measured by the long-short portfolio, are not sta-
tistically significant at any level. In contrast to table 3, for all
IVOL estimates the underperformance of portfolio 5 relative
to portfolio 1 appears to be driven by the positive total returns
from the low IVOL portfolio that are statistically significant
at the 1% level, as those from portfolio 5 are barely signifi-
cant at any level. When investigating the a3, all modified
IVOL based sorts confirm the existence of the IVOL puzzle
similarly to the results from Panel B of table 3. The long-
short portfolios show negative af¥3 that are statistically sig-
nificant at the 1% level for all IVOL measures and fluctuate
between -0.557% and -1.189% per month respectively. Also
the IVOL puzzle implied negative relationship between IVOL
and expected returns becomes apparent from the alpha pat-
tern across portfolios throughout all IVOL sorts, as on aver-
age portfolio 5 has negative and portfolio 1 positive a"f3 that
are statistically significant at a level not less than 5% when
excluding the sorts on IVOL,, and IVOLs,,. Similar to sec-
tion 5.3, the VW long-short aF® verify the existence of the
IVOL puzzle for all IVOL estimates, except for IVOL,, and
IVOLs,, as these long-short aff® are not statistically signif-
icant at any plausible level. All other long-short af*® range
from -0.307% for the IVOL,,,, sort to -0.458% per month
for the sort on IVOLHOU® and are always statistically signif-
icant at the 5% level, except for the IVOL,,, sort where it
is only significant at the 10% level. Also, when comparing
the afF® from portfolio 5 and 1, the negative relationship be-
tween risk-adjusted expected returns and IVOL appears re-
gardless of the IVOL estimate analyzed. In contrast to the
reference results of section 5.3, this pattern is now driven
by the positive alphas from portfolio 1 that are statistically
significant at a level not less than 5% for all IVOL estimates
except for IVOLs,,.

In summary, the EW reference results from Panel A of ta-
ble 3 are mostly robust to adjustments in the way IVOL is
estimated. As in the reference setting and consistent with
the study of Bali and Cakici (2008), the EW total returns and
the aff® show no evidence of an IVOL puzzle, regardless of
the IVOL adjustment implemented. Solely the af**® still con-
firm the existence of the puzzle which holds for all IVOL sorts,
except for those on IVOL,,,, and IVOL,,. The VW portfo-
lio sorts show that the IVOL puzzle finding is sensitive to the
choice of the data frequency used for IVOL estimation as all
sorts based on an IVOL measure from monthly data are not

able to detect the puzzling return pattern in the total returns
and the afF®. This result is in line with Bali and Cakici (2008)
as well as Rachwalski and Wen (2016) who also have diffi-
culties detecting an IVOL puzzle for a monthly data based
IVOL measure. Only for the VW a3 the pattern of section
5.3 remains unchanged, showing negative long-short alphas
that are statistically significant at the 1% level regardless of
the IVOL measured analyzed. When comparing the results
from the IVOL estimation adjustments among the portfolio-
and the regression-based method conclusions differ notably.
In the EW setting, the IVOL puzzle finding is more robust to
the usage of different IVOL estimates in the regression-based
method as then a statistically significant IVOL risk premium
is found regardless of the chosen IVOL estimate. With the
portfolio-based analysis it is only found when analyzing the
aff? and excluding the sorts on IVOL;,,, and IVOLs,. How-
ever, both approaches deliver similar conclusions in the VW
context, as here the IVOL puzzle can only be confirmed sta-
tistically for all risk-correction model adjusted IVOLs but not
for the IVOLs from different data frequencies or estimation
windows.

6.2. Sample-Related

In this section I recompute the regression- and portfolio-
based reference analyses from chapter 5, only that I now fo-
cus on the corresponding results from specific subsamples.
These subsamples are constructed by subdividing the com-
plete data according to the stock price or its size as explained
in section 3.4.1.

Table 6 presents the average regression-based results for
the different subsamples. In the first column labeled "Price"
the complete sample data is subdivided into low, medium
high price stocks with cutoffs of 5% and 10$ and analyzed
respectively. The column named "Size" refers to the subsam-
ples that split the data each month into micro, small and
big stocks based on the 20th and the 50th percentile of the
cross-sectional distribution of market capitalization from all
stocks traded on the NYSE. Within each of the subsamples I
re-estimate the risk premia using the monthly cross-sectional
regressions of equation 5. Then, these risk premia estimates
are averaged over time again. The corresponding EW Fama-
MacBeth regression results are located in Panel A, whereas
the VW ones can be found in Panel B. Panel A shows that the
IVOL puzzle finding is robust to all size and price subsam-
ples in the EW regression approach as the estimated IVOL
risk premium remains negative and statistically significant at
the 1% level in all cases, except for the big stocks where it is
only significant at the 10% level. The average IVOL risk pre-
mium ranges from -0.796 for low price to -2.402 for medium
price stocks in the price subsamples and from -0.657 for big
stocks to -1.852 for all small stocks in the size subsamples. As
I use the complete regression model for the analysis, none of
the corresponding control variables can explain these premia.
The economic magnitude of the IVOL risk premia estimates
for the price subsamples, measured by the return difference
from a one standard deviation change in IVOL while holding
all other variables constant, ranges from -0.157% for high
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price to -0.691% per month for medium price stocks. In the
size subsamples the same effect amounts to -0.093% for the
big stocks to -0.532% per month for small stocks. Thus, the
negative relationship between IVOL and expected returns re-
mains significant also in economic terms. These results are
in line with L. H. Chen et al. (2012) who show that the IVOL
puzzle is unlikely caused by market microstructure effects
like size, price, liquidity or the security type.

The remaining risk premia estimates show almost the
same pattern as the reference results of table 2 with few ex-
ceptions that I want to highlight. For (SMB) the premium
turns negative in the high price and big stocks subsamples
with values of -0.100 and -0.112 respectively that are sta-
tistically significant at a level not less than 5% and hence
contradict the predictions of Fama and French (1993). Fur-
thermore, the estimated size risk premium is now no longer
statistically significant at any reasonable level for the small
stock subsample, whereas it is particularly high for low price
and microcap stocks with coefficients of -0.939 and -0.695
respectively. The BM premium is now only significant for the
medium price subsample, though it generally remains posi-
tive. Additionally, in the low price subsample the skewness
effect is absent, as the corresponding average risk premium
is not significant at any plausible level. It is also interesting,
that the effect documented by Boyer et al. (2010) seems to
be caused by microstructure effects, as the EIdioSkew pre-
mium is highest in magnitude for low price and microcap
stocks with values of -0.913 and -0.665 that are also statis-
tically significant at the 1% level and lowest for high price
and big stocks with estimates of -0.163 and -0.141 that are
not significant at any reasonable level. In addition to that,
the coskewness premium turned positive for medium price
stocks, although it is not significant at any reasonable level.
Lastly, the illiquidity premium turns negative for the medium
and high price stocks ranging from -0.017 to -0.108 and is
even significant in the high price stock subsample at the 5%
level.

The VW regression results of Panel B from table 6 still
show negative IVOL risk premia for all subsamples, however,
they are not statistically significant at any reasonable level
when considering high price or big stock subsamples only.
While the low and mid price, as well as the micro and small
stocks, show IVOL risk premia around -1.711 and -2.722 that
are all significant at the 1% level, they are remarkably lower
and insignificant for high price and big stocks with values
of -0.583 and -0.563 respectively. Hence, at least in the VW
setting small and low price stocks indeed seem to drive the
IVOL puzzle, wherefore the results appear to be related to mi-
crostructure effects that contradict the findings of L. H. Chen
et al. (2012). This pattern is also found when analyzing the
economic significance of the risk premia estimates by a one
standard deviation increase in IVOL, holding all other vari-
ables constant. For the price subsamples the economic ef-
fect is the strongest for low price stocks causing a decrease
in returns of on average 0.918% per month and the weak-
est for high price stocks with a associated return decrease
of 0.110% per month. Similarly for the size subsamples,

the effect ranges from -0.911% per month for the microcap
stocks to -0.080% per month for big stocks. Consequently, the
economic significance of the results also decreases as higher
price or bigger stocks are considered. Hence, focusing on
low to medium price or microcap to small stocks might en-
able researchers to tilt their results towards the discovery of
the IVOL puzzle.

Related to the remaining risk premia estimates only a few
changes have to be highlighted when compared to the results
from Panel B of table 2. In accordance with Fama and French
(1993), the B(SMB) premium turns positive in the low and
medium, as well as microcap stock subsamples, though it is
not statistically significant at any plausible level. Also the
BM premium has become positive for low to medium price,
as well as microcap to small stocks, even though it is only sig-
nificant for the microcap stock subsample at a level of 10%.
Lastly, the illiquidity premium turns negative for medium to
high price subsamples contradicting the finding of Amihud
(2002), but it is of note that they are not statistically signifi-
cant at any reasonable level.

In conclusion, the EW and the VW regression-based ap-
proach verify the existence of an IVOL puzzle regardless of
the price or size subsample analyzed. The VW regressions,
however, illustrate that the IVOL puzzle might be caused by
microstructure effects, as also argued by Han and Lesmond
(2011) as well as W. Huang et al. (2010). This likely holds,
as the IVOL risk premium becomes insignificant for high
price and big stocks in statistical, as well as economic terms,
whereas it is significant in both interpretations for low price
and microcap stocks. Hence, researchers that use only low
price and microcap stocks in their regression-based analy-
sis are more likely to find the IVOL puzzle than those using
stocks with higher price or bigger size.

Table 7 presents the average portfolio total returns as
well as the time-series alphas relative to the FF3 and FF6
model of the portfolio-based research concept for portfolios
1, 5 and the long-short portfolio in the previously introduced
price and size subsamples. Each column corresponds to a
subsample of stocks on the basis of which the monthly quin-
tile portfolios have been constructed and returns as well as
alphas have been calculated. Panel A depicts the portfolio-
based analysis of the EW and Panel B for the VW portfolio
returns respectively. The equal-weighted portfolio sorts from
the price subsamples show that the IVOL puzzle finding is
robust when looking at the subset of medium and high price
stocks but less for the low price stock subsample. Analyzing
the average EW long-short portfolio total returns of the price
subsamples in Panel A, the positive reference returns of sec-
tion 5.3 are only found for low price stocks. For the medium
and high price stocks, the corresponding average return be-
comes negative and ranges from -0.210% for high price to
-1.144% per month for low price stocks with t-statistics of
-5.551 and -1.030. These negative total return differences
found by the long-short portfolio are driven by the compar-
atively high performance of the low IVOL portfolios that is
statistically significant at the 1% level in both subsamples.
The long-short portfolio a3 and aff® show a mainly simi-
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lar pattern. Both are negative and statistically significant at
the 1% level for medium and high price stocks, whereas low
price stocks have a positive af"® and a negative af® that
are both not significant at any reasonable level. The alphas
for the medium and high price stocks range from -1.533% to
-0.267% per month and consequently are also economically
relevant while matching the reference results. For both al-
pha types only the low portfolio 5 alpha is statistically signif-
icant at the 1% level and hence drives the negative long-short
portfolio alphas for medium and high price stocks. Thus,
the price subsamples show that researchers using medium to
high price stocks in a EW portfolio-based analysis are more
likely to discover a statistically significant IVOL puzzle than
those using only low price stocks.

On the other hand, the IVOL puzzle appears more sen-
sitive in the EW portfolio-based analysis of the size subsam-
ples. Even though all size subsamples show negative long-
short portfolio total returns now, they are only statistically
significant at the 10% level for the small stock subsample.
This effect is primarily driven by the high total returns of
portfolio 1 as these are all statistically significant at the 1%
level in all size subsamples. However, similar to the reference
results, the long-short portfolio aff? is negative and statisti-
cally significant for all size subsamples ranging from -0.442%
to -0.986% per month with Newey-West robust t-statistics of
-3.073 and -5.795. Again the low af?® of portfolio 5 causes
this effect, as it is the only one that is statistically significant
at the 1% level for all size subsamples, except for the micro-
cap stocks where it is not significant at any reasonable level.
In terms of the aff® only the long-short portfolio alpha of
the small stocks is negative and statistically significant at the
1% level with a value of -0.442% per month that is also eco-
nomically viable. Those of the big and microcap stocks match
the reference results of section 5.3 and are positive albeit not
statistically significant. In addition, no pattern can be found
when comparing the af® of portfolios 5 and 1 as only the
small stock subsample portfolio 5 alpha is statistically signif-
icant. Thus, researchers are most likely finding an IVOL puz-
zle in all return measures using small stocks only or when just
computing the afF? for their EW portfolio-based analysis.

The VW sorts from Panel B find the IVOL puzzle more
often than the EW sorts do, even though the finding is still
sensitive to the price or size subsample analyzed. In the price
subsamples the low and medium price stocks are more likely
to show the return pattern implied by the IVOL puzzle than
when analyzing the high price stocks. The long-short port-
folio total returns are negative in all price subsamples but
only statistically significant for low and medium price stocks.
They range from -1.198% for medium price to -1.367% per
month for low price stocks with t-statistics of -4.241 and -
4.388. Thus they are not only statistical significant at the
1% level but are also economically meaningful as in the ref-
erence results. Similar to the reference result, the compara-
tively high total return of portfolio 1 mainly drives this effect,
as it is the only one that is statistically significant at a level of
1%, irrespective of the price subsample investigated. Regard-
less of the price subsample considered, the long-short port-

folio aff3 is negative and statistically significant at the 1%
level with risk-adjusted returns between -0.589% per month
for high to -1.702% per month for low price stocks that are
also economically relevant. As in the reference result, the
low a3 of portfolio 5 relative to portfolio 1 seems to cause
the negative long-short alpha in all price subsamples as it is
the only one that is statistically significant at a level of 1%.
The aff® show the same pattern as the total returns imply-
ing a negative long-short portfolio alpha in all price subsam-
ples, although they are only statistically significant for low
and medium price stocks. Compared to the reference results,
these statistically significant alphas are almost twice as high,
amounting to values between -1.165% for medium price to
-1.224% per month for low price stocks which are hence also
economically significant. However, it is still the low alpha of
portfolio 5 that is statistically significant at a level not less
than 5% and consequently drives the IVOL effect in the long-
short af®. Overall the price subsamples reveal a negative
relationship between the stock price and the statistical rele-
vance of the IVOL puzzle meaning that researchers who use
low or medium price stocks are more likely to prove the ex-
istence of the IVOL puzzle than those analyzing high price
stocks.

The size subsamples of Panel B illustrate that the IVOL
puzzle is also sensitive to the choice of the stock sample when
filtering for MTCAR In general, these subsamples show a neg-
ative relationship between stocks’ MTCAP and the statistical
significance of the IVOL puzzle. The long-short portfolio total
returns is negative in all size subsamples but decreases in sig-
nificance as bigger stocks are used for the analysis. Average
long-short portfolio returns increase from -1.265% per month
for microcap stocks to -0.154% per month for big stocks with
t-statistics of -4.431 and -0.724 which are thus only statis-
tically and economically significant for microcap and small
stocks. Therefore, the big stock long-short portfolio total re-
turns match the reference results only in sign but not in statis-
tical significance. Across all size subsamples the high return
of portfolio 1 causes this effect again, as it is the only one
that is statistically significant at a level not less than 1%. A
similar pattern is found for the long-short portfolio a2 that
increases from -1.824% for microcap to -0.473% per month
for big stocks and is economically meaningful and statisti-
cally significant at the 1% level in all size subsamples. The
long-short portfolio af¥® is negative for the microcap, as well
as small stocks, matching the reference results but is positive,
albeit not significant, for big stocks. It ranges from -1.149%
per month for microcap to 0.031% per month for big stocks
with t-statistics of -5.877 to 0.237 indicating that only the
microcap and small stock aF® are statistically and econom-
ically relevant. In the microcap and small stock subsamples
the low portfolio 5 alpha is still statistically significant at a
level not less than 5% and thus drives the IVOL puzzle alpha
pattern. In summary, the same pattern as in the price sub-
samples appears implying that researchers using microcap or
small stocks are more prone to find an IVOL puzzle than those
focusing on stocks with a price higher than 108$.

The previous results indicate that a researcher can affect
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the conclusions drawn from his study by a smart choice of
the subsample used for his portfolio-based analysis. Espe-
cially for VW portfolio sorts, a monotonic pattern shows up
entailing that analyzing bigger stocks or those with a higher
price makes it harder to discover a statistically significant
negative relationship between IVOL and expected stock re-
turns as implied by the IVOL puzzle. Assuming that small and
low price stocks are more likely subject to microstructure ef-
fects, these results contradict the findings of L. H. Chen et al.
(2012) who argue that the IVOL puzzle is robust to such ef-
fects. However, regardless of the weighting-scheme and sub-
sample used in the analysis, an IVOL puzzle is almost always
found when analyzing the a2 only. The cross-concept com-
parison again shows that the IVOL puzzle finding from the
EW analysis is more sensitive to the research concept used in
the subsample analysis than the VW one, as it mostly delivers
the same conclusions across approaches. In the EW regres-
sion results the IVOL puzzle exists regardless of the price or
size subsample considered, whereas the portfolio-based re-
sults draw a slightly different conclusion as there the puzzle
is absent in low price and microcap stocks. Consequently the
regression-based approach is more likely to find a subsample
robust IVOL puzzle than the portfolio-based method. Con-
versely, the VW results show that the IVOL puzzle exist in all
subsamples but becomes less significant when higher prices
or larger MTCAP stocks are used for the analysis, regardless
of the research concept employed. Hence, for both VW meth-
ods the highest price, as well as biggest stock subsamples,
show a IVOL puzzle effect that is not statistically significant
at any reasonable level except when investigating the af"3 in
the portfolio-based approach.

7. Method-Specific Adjustments

This section covers all adjustments that are method-
specific and thus only applied to the corresponding research
concept. Section 7.1 presents the regression-based and sec-
tion 7.2 the portfolio-based research concept adjustments
respectively.

7.1. Regression-Related

The regression specific adjustments are structured ac-
cording to the two categories introduced in section 3.4.2
consisting of risk-related control variables and estimation
procedure-related adjustments. Section 7.1.1 starts with the
adjustments in the risk-related control variables, whereas
section 7.1.2 continues with all changes in the way the time-
series risk factor loadings as well as the risk premia are
estimated.

7.1.1. Risk-Related Control Variables

This section analysis the results from modification of the
variables used for systematic or firm-specific risk-correction
in the IVOL risk premia estimation of equation 5. For this
I use the complete regression model of column (7) from ta-
ble 2 and exchange the FF3 model risk factor loadings for

those relative to the FF6, SY4, HOUS5 and the FFA model re-
spectively. Then I integrate further variables into the vector
of firm characteristics including the stock’s monthly trading
volume (Volume), the average daily bid-ask spread over the
current month (Spread) and the maximum daily stock re-
turn of the current month (Maxret) as proposed by Bali et
al. (2011). The corresponding results are depicted in table
8, where Panel A uses the EW and Panel B the VW Fama-
MacBeth regression for risk premia estimation.

The results of Panel A show that the IVOL puzzle is ro-
bust to the usage of different risk-correction models as well
as the inclusion of Volume, Spread and Maxret as further
firm characteristic control variables in the cross-sectional re-
gression step. Across all the adjustments considered here,
the IVOL risk premium estimate remains negative and sta-
tistically significant at the 1% level with coefficients ranging
from -0.964 when controlling for the HOU5 model to -1.073
when using the FF3 model for risk-correction and incorpo-
rating all further firm characteristic control variables. In-
vestigating a one-standard deviation increase in IVOL while
holding all other variables constant, these IVOL risk pre-
mia translate into a decrease of expected returns between
0.361% to 0.401% per month that are also economically
significant. Compared to the complete regression model in
Panel A from table 2, the IVOL risk premium is now higher
except when systematic risk is corrected by the HOU5 model
or Volume is used as firm-specific control. Even though the
FF6, the SY4 and the HOU5 model claim to outperform the
FF3 model, none of them can explain the IVOL puzzle (see
Fama & French, 2018; Hou et al., 2020; Stambaugh & Yuan,
2017). The FFA model results also show that the short-term
reversal IVOL puzzle explanation of W. Huang et al. (2010)
is unlikely, as the puzzle persists despite the fact that the
model explicitly contains a short-term reversal factor that
should control for this effect. In addition, I cannot verify
the arguments of Bali et al. (2011) and Han and Lesmond
(2011) who claim that researchers who account for Maxret
or the bid-ask spread in their study could resolve the IVOL
puzzle. Instead I find them to have almost no effect on the
IVOL risk premia estimates.

The remaining risk premia estimates are nearly identical
to the reference results from table 2. The only difference
is that, albeit in almost all regressions the EIdioSkew risk
premium remains in the same range as in the reference re-
sult, it is statistically significant at the 1% level except for
the case when the SY4 or Maxret is used for risk-correction.
In addition, the CoSkew risk premium is only statistical sig-
nificant at the 10% level when the SY4 model is used for
risk-correction. Among the further firm characteristic control
variables only the Spread risk premium is statistically sig-
nificant at the 10% level with coefficients between between
0.099 when it is added separately to the regression model
and 0.106 when all further controls are integrated simulta-
neously. In contrast, the Volume risk premium is almost zero
and not statistically significant at any level, while Maxret
carries a positive risk premium that contradicts the findings
of Bali et al. (2011) who predict a negative premium instead.
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Table 8: Regression-Based Results - Risk-Related Control Variables

This table presents the average coefficients from monthly Fama and MacBeth (1973) cross-sectional regressions for individual stocks. Using equation 5, each month I regress the next-month excess firm returns (in percentage points)
on a constant, the annualized idiosyncratic volatility measure of equation 4 calculated from daily data over the current month (in decimals), the stock-specific risk factor loadings relative to a selected risk-correction model over the
next month, the end of month firm size defined as the natural logarithm of market capitalization, the end of month firm book-to-market ratio of equity, the monthly return (in percentage points) computed from the end of the previous
month to the current month as well as additional control variables related to further firm characteristics. These firm characteristic variables are the following: Skew,,; which is the monthly return skewness measured over daily return
data from the current month, EIdioSkew that is the expected idiosyncratic skewness measure from Boyer et al. (2010), CoSkew which is the coskewness measure from Harvey and Siddique (2000) and Illiq;), being the Amihud
(2002) illiquidity measure computed over the current month. The first four columns show the results from adjustments in the risk-correction model used in the risk premia estimation of equation 5. Here each of these columns refers
to a different model towards which the risk factor loadings were computed using daily data over the next month as usual. These models consist of the FF6, the SY4, the HOU5 and the FFA respectively. I do not present the risk premia
of the risk-correction models in this table for the matter of brevity. In columns C1 to CA I use the FF3 model for risk-correction again but incorporate additional firm characteristic variables instead which are the following: Volume
which is the stock’s monthly trading volume, Spread which is the average daily bid-ask spread over the current month and Maxret that refers to the maximum daily stock return of the current month as proposed by Bali et al. (2011).
The last column named "CA" then shows the risk premia estimates when all the additional firm characteristic variables are used in the Fama-MacBeth regression simultaneously. Panel A uses equal-weighted stock excess returns to
run the OLS regression of equation 5. On the other hand, in Panel B I estimate the Fama-MacBeth regression with a weighted-least squares approach, where all individual monthly stock returns are weighted by their current month
market capitalization. I report the t-statistics testing the null hypothesis that the average coefficient is equal to zero in parenthesis below each coefficient, where corresponding standard errors are corrected for autocorrelation and
heteroskedasticity by implementation of the Newey and West (1987) method using 7 lags. *, ** , and *** indicate significance at the 10%, 5%, and 1% level, respectively. The row "Adjusted R?" reports the time-series average of the
cross-sectional adjusted R%’s. The sample covers the period from July 1963 until December 2020 and includes all stocks traded on the NYSE/AMEX/NASDAQ. It is shorter when the SY4 model is used in the analysis, which is due a lack
of data availability wherefore it then covers the horizon until November 2016 only.

Panel A: Equal-Weighted Fama-MacBeth Regressions Panel B: Value-Weighted Fama-MacBeth Regressions

FF6 sv4 HOUS FFA c1 c2 c3 cA FF6 sv4 HOUS FFA c1 c2 c3 cA
Constant 1.833%+ 2.147%%% 1.813%+ 1.873%* 1.84275 1.886%** 1.805%+* Constant 1,531+ 1.481%+ 1.594%+% 1,556 1,563+ 1,687+
(4.585) (5.603) (4537) (4.755) (4.439) (4.694) (4.760) (4.058) (4.061) (3.816) (4.179) (4.234) (4.045)
oL 101275+ 0.984%+% 0.964%+* -0.9897+* 0.959%%+ -1.005%++ -1.060%+* voL 0767+ -0.624* 0.864* 0826+ -1.6857+% -1.946%+%
(-4.457) (:3.956) (-4.180) (-4.299) (-4.223) (-4.245) (2597) (-2.355) (-1.882) (2.542) (-2.359) (-3.133) (-3.947)
Size -0.154%%% -0.182%%% -0.152%%% -0.158%+* -0.159%+% 0.174%+% -0.155%%* 0172+ Size -0.084** -0.081% -0.088+* -0.087++* -0.085%+* 0.101%+%
(-4.262) (-4.693) (-4.199) (-4.370) (-3.921) (-4.733) (-4579) (-4.654) (-2.551) (:2.478) (-2.350) (-2.602) (-2.607) 2711
BM 0.138** 0.148** 0.138* 0.138** 0143+ 0.144* 0.139* 0.146** BM 0.022 -0.013 -0.004 -0.018 -0.019 0.012
(2.230) (2.137) (2.191) (2.211) (2.284) (2.299) (2.218) (2.350) (0.235) (-0.147) (-:0.040) (-0.201) (:0.205) (0.130)
R, -0.041%+% -0.044%+% -0.04244% -0.043%%% -0.043%%% -0.04344% -0.043%4% -0.044%%% R, -0.031%4* -0.03744* -0.026%** -0.025%%% -0.020%+* -0.030%+*
(-10.900) (-11.463) (-10.808) (-11.098) (-10.766) (-10.684) (-6.651) (-8.584) (-5.300) (-5.766) (-6.057)
Skewsyy 0.100%** 0111+ 0.102+% 0.105%** o Skewiyy 0.130%4% 0129+ 0.102%%* 0.050 0.034
(4.199) (4.195) (4.247) (4.211) (4.455) (4.476) (3.219) (1.027) (0.721)
EldioSkew 032755+ 0.340%* 0.314%* 03057+ EldioSkew 0.227 0.223 -0.250* 0.224 0.218
(-2.752) (-2.606) (-2.645) (-2.597) (-1.594) (-1.584) (-1.666) (-1.492) (-1.478)
CoSkew -0.010%* -0.010* 0.011% -0.011% 0.011% CoSkew 0.017* 0.017+ -0.016* -0.016* 0.014*
(-2.283) (-1.898) (-2.401) (-2.317) (:2.195) (:2.142) (:2.149) (-1.901) (-1.919) (-1.733)
v 0.033%+* 0.03244* 0.035%+* 0.036%** 0.036%+* Iligyy 0.001 -0.005 0.001 -0.001 0.002
(3.520) (3.324) (3577 (3.489) (3.502) (-0.091) (-0.322) (0.099) (-0.097) (0.144)
Volume 0.000 0.000
(-0.994) (-0.648) (-0.657)
Spread 0.099* Spread 0.072%% 0.071+*
(1.699) (2.309) (2381)
Maxret 0.002 0.001 Maxret 0.052+% 0,060+
(0.110) (0.094) (2.088) (2.660)
Adjusted R? 0.084 0.069 0.079 0.080 0.068 0.067 0.068 0.069 Adjusted R* 0.182 0.164 0.174 0.180 0.162 0.156 0.156 0.169
n 3056 3024 3056 3056 3056 3056 3056 3056 n 3056 3024 3056 3056 3056 3056 3056 3056
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However, the Maxret risk premium found here is not statis-
tically significant.

Moving to the VW regression results of Panel B, the neg-
ative IVOL risk premium remains in all regression specifica-
tions ranging from -0.624, when controlling risk by the FFA
model, to -1.946 when simultaneously controlling for all ad-
ditional firm-specific control variables. Compared to the ref-
erence results, the IVOL risk premium has more than doubled
when Maxret is added to the vector of firm characteristics
and is still statistically significant at the 1% level, which is
at odds with Bali et al. (2011) who claim that the incorpora-
tion of Maxret should resolve the IVOL puzzle. However, it
appears to have the opposite effect and increases its magni-
tude instead. On the other hand, when controlling system-
atic risk by the FFA model, the IVOL risk premium is only
significant at the 10% level and decreases in magnitude. The
decrease in statistical significance might be related to the in-
clusion of the short-term reversal factor that accounts for the
short-term-related IVOL puzzle explanation of W. Huang et
al. (2010). When computing the effect of a one standard de-
viation increase in IVOL, holding all other variables constant,
these risk premia estimates predict a decrease in expected re-
turns between 0.233% and 0.728% per month that appears
highly dispersed but remains inside a bandwidth that is eco-
nomically meaningful.

For the remaining risk premia estimates a few changes
need to be highlighted. First, the BM risk premium turns
positive when systematic risk is corrected for by the SY4 or
the HOUS5 model, albeit not statistically significant at any
plausible level in both cases. Interestingly the Skew;,, risk
premium becomes insignificant when Maxret is added to
the cross-sectional regression specification. Furthermore, the
Maxret risk premium is now statistically significant at the
5% level when added as the only further control variable and
even at the 1% level if all additional firm characteristic con-
trols are added to the regression simultaneously. Hence, as
both of these coefficients are related to the skewness pref-
erences of investors, Maxret seems to have more explana-
tory power than Skew;,,. In addition, the positive Spread
risk premium is now statistically significant at the 5% level
showing that it has some explanatory power in the VW Fama-
Macbeth regression context. Lastly, it is of note that the
Illigqy, risk premium turns negative when the HOU5 model,
the FFA model or Maxret is used for risk-correction, al-
though it is never statistically significant.

Table 8 shows that the IVOL puzzle finding in the
regression-based approach is robust to the inclusion of other
systematic risk-correction models or further firm character-
istic controls. Whereas for the EW estimation method the
results remain similar to those of the reference setting, some
changes occur in the VW regressions. When researchers em-
ploy the FFA model for risk-correction in the VW context
they find only a weakly significant IVOL puzzle, whereas the
inclusion of Maxret as further control lets the puzzle appear
stronger in absolute terms than in the reference setting.

7.1.2. Estimation Procedure

In this section I analyze the modifications related to the
estimation of the first step time-series regressions and the
second step cross-sectional regressions as introduced in sec-
tion 3.4.2. Specifically I address changes in the way the
time-series regression of equation 3 is computed to obtain
risk factor loadings and the manner in which the risk pre-
mia estimates are derived with the cross-sectional regression
of equation 5. The corresponding results can be found in
table 9. Panel A shows the equal- and value-weighted re-
gression results from the time-series estimation adjustments
where the FF3 model risk factor loadings are estimated over
rolling windows of 12 and 60 months starting at month t+1
as well as over the complete sample horizon as depicted in
the respective column. In Panel B I present the results from
the cross-sectional regression adjustments where the GLS es-
timation technique is implemented. Here the stock returns
are weighted with a diagonal weighting matrix consisting of
the inverse of the estimated stock return variances that are
computed over rolling windows from the past 1, 12 and 60
months as well as over the complete sample horizon as indi-
cated in the specific column.

The results of Panel A show that the IVOL risk premium
is negative and statistically significant at the 1% level for all
risk factor loading estimation windows, no matter whether
the equal- or the value-weighted Fama-MacBeth regression
procedure is applied. For the EW regressions the IVOL pre-
mium ranges from -0.847 for the 60 month window factor
loadings to -1.008 when computing them over the complete
sample horizon, whereas it is slightly higher in the VW con-
text with values of -1.070 for the 60 months to -1.149 for
the 12 months window factor loadings. Using these esti-
mates for the computation of economic significance by a one
standard deviation increase in IVOL, holding all other vari-
ables constant, the corresponding decrease in expected re-
turns amounts to values between 0.317% and 0.377% per
month for the EW as well as 0.400% and 0.430% per month
for the VW regression context. So the IVOL puzzle remains
economically, as well as statistically, meaningful and is, more-
over, comparable in magnitude to the reference results of
column (7) in table 2, regardless of the weighting-scheme
applied. However, it is of note that 60 months factor load-
ings lead to the lowest IVOL premium among all estimation
windows, irrespective of the weighting-scheme used. Nev-
ertheless, most of the regression specifications show more
negative IVOL risk premia when compared to the reference
results with exception of the 12 and 60 months factor load-
ing regressions in the EW context that lead to higher IVOL
premia instead. Additionally, the adjusted R? shows for both
weighting-schemes that the model performance decreases as
the window used for the factor loading estimation increases.
Interestingly the adjusted R? for the 12 months factor load-
ings are higher for both weighting-schemes when compared
to the corresponding reference results. This shows that 12
months factor loadings might more precisely capture the un-
derlying risk than the usual 1 months loadings do and hence
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Table 9: Regression-Based Results - Estimation Procedure Adjustments

This table presents the average coefficients from monthly Fama and MacBeth (1973) cross-sectional regressions for individual stocks. Using equation 5, each month I regress the next-month excess firm
returns (in percentage points) on a constant, the annualized idiosyncratic volatility measure of equation 4 calculated from daily data over the current month (in decimals), the stock-specific risk factor
loadings relative to the FF3 model, the end of month firm size defined as the natural logarithm of the market capitalization, the end of month firm book-to-market ratio of equity, the monthly return (in
percentage points) computed from the end of the previous month to the current month as well as additional control variables related to further firm characteristics. These firm characteristic variables are
the following: Skewq), which is the monthly return skewness measured over daily return data from the current month, EIdioSkew that is the expected idiosyncratic skewness measure from Boyer et al.
(2010), CoSkew which is the coskewness measure from Harvey and Siddique (2000) and I1lig,); being the Amihud (2002) illiquidity measure computed over the current month. Panel A shows the results
of the Fama-MacBeth regression procedure from adjustments to the way the factor loadings relative to the FF3 model were computed. Instead of computing them only over the next month I now use the
next month including the previous 11 or 59 months as well as estimate them over complete sample described as 12M, 60M and FULL in the respective column. These three estimation windows for risk factor
loading estimation are implemented in the EW and the VW Fama-MacBeth regression context as shown in the respective column. Panel B reports the results associated with the adjustments in the way the
cross-sectional regression of equation 5 is estimated. Here I use a GLS approach where observations are weighted according to a diagonal weighting matrix that consists of the inverse of the estimated stock
return variances. The estimation of the return variance is conducted by calculation over rolling windows from the past 1, 12 and 60 months as well as the complete sample while using daily data as shown
in the corresponding column. I report the t-statistics testing the null hypothesis that the average coefficient is equal to zero in parenthesis below each coefficient, where corresponding standard errors are
corrected for autocorrelation and heteroskedasticity by implementation of the Newey and West (1987) method using 7 lags. *, ** , and *** indicate significance at the 10%, 5%, and 1% level, respectively.
The row "Adjusted R?" reports the time-series average of the cross-sectional adjusted R%’s. The last row reports the average number of stocks used for the monthly cross-sectional regressions. The sample
covers the period from July 1963 until December 2020 and includes all stocks traded on the NYSE/AMEX/NASDAQ.

Panel A: Time-Series Regression Step - Different Estimation Windows Panel B: Cross-Sectional Regression Step - GLS

Ew vw 1M 12M 60M FULL
60M FULL 12M 60M FULL
Constant 1.847%*** 2.366%** 1.254%** 2.771* Constant 0.553
(4.964) (6.121) (3.281) (2.796) (5.507) (1.600)
IVOL -0.847%** -1.008%*** -1.149%** -1.070%** -1.075%** IVOL 0.567
(-4.751) (-5.357) (-4.050) (-3.851) (-3.595) (1.378)
B(MKT) 0.114 1.612%** 0.249 0.116 0.577* B(MKT) 0.214*
(0.508) (5.391) (1.035) (0.461) (1.833) (1.796)
B(SMB) . 0.000 -0.842%** 0.014 0.071 -0.816%** B(SMB) -0.004
(0.295) (0.002) (-5.047) (0.126) (0.548) (-5.879) (-0.105)
B(HML) -0.033 0.002 -0.589** -0.131 -0.160 -0.642%** B(HML) -0.045
(-0.268) (0.012) (-2.552) (-0.907) (-0.999) (-3.800) (-0.752)
Size -0.156%** -0.146%** -0.344%** -0.072%* -0.063* -0.259* Size -0.029
(-3.581) (-7.213) (-6.968) (-1.169)
BM 0.077 0.131%** 0.093 BM 0.064
(1.561) (2.717) (1.147) (1.192)
R, -0.046%** -0.046%** -0.025%** R, -0.036%**
(-11.079) (-5.083) (-8.399)
Skewqy 0.115%** 0.133%** Skewqy 0.002
. (4.736) (4.163) (0.095)
EldioSkew -0.275%* -0.383*** -0.187 EIdioSkew -0.128
(-2.534) (-3.437) (-1.272) (-1.227)
CoSkew -0.008 -0.014 -0.024%** CoSkew -0.011**
(-1.593) (-3.115) (-3.130) (-1.982)
Illiqyy 0.042%** 0.043%** 0.009 Illiqypy 0.022%*
(4.193) (4.519) (0.514) (2.459)
Adjusted R? 0.063 0.058 0.145 Adjusted R? 0.085
n 2818 3038 3038 n 3054
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researchers should reconsider to use these estimates to im-
prove their model performance. In conclusion I can verify
the findings of Z. Chen and Petkova (2012) that the adjust-
ments in the estimation window used for risk factor loading
estimation alone, do not influence the IVOL puzzle finding
remarkably, as the IVOL risk premia remain negative and sta-
tistically significant.

With a few exceptions, the remaining risk premia esti-
mates have hardly changed in comparison to the reference
results. The risk premia of the FF3 model risk factor load-
ings turn statistically significant when the full sample is used
for their computation, regardless of the weighting-scheme
employed. It is of note, however, that for both weighting-
schemes the average risk premia of the full sample 3(SMB)
and B(HM L) are negative, which contradicts the predictions
of Fama and French (1993) who argue for positive premia in-
stead. Furthermore, the negative BM risk premium of the VW
regressions from the reference result turns positive here and
thus is more in line with the value effect also mentioned by
Fama and French (1993). Nevertheless, this premium stays
insignificant for all window sizes in the VW context and for
the 60 months factor loadings in the EW regression analysis.
Panel B shows that weighting stock returns by their estimated
variance can have a non-trivial influence on the IVOL risk pre-
mium estimate. When the return variance is estimated from
rolling windows over the current month, the IVOL risk pre-
mium estimate turns positive but also statistically insignifi-
cant. Hence, the IVOL puzzle seems to be related to the gen-
eral stock return variance, as already found in section 5.3 as
well as by Barinov and Chabakauri (2020) and accounting for
this relationship by, for example, weighting observations as
done here, would enable researchers to resolve the IVOL puz-
zle consequently. However, the remaining columns show that
when the weighting is induced by return variance estimates
from rolling window estimates covering 12 and 60 months or
the complete sample horizon, the negative and statistically
significant IVOL premium prevails. In consequence, when
the return variance is measured over a wider window than
1 month, the IVOL puzzle persists almost unchanged hint-
ing at a relationship only between IVOL and return variance
measured over the same window size. Nevertheless, when
using the variance estimates from the complete sample hori-
zon in the weighting matrix, the IVOL risk premium is slightly
less significant at a level of 5% and decreased in magnitude
to -0.549. The effect of a one standard deviation increase in
IVOL, holding all other variables constant, shows that the sta-
tistically significant risk premia are also economically mean-
ingful as they predict a decrease in expected returns ranging
from 0.205% to 0.315% per month.

Also for the remaining risk premia estimates some dif-
ferences relative to the reference results have to be high-
lighted. The Size premium is positive throughout all adjust-
ments here. But interestingly, the level, at which it is statis-
tically significant, increases with the window size used for
return variance estimation. When the current month return
variances are used in the weighting matrix, the Size premium
is statistically insignificant, but if I use the complete sample

horizon variance estimates instead, it becomes significant at
the 1% level. This indicates that the same relationship be-
tween current month return variance and IVOL might also
exists for current month return variance and size. A compa-
rable pattern exists for the Skewy,, risk premium that also
turns statistically insignificant when returns are weighted by
their current month variances but is significant at the 1%
level in the rest of the cases. In addition, the BM premium
is now always positive as in the reference EW complete re-
gression result, albeit not statistically significant. Lastly, the
average adjusted R? show that the model, which uses the cur-
rent month return variances in the weighting matrix, has the
best fit compared to the other models.

In conclusion the IVOL puzzle is robust to adjustments in
the window size used for risk factor loading estimation and
mainly also when the GLS estimation technique is employed
for estimation of the cross-sectional regressions. Panel A il-
lustrates that, regardless of the choice of the estimation win-
dow utilized for computation of the FF3 model risk factor
loadings, researchers can only verify the existence of the
IVOL puzzle. In contrast, Panel B shows that the estima-
tion of the cross-sectional regression using GLS with a diago-
nal weighting matrix consisting of the inverse of the current
month return variances, enables researchers to argue on the
absence of the puzzle respectively. However, if the variances
are estimated from rolling windows over 12, 60 months or
the complete sample horizon, the IVOL puzzle prevails.

7.2. Portfolio-Related

Finally I analyze the portfolio method-specific adjust-
ments that are introduced in section 3.4. I begin with the
modification related to the way the univariate IVOL portfolios
are computed and analyzed in section 7.2.1 and afterwards
continue with the investigation of the bivariate portfolio sorts
in section 7.2.2.

7.2.1. Portfolio Characterization

This section has the objective of finding out whether re-
searchers are able to influence their findings by the way they
compute and analyze the univariate portfolios. To do so, as
explained in section 3.4, [ implement further trading strate-
gies, use different breakpoints for assigning stocks to port-
folios, adjust the number of portfolios constructed and also
use different benchmarks towards which I compute the time-
series alphas. Table 10 depicts the corresponding result of
the long-short IVOL portfolio that goes long the portfolio of
stocks with the highest IVOL and short the one containing
stocks with the lowest IVOL. Here Panel A shows the results
of the EW and Panel B those of the VW portfolio sorts.

The average EW total long-short portfolio return of Panel
A is always positive and statistically insignificant, regardless
of the trading strategy that is used for portfolio formation.
Except for an increase in the magnitude of the average total
returns, with the highest value of 0.472% per month for the
12/0/12 strategy, the results remain robust to modifications
in the trading strategy, wherefore the conclusions drawn here
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Table 10: Portfolio-Based Results - Portfolio Characterization

This table presents the average long-short portfolio results from the reference univariate portfolio sorting procedure introduced in section 3.3 that was adjusted as explained in section 3.4.3. Still all stocks
traded on the NYSE/AMEX/NASDAQ are covered here. The first column called "Trading strategies" builds the univariate quintile IVOL portfolios based on other trading strategies than the reference 1/0/1
strategy including the 1/1/1, 1/1/12, 1/0/12 and the 12/0/12 strategy respectively. In the column named "Breakpoints" I cover different breakpoints used for portfolio formation other than the usual
NYSE/AMEX/NASDAQ ones. NYSE uses only stocks traded on the NYSE to calculate the IVOL breakpoints, whereas "EQUAL MKT" assigns IVOL ranked stocks based on breakpoints such that the stocks in
each quintile portfolio make up the same share of the overall market capitalization. The third column is related to the adjustments in the number of univariate portfolios that are constructed. Instead of
5 monthly univariate portfolios I also compute 10 or 15 portfolios and calculate their time-series averages respectively. The last column named "Risk-Correction" refers to the way the risk-adjusted returns
in form of the time-series alphas are computed. For this adjustment I compute the alphas for the following additional risk-correction benchmark models: the SY4, the HOUS and the DANIEL3 model. As
this modification is only extending the reference setting for additional alpha estimates, the results from the total returns as well as the a7 and the a"F® remain unchanged and are therefore left blank.
For each of these adjustments, except for those in the column named "Risk-Correction”, I compute the average total return, af*® and afF® of the long-short portfolio that goes long portfolio 5 that consists
of the stocks with the highest IVOL and short portfolio 1 which contains stocks with the lowest IVOL. The af"® and the a"F® denote the monthly average of Jensen’s time-series alphas relative to the FF3
and the FF6 model that were calculated by equation 1 using the monthly portfolio excess returns over the complete sample horizon. Below each of these metrics I depict the corresponding Newey and West
(1987) adjusted t-statistic using 7 lags. The last row named "a" " reports the results of the risk-correction benchmark adjustments for the time-series alphas where the respective models used can be found
in the last column. In Panel A I use the equal-weighted portfolio returns for the analysis, where all firms are getting the same weight. On the other hand, Panel B uses value-weighted portfolio returns that
were calculated by weighting the stock returns within the portfolio by their MTCAP observable at beginning of the month in order to give higher weights to bigger stocks respectively and therefore diminish
the effects that might be explicitly related to small stocks. The complete sample period covers July 1963 to December 2020. It is shorter when the SY4 or the DANIEL3 models are used which is due a lack
of data availability and therefore the corresponding analysis cover only the horizon until November 2016 and November 2018 respectively.

Panel A: Equal-Weighted Portfolio Sorts

Trading Strategies Breakpoints # of Portfolios Risk-Correction
1/1/1 1/1/12 1/0/12 12/0/12 NYSE EQUAL MKT 10 15 SY4 HOUS5 DANIEL3
Total Return 0.007 0.260 0.226 0.472 0.165 0.238 0.112 0.178
(0.025) (0.906) (0.784) (1.417) (0.685) (1.088) (0.338) (0.510)
affs -0.482 -0.203 -0.237 -0.028 -0.327 -0.226 -0.480 -0.464
(-2.751) (-1.182) (-1.376) (-0.139) (-2.456) (-1.925) (-2.259) (-2.002)
affé 0.147 0.350 0.333 0.556 0.159 0.205 0.295 0.350
(0.718) (1.838) (1.727) (2.412) (1.132) (1.610) (1.182) (1.329)
aX 0.230 0.595 0.383
(0.896) (1.824) (1.410)
Panel B: Value-Weighted Portfolio Sorts
Trading Strategies Breakpoints # of Portfolios Risk-Correction
1/1/1 1/1/12 1/0/12 12/0/12 NYSE EQUAL MKT 10 15 SY4 HOUS5 DANIEL3
Total Return -0.493 -0.201 -0.260 -0.287 -0.173 -0.018 -1.002 -1.216
(-1.801) (-0.771) (-0.991) (-0.915) (-0.778) (-0.092) (-3.035) (-3.512)
affs -0.945 -0.609 -0.674 -0.780 -0.562 -0.334 -1.509 -1.761
(-5.323) (-4.192) (-4.599) (-4.257) (-4.246) (-2.761) (-6.944) (-7.876)
afFé -0.308 -0.089 -0.134 -0.134 -0.106 0.033 -0.700 -0.913
(-2.170) (-0.783) (-1.142) (-0.881) (-0.837) (0.310) (-2.923) (-4.260)
aX -0.314 0.033 -0.155
(-1.509) (0.139) (-0.808)
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match those of the EW reference results from section 5.3.
The findings from the a3 and aff®, however, seem to be
sensitive to the choice of the trading strategy when analyz-
ing the equal-weighted portfolio sorts. Even though the a3
are negative for all trading strategies, they are not always
statistically and economically meaningful. These long-short
portfolio aff® ranges from -0.482% for the 1/1/1 strategy
to -0.028% per month for the 12/0/12 strategy with corre-
sponding Newey-West robust t-statistics of -2.751 and -0.139.
The 1/1/1 results show that the incorporation of a 1 month
waiting period even increases the negative long-short port-
folio aff3 in absolute magnitude when compared to the ref-
erence results and hence contradicts the explanation of the
puzzle based on short-term reversal as proposed by W. Huang
etal. (2010). Whereas for the 1/1/12 and 1/0/12 strategies,
the aff® are negative but not statistically significant at any
reasonable level. When portfolios are built by the 12/0/12
strategy, on the other hand, the long-short portfolio a3 is
very close to zero and statistically insignificant such that no
IVOL puzzle or any systematic effect at all is revealed. In con-
trast, the afF® predict an opposite pattern where all alphas
are positive and only statistically insignificant for the 1/1/1
strategy. For the remaining strategies, the 12 month hold-
ing period implies positive long-short portfolio af*® ranging
from 0.333% to 0.556% per month and that are economi-
cally meaningful and statistically significant at a level not
less than 10%. Hence, when the FF6 model is utilized for
risk-correction, a positive relationship between IVOL and ex-
pected risk-adjusted returns remains that is statistically sig-
nificant if the holding period covers 12 months. This result
contradicts the finding of an IVOL puzzle and rather matches
the results of Spiegel and Wang (2005) as well as Malkiel and
Xu (1997).

The EW reference results, however, appear robust to the
breakpoint adjustment considered here. The long-short port-
folio total return and af® are positive on average for all
breakpoints, but none of them is statistically significant at a
reasonable level which is similar to the EW results of section
5.3. Also similar is that the aff? is negative and statistically,
as well as economically, significant ranging from -0.327% to
-0.226% per month such that the IVOL puzzle can again be
detected in the EW context from the af* only. Thus in con-
trast to the findings of Bali and Cakici (2008), the choice
of the breakpoints has almost no effect on the EW portfolio
sort results when compared to the reference setting. How-
ever, when comparing the results of both breakpoints, the
afF3 is lower and has a higher t-statistic for the NYSE break-
points, whereas the total return and the aF® as well as their
t-statistics are higher for the equal market share breakpoints
implying that the IVOL puzzle is indeed weaker for the equal
market share breakpoints as also found by Bali and Cakici
(2008).

The EW long-short portfolio results hardly change, com-
pared to the reference results, when I sort stocks each month
into 10 or 15 portfolios respectively. Total returns and the
aF® remain positive and statistically insignificant again and
just the aff® delivers evidence on the IVOL puzzle, as it is

negative and statistically significant at the 5% level for 10 and
15 portfolios. The aff3 ranges from an average -0.464% for
15 to -0.480% per month for 10 monthly portfolios which are
thus also economically meaningful. Nevertheless, the mag-
nitudes of the total return, the af*® and the a® for both
numbers of portfolios is very close to the one in section 5.3,
which is why choosing a different number of univariate port-
folios in the research study is unlikely to affect the study’s
conclusions.

In the last column of Panel A I depict the alpha esti-
mates from the EW long-short portfolio relative to further
risk-correction models including the SY4, the HOUS and the
DANIEL3 model. All these alphas are found to be positive
ranging from an average of 0.230% for the SY4 model al-
pha to 0.595% per month for the HOU5 model alpha. Even
though these appear to be economically meaningful, only the
one relative to the HOUS model is also statistically significant
at the 10% level. Hence, researchers that base their argu-
ments only on the HOUS alpha find a positive relationship
between risk-adjusted expected returns and IVOL instead of
an IVOL puzzle. For the alphas relative to the SY4 and the
DANIEL3 model, conclusions are in line with those drawn
from the aff®, implying the same positive relationship that
is, however, not significant at a plausible level. Thus, the
choice of the risk-correction model used for computation of
the time-series alphas likely influences the conclusions drawn
from the study on the existence of the IVOL puzzle.

The results from the VW long-short portfolio seem to be
overall more sensitive to the adjustments in the way the port-
folios are characterized. With the choice of the trading strat-
egy researchers can influence their findings compared to the
reference results of section 5.3. As the total returns, a*® and
af® have been negative and statistically significant in the
VW reference setting, this result does not hold for all trad-
ing strategies. Even though the long-short portfolio total re-
turns are all still negative, just the one of the 1/1/1 strategy
is also statistically significant at the 10% level with a aver-
age monthly total return of -0.493% that is also economically
meaningful. All remaining strategies imply total returns be-
tween -0.201% and -0.287% per month that are less than half
the magnitude of the reference results and are furthermore
even statistically insignificant. The af*3, on the other hand,
remains statistically significant at the 1% level for all trad-
ing strategies, although it has reduced in magnitude to aver-
age risk-adjusted returns between -0.945% and -0.609% per
month that are still economically relevant. In addition, sim-
ilar to the total returns, the af¥® is only statically significant
for the 1/1/1 strategy with an average value of -0.308% per
month that is economically relevant and statistically signifi-
cant at the 5% level. However, compared to the EW portfolio
sorts of Panel A, the inclusion of the 1 month holding period
does not strengthen the IVOL puzzle effect but instead makes
it slightly weaker as the magnitude of all measures shrinks in
comparison to the reference results from Panel B of table 3.
This fact, as well as the insignificant results from the remain-
ing strategies, indicate that at least in the VW context the
correction for short-term reversal helps explaining the IVOL
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puzzle, as also pointed out by W. Huang et al. (2010). In con-
clusion, researchers that exclude the aff® from their analy-
sis and use trading strategies other than the 1/0/1 or 1/1/1
would not be able discover an IVOL puzzle that is statisti-
cally plausible with their VW portfolio-based analysis. How-
ever, Ang et al. (2006) claim that their IVOL puzzle finding
is robust to the implementation of further trading strategies.
This conclusion can be explained by the fact that they focus
on the examination of the af"® in their study which is the
only measure that is indeed robust to such adjustments (see
Ang et al. (2006)). Nevertheless, their results would likely
change when they compute total returns or the af*® instead.
If researchers shift from a 1/0/1 to a 1/1/1 trading strategy
they are able to slightly reduce the magnitude of the IVOL
puzzle effect.

As found by Bali and Cakici (2008), the IVOL puzzle
is sensitive to the choice of the breakpoints used to subdi-
vide stocks into VW portfolios. The long-short portfolio to-
tal returns remain negative for both breakpoint types but at
the same time become statistically insignificant as well. In
addition, the magnitude of the total returns has decreased
to -0.173% for the NYSE breakpoints and to an average of
only -0.018% per month for the equal market share break-
points. Therefore, the total return results from the equal mar-
ket share breakpoints do not only turn statistically insignifi-
cant but also become economically negligible. Even though
the aff3 remain statistically significant at the 1% level for
both breakpoints, their magnitude more than halved to val-
ues around -0.562% and -0.334% per month with t-statistics
that decrease to -4.246 and -2.761 when compared to the ref-
erence results. Hence, although no change in statistical rel-
evance is observable for the a3, the decrease in economic
magnitude becomes obvious. Even more noticeable is the
influence of the choice of the breakpoints when analyzing
the aff®. For the NYSE breakpoints the long-short af*® is
still negative but not statistically significant at any reason-
able level, whereas for the equal market share breakpoints
the alpha even turns positive albeit remaining statistically in-
significant. Hence, researchers that would use the FF6 model
for risk-correction and the equal market share breakpoints
can almost reverse the IVOL puzzle effect. Conclusively, the
choice of the breakpoints has a strong influence on the find-
ings if researchers use total returns or aff® in their analysis
only. The influence on the study is the strongest in terms of
changes relative to the reference results when equal market
share breakpoints are used for the VW portfolio analysis as
also pointed out by Bali and Cakici (2008).

On the other hand, as I increase the number of univariate
VW portfolios used for the analysis, the average long-short
portfolio total return, af*® and aff® as well as the corre-
sponding robust t-statistics grow in magnitude compared to
the reference results. Similar to the reference setting, all
these measures are negative and statistically significant at the
1% level which also encloses the total returns. In economic
terms, the total returns and all the alphas are also plausi-
ble, where the total return and the afF® for the long-short
portfolio using 10 and 15 portfolios is in no case higher than

-1% per month. Only the long-short portfolio a*® is slightly
larger and varies between an average of -0.700% in case of
10 portfolios and -0.913% per month when 15 portfolios are
constructed. Nevertheless, I find that an increase in the num-
ber of monthly univariate portfolios strengthens the negative
relationship between IVOL and expected cross-sectional re-
turns. Thus in this VW setting researchers can let their re-
sults appear more statistically and economically meaningful
by increasing the number of univariate IVOL sorted portfolios
they compute in their study.

Lastly, the choice of the risk-correction model used for al-
pha computation also influences the conclusion a researcher
would draw from his study. As in the reference setting, the
long-short portfolio af*® and aff® have been negative and
statistically significant at the 1% level which does not apply
to the SY4, the HOUS and the DANIEL3 alphas. The aver-
age long-short portfolio alpha relative to the SY4 and the
DANIEL3 model are both negative with values of -0.314%
and -0.155% per month respectively but both of them are
low in magnitude and not statistically significant at any rea-
sonable level. Thus in these cases an IVOL puzzle is detected
in signs but cannot be approved statistically in magnitude. In
contrast, the long-short portfolio alpha relative to the HOU5
model is positive but not statistically significant at any plau-
sible level and with an average value of 0.033% per month
economically negligible. Consequently, the IVOL puzzle find-
ing is not robust to the choice of the risk-correction model
used for alpha computation and researchers that use models
like the SY4, the HOUS or the DANIEL3 for that purpose in
the VW portfolio sorts would likely not be able to statistically
plausible verify the existence of the puzzle.

Conclusively I found out that the EW portfolio sort results
are more robust to adjustments in the way the portfolios are
characterized than the VW ones. Only the choice of the trad-
ing strategy has a notable influence on the results of the EW
sorts. Here especially the usage of a longer holding period
than 1 month can lead to the conclusion that no systematic
effect in the total returns and alphas is found. Conversely,
the findings from the VW portfolio sorts are effected by all the
adjustments I consider for the category of portfolio character-
ization. As in the EW setting, a holding period longer than 1
month lets the magnitude of the IVOL puzzle appear mostly
statistically insignificant when excluding the analysis of the
afF3. Thus in contrast to the arguments of Ang et al. (2006),
the choice of the trading strategy is not irrelevant to the IVOL
puzzle finding in the VW context. As stated by Bali and Ca-
kici (2008), the decision on the breakpoints also affects the
VW portfolio results because both breakpoints analyzed here
show no evidence on the existence of the IVOL puzzle when
investigating the total return or af*®. On the other hand,
increasing the number of monthly univariate IVOL portfolios
leads to a monotonic increase in the magnitude of the IVOL
puzzle in the VW context. Finally, when long-short portfo-
lio alphas are computed towards the SY4, the HOUS or the
DANIEL3 model, no IVOL puzzle can be discovered that is
also statistically significant.
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7.2.2. Bivariate Portfolio Sorts

Ultimately I investigate if controlling for further firm
characteristic effects by bivariate portfolio sorts enables re-
searchers to explain the IVOL puzzle and then also try to
determine the sorts they would choose for that purpose. For
this I use the dependent portfolio sorting technique and the
control variables introduced in section 3.4 to construct the
average IVOL portfolios. I compute the total return, the af3
and the aff® for average portfolio 1, 5 and the long-short
portfolio as well as the corresponding Newey-West robust
t-statistics. In table 11 I depict the EW average portfolio sort
results in Panel A and those from the VW analysis in Panel B
respectively.

The EW bivariately sorted average portfolios from Panel
A show that the finding of an IVOL puzzle is predominantly
robust to the effect from most of the control variables con-
sidered here. Compared to Panel A of table 3, results remain
almost unchanged when I control for Skew,;, Volume or
CoSkew. In these cases, I find that the total returns, as well
as the af®, increases when moving from portfolio 1 to port-
folio 5, such that the corresponding measures are positive
for the long-short portfolio. However, these positive long-
short portfolio total returns and aF® are still not statistically
significant at any reasonable level. Only the corresponding
long-short portfolio a3 are negative with values of -0.384%
per month when controlling for skewness and -0.328% per
month for the coskewness control that are both economically
plausible and statistically significant at the 5% level. Con-
trolling for volume yields a long-short af*® of -0.493% per
month that is economically meaningful and even statistically
significant at the 1% level. Hence, researchers that control
for the volume effect by Gervais et al. (2001), the monthly
return skewness or the coskewness measure of Harvey and
Siddique (2000) are not able to modify their findings related
to the IVOL puzzle notably and can only verify its existence
from the afF® analysis.

On the other hand, controlling for variables including
size, the past months return, expected idiosyncratic skew-
ness, the Amihud (2002) illiquidity measure and the bid-ask
spread in the bivariate sorts have only a limited impact on the
EW results and often make the IVOL puzzle even more ap-
parent instead of resolving it. For all the bivariate dependent
sorts based on these control variables, the analysis of the total
returns and the alphas shows the same pattern across aver-
age portfolios. In all these cases, the corresponding measure
decreases when moving from portfolio 1 to portfolio 5 and
thus results in a negative long-short portfolio value, which is
consistent with the IVOL puzzle finding. However, only the
negative long-short a2 are also statistically significant even
at a 1% level for all controls, whereas the related total returns
and aff® are not significant at any meaningful level. In con-
sequence, even though the IVOL puzzle appears throughout
all measures when controlling for the variables mentioned
above, the effect is only statistically significant for the afF3.
This pattern found in the af?® is always driven by a statisti-
cally significant underperformance of portfolio 5 relative to

portfolio 1 which is similar to the findings of the reference
analysis. It is on average the lowest in economic terms when
controlling for the past month return with an average long-
short portfolio aff? of -0.477% per month, while it is the
highest in the bivariate sorts involving the Amihud (2002)
illiquidity measure with an average subsequent month af3
of -0.832% per month. These aF3 all exceed the correspond-
ing alpha from the reference analysis and are economically
meaningful. From this fact, as well as the one that long-short
portfolio total returns and af® are negative even though
not statistically significant for the controls including Size, R,
EldioSkew, Illig,); and Spread, I conclude that researchers
using these controls in their EW bivariate dependent portfo-
lio analysis can let the IVOL puzzle appear more plausible
than without their consideration.

The only variables that indeed seem to resolve the IVOL
puzzle when controlled for in the researchers’ EW bivariate
portfolio analysis are BM and Maxret. Starting with the
sorts that control for BM, the total returns show an mono-
tonic increase when moving from portfolio 1 to 5, which
is why the long-short portfolio total return is also positive
again, even though it is still not significant at any plausible
level. Although the negative relationship between IVOL and
afF® persists on average, the long-short portfolio a’F® of -
0.229% per month is now no longer statistically significant
at any meaningful level as the t-statistic has decreased to -
1.229. The typical pattern of an IVOL puzzle even reversed
when analyzing the af"®. Here the aff® increases monoton-
ically from an average -0.080% for portfolio 1 to 0.356% per
month for portfolio 5 resulting in a long-short portfolio af®
of 0.436% per month that is not only statistically meaning-
ful at the 5% level but is also economically relevant. From
this I conclude that the value effect might indeed affect the
IVOL puzzle which is also argued by Barinov and Chabakauri
(2020) and researchers who are aware of this fact can in-
fluence their results by including it in their study. It is of
note that the EW regression results from Panel A of table 2
were not able to uncover this relationship which might hint
at a non-linear dependence between the value effect and the
IVOL puzzle respectively. Controlling for Maxret, on the
other hand, overturns the IVOL puzzle almost completely,
which proves the findings of Bali et al. (2011). An investi-
gation of the EW average portfolios from the dependent bi-
variate sorts involving Maxret shows that the total returns
and alphas monotonically increase when shifting from port-
folio 1 to portfolio 5, such that the corresponding long-short
portfolio results are also positive for all the measures. The
long-short portfolio total return and the a"® amount on av-
erage to 0.408% and 0.481% per month which are not only
economically meaningful but also statistically significant at
the 1% level and consequently imply a positive relationship
between IVOL and expected returns instead of an IVOL puz-
zle. Whereas for the total returns from portfolio 1 and 5 both
are statistically significant at the 1% level, the pattern in the
aF6 seems to be driven by the overperformance of the high
IVOL portfolio which has a positive afF® that is statistically
significant at the 5% level. Despite the fact that the long-
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Table 11: Portfolio-Based Results - Bivariate Portfolio Sorts

This table presents the average results of quintile portfolio 1, 5 and the long-short portfolio from the bivariate portfolio sorting procedure as explained in section 3.4.3 covering all stocks traded on the
NYSE/AMEX/NASDAQ. First all stocks are sorted each month into quintile portfolios with respect to their level of the corresponding control variable and afterwards within each of these quintile portfolios
the stocks are again sorted into quintile portfolios based on their idiosyncratic volatility computed relative to the FF3 model using daily data over the past month. Afterwards each IVOL quintile portfolios,
as well as the long-short portfolio, is averaged over all the quintiles of the control variables to obtain the univariate IVOL quintile portfolios that have been corrected for the effect of the corresponding
control variable. For all these bivariately sorted average portfolios I compute the average monthly total returns, the a"¥3 and the afF® of portfolios 1, 5 as well as the long-short portfolio (in percentage
terms) and in parenthesis below each of these measures I show the corresponding Newey and West (1987) adjusted t-statistics where I use 7 lags for the adjustment. The afF® and afF® denote the monthly
average of Jensen’s time-series alphas relative to the FF3 and the FF6 model again that were calculated by equation 1 using the monthly portfolio excess returns from the respective bivariate portfolios
over the complete sample horizon. Each row corresponds to the results of a bivariate portfolio sort where the effect that was controlled for is used as row name. Here I control for the following variables:
size that is the natural logarithm of the stock’s MTCAR the firm’s BM, the stock’s current month return, the Amihud (2002) illiquidity measure calculated over the current month, return skewness over the
current month, the expected idiosyncratic skewness measure of Boyer et al. (2010), the coskewness measure of Harvey and Siddique (2000) computed over the recent past 5 years computed, the trading
volume of the stock, the monthly average over the daily bid-ask-spreads and the maximum daily return during the current month computed based on the ideas of Bali et al. (2011). These portfolios are
rebalanced monthly according to the 1/0/1 trading strategy. In Panel A I use the equal-weighted portfolio returns for the analysis, where all firms are getting the same weight. On the other hand, Panel B
uses value-weighted portfolio returns that were calculated by weighting the stock returns within the portfolio by their MTCAP observable at beginning of the month in order to give higher weights to bigger
stocks respectively and therefore diminish the effects that might be explicitly related to small stocks. The complete sample period covers July 1963 to December 2020.

Panel A: Equal-Weighted Portfolio Sorts Panel B: Value-Weighted Portfolio Sorts
Total Return af?? afFe Total Return aff? afFe
1 5 5-1 1 5 5-1 1 5 5-1 1 5 5-1 1 5 51 1 5 5-1
Size 0.939 0.589 -0.349 0.085 -0.728 -0.813 0.021 -0.213 -0.235 Size 0.802 0.565 -0.237 -0.011 -0.552 -0.540 -0.143 -0.215 -0.072
(3.947) (1.611) (-1.423) (0.412) (-4.388) (-5.225) (0.087) (-1.074) (-1.559) (4.167) (1.848) (-1.113) (-0.096) (-3.963) (-3.873) (-1.567) (-1.359) (-0.604)
BM 0.932 1.109 0.177 0.003 -0.226 -0.229 -0.080 0.356 0.436 BM 0.794 0.261 -0.533 -0.027 -0.989 -0.962 -0.140 -0.461 -0.321
(4.231) (2.817) (0.659) (0.021) (-1.105) (-1.229) (-0.713) (1.417) (2.044) (4.067) (0.744) (-2.118) (-0.350) (-5.308) (-6.425) (-2.285) (-1.674) (-2.275)
R, 0.914 0.830 -0.085 -0.005 -0.482 -0.477 -0.021 -0.051 -0.030 R, 0.769 0.235 -0.533 -0.092 -1.005 -0.913 -0.143 -0.625 -0.482
(4.241) (2.074) (-0.328) (-0.035) (-2.559) (-:3.199) (-0.131) (-0.240) (-:0.198) (4.060) (0.681) (-2.223) (-1.203) (-5.767) (-6.542) (-2.282) (-3.415) (-3.877)
Skewyy 0.870 0.973 0.103 0.012 -0.372 -0.384 -0.080 0.204 0.283 Skewyy, 0.787 0.120 -0.667 -0.048 1132 -1.085 -0.166 -0.601 -0.435
(3.920) (2.460) (0.363) (0.059) (-1.945) (-2.225) (-0.355) (0.841) (1.388) (4.058) (0.331) (-2.393) (-0.423) (-5.940) (-6.104) (-2.245) (-2.428) (-2.659)
EldioSkew 1.091 0.847 -0.245 0.121 -0.545 -0.666 0.058 -0.028 -0.086 EldioSkew 0.896 0.453 -0.443 -0.036 -0.872 -0.836 -0.196 -0.480 -0.284
(4.105) (2.032) (-0.937) (0.768) (-2.364) (-:3.929) (0.433) (-0.086) (-:0.470) (3.839) (1.214) (-1.855) (-0.200) (-2.880) (-4.981) (-1.817) (-0.712) (-1.919)
CoSkew 0.955 1.069 0.115 0.053 -0.328 -0.016 0.222 0.238 CoSkew 0.792 0.318 -0.474 -0.050 -0.913 -0.863 -0.126 -0.546 -0.420
(4.347) (2.830) (0.453) (0.339) (-2.056) (-:0.104) (0.950) (1.258) (4.046) (0.975) (-2.157) (-0.114) (-5.279) (-6.209) (-0.315) (-2.338) (-2.995)
Iligyy 0.960 0.609 -0.351 0.072 -0.832 0.003 0.171 0.174 Iliqyy 0.800 0.530 -0.269 -0.015 -0.619 -0.604 -0.149 -0.268 -0.118
(4.208) (1.641) (-1.350) (0.371) (-5.085) (0.012) (-:0.804) (:0.993) (4.165) (1.684) (-1.221) (:0.132) (-4.183) (-4.193) (-1.709) (-1.540) (-0.944)
Volume 0.877 0.888 0.011 0.000 -0.493 -0.086 0.104 0.190 Volume 0.785 0.146 -0.639 -0.047 -1.108 -1.061 -0.165 -0.545 -0.380
(4.104) (2.234) (0.038) (0.001) (-2.828) (-0.464) (0.411) (0.945) (4.081) (0.404) (-2.395) (-0.462) (-5.770) (-6.429) (-2.079) (-2.105) (-2.458)
Spread 0.889 0.773 -0.115 0.023 . -0.563 -0.030 -0.120 -0.090 Spread 0.797 0.232 -0.565 -0.028 -0.989 -0.961 -0.040 -0.722 -0.681
(3.999) (2.062) (-0.456) (0.135) (-3.027) (-3.733) (-0.170) (-0.580) (-:0.568) (4.076) (0.702) (-2.416) (-0.282) (-5.835) (-6.599) (-0.467) (-3.383) (-4.400)
Maxret 0.913 1.322 0.408 -0.101 0.074 0.175 -0.065 0.416 0.481 Maxret 0.756 0.764 0.007 -0.152 -0.280 -0.129 -0.115 -0.203 -0.178
(3.643) (3.917) (2.759) (-0.729) (0.455) (1.650) (-0.335) (2.164) (3.848) (3.397) (2.991) (0.065) (-0.991) (-1.260) (-1.411) (-0.672) (-0.806) (-1.910)
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short portfolio af?? is also positive with a value of 0.175%
per month, it has to be noted that it is rather low in eco-
nomic terms and only statistically significant at the 10% level.
Again the relationship between IVOL and the maximum re-
turn is most likely non-linear as the IVOL risk premium from
the EW regressions is almost unaffected by the inclusion of
Maxret as a further control variable as found in Panel A of
table 8.

Panel B displays the results from the VW average depen-
dent sorted portfolios for the same controls as considered in
Panel A. When computing the VW average portfolios from bi-
variate dependent sorts that involve the BM, the past month
return, the monthly return skewness, the coskewness mea-
sure of Harvey and Siddique (2000), trading volume or the
bid-ask spread as control variables, the results from total re-
turns and alphas remain almost unchanged compared to the
reference results form Panel B of table 3. The analysis of
the long-short portfolio performance in all these sorts shows
that portfolio 5 performs worse than portfolio 1, as the long-
short portfolio total returns, as well as the alphas relative
to both risk-correction models, are negative and statistically
significant. The long-short portfolio returns are the lowest in
case of the aff® when controlling for Skew,,, with a value
of -1.085% per month the highest when controlling for BM
with an average af"® of -0.321% per month. Therefore, the
evidence on the IVOL puzzle prevails in all these sorts re-
spectively and is still economically meaningful. It is of note,
however, that for all average portfolios considered here the
measures are lower in magnitude than compared to their
level from the reference analysis of section 5.3. The only
exception is the long-short a"® when controlling for R, and
Spread that are now bigger in absolute terms. Interesting is
also that the bivariate dependent sort based on BM was able
to resolve the IVOL puzzle in the EW context but is no longer
able to do so here. An explanation of that might be that the
return weighing by MTCAP resolves the value effect, if the
assumption holds that the small firms also have a high BM.
In contrast, controlling for Size, EIdioSkew or Illiq,,, has
a limited, albeit notable, effect on the results. All bivariate
sorts related to these control variables show the same pat-
tern consisting of a negative long-short portfolio return, re-
gardless of the return type or risk-correction model consid-
ered. Just the long-short portfolio af*? is also always statis-
tically significant. While the long-short portfolio total return
and afF® of these sorts is mostly statistically insignificant at
any reasonable level, the aff?® remains statistically signifi-
cant at the 1% level. Only the bivariate dependent sorts on
EldioSkew also have long-short portfolio total returns and
alF6 that are both statistically significant but just at the 10%
level. However, compared to the reference result, the eco-
nomic magnitude of the long-short aF® decreases to values
ranging from -0.836% per month for the sort that controls for
EldioSkew to -0.540% per month when controlling for Size.
Nevertheless, these values are still economically meaningful
and again driven by the low performance of portfolio 5 as the
corresponding af® is the only one that is statistically signifi-
cant at a level not less than 1%. Additionally, it is of note that

expected idiosyncratic skewness only marginally helps to ex-
plain the IVOL puzzle and does not resolve it, as argued by
Boyer et al. (2010). In conclusion, researchers who use Size,
EIdioSkew or Illig,, as controls in their VW portfolio-based
study, are not able to resolve the IVOL puzzle but can achieve
a reduction in its magnitude and statistical relevance.

The only variable that is indeed able to resolve the IVOL
puzzle almost completely is the maximum daily return mea-
sure over the past month. Controlling for Maxret leads to an
increasing total return pattern across IVOL portfolios when
moving from portfolio 1 to 5 and causes the long-short portfo-
lio total return to be positive with an average value of 0.007%
per month, which is statistically insignificant and economi-
cally negligible. Despite the fact that the alphas are still de-
creasing when moving from IVOL quintile portfolio 1 to 5
also yielding negative long-short portfolio alphas, they are
only statistically significant at the 10% level in terms of the
afFé. The long-short portfolio alpha amounts to an average
value of -0.129% per month for the a3 and to -0.178% per
month for the af® that are both economically small. In con-
trast to the reference results, the alphas from portfolio 1 and
5 are both not statistically significant at any plausible level
regardless of the model chosen for risk-correction which is
thus another evidence on the explanatory power of Maxret.
After all, similar to the EW sorts of Panel A, if researchers
would use Maxret as a control variable, they are be able to
change their findings such that they conclude that the IVOL
puzzle found by Ang et al. (2006) is rather implausible.

To sum up the results, it can be said that bivariate de-
pended sorts hardly help researchers to explain the IVOL puz-
zle. Overall, as also found by Bali et al. (2011), the control
associated with the maximum daily return measure is the
only variable that could be used by researchers who try to
argue against the existence of the IVOL puzzle, regardless
of the weighting scheme they would use for the portfolio-
based analysis. Researchers that compute EW portfolio re-
turns only could additionally use the book-to-market ratio of
equity as a control variable to offset the IVOL puzzle effect.
All remaining control variables are not at all or only partly
able to explain the IVOL puzzle where the respective con-
clusion strongly depends on the return type computed and
presented in the corresponding analysis. Here it is mostly
the aff? that discovers the IVOL puzzle irrespective of the
control or weighting scheme used.

8. Conclusion

With this study I try to shed light on the dispute over the
existence of the IVOL puzzle originally found by Ang et al.
(2006). I take on an econometric perspective and analyze in
how far researchers can draw different conclusions on the ex-
istence of the IVOL puzzle only by adjusting their researcher
design in a specific manner. As this anomalous finding is most
often analyzed by either a regression-based approach that fol-
lows the ideas of Fama and MacBeth (1973) or a portfolio-
based methodology which involves sorting stocks into port-
folios based on their idiosyncratic volatility, I use these two
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concepts alongside which I analyze how findings evolve when
the research design is modified. As an anchor point I have
used the study of Ang et al. (2006) for the portfolio-based
and the one of Ang et al. (2009) for the regression-based
method as these were among the first to find an IVOL puz-
zle while using the corresponding research concepts. For the
regression-based approach I replicated the IVOL puzzle find-
ing by means of equal-weighted as well as value-weighted
Fama-MacBeth regressions. Here both weighting-schemes
showed a statistically significant negative IVOL risk premium
that is robust when controlling for the current month return
skewness, the expected idiosyncratic skewness measure by
Boyer et al. (2010), the coskewness measure of Harvey and
Siddique (2000) and the Amihud (2002) illiquidity measure.
The replication analysis of the portfolio-based approach al-
ready showed that the IVOL puzzle finding is more likely to
occur when researchers use the value-weighted instead of
the equal-weighted portfolio returns in their study. While all
measures including excess and total returns as well as risk-
adjusted returns relative to the FF3 and the FF6 model prove
the existence of the IVOL puzzle in a value-weighted portfolio
context, the equal-weighted portfolio returns are solely able
to deliver this finding when researchers compute the time-
series alphas relative to the FF3 model only. Based on these
results I have started the adjustment analysis with the aim to
find possible modifications that change the researchers con-
clusions on the existence of the IVOL puzzle. As general ad-
justments, that I applied to both research concepts, I have
started by modifying the way IVOL is estimated and after-
wards adjusted the sample used in the respective analysis.
Changing the risk-correction model relative to which IVOL is
estimated hardly changes the results researchers would ob-
tain from their study regardless of the research concepts em-
ployed. However, those researchers that use the portfolio-
based method or the value-weighted Fama-MacBeth regres-
sion are able to let the finding of an IVOL puzzle appear statis-
tically insignificant only by switching the data frequency from
daily to monthly and using a longer estimation window cov-
ering 1 or 5 years when estimating IVOL. The investigation of
subsamples constructed based on the stock’s price or market
capitalization is also shown to influence research findings.
Results appear to be particularly sensitive to the sample used
when they are obtained from the VW Fama-MacBeth regres-
sions or the VW portfolio sorts, as in these cases the IVOL
puzzle effect seems to gradually weaken when stocks with
a higher price or bigger market capitalization are used. Af-
ter implementation of the general adjustments, I start with
the analysis of adjustments that focus on the methodolog-
ical peculiarities of each research concept and reveal how
such modifications influence the research findings accord-
ingly. For the regression-based approach I have focused on
adjustments in the risk-related control variables as well as
the estimation procedure. Results from the inclusion of dif-
ferent systematic risk-correction models or additional firm-
specific risk variables appear to be almost similar to the ref-
erence results, which is why researchers are typically not
able to modify their results by conducting such modifica-

tions. Only in the VW Fama-MacBeth regression the usage
of a risk-correction model consisting of the FF3 model aug-
mented with a short and long-term reversal factor allows the
researchers to slightly mitigate the statistical significance of
the puzzle. On the other hand, researchers that modify the
estimation procedure of the regression-based approach have
only limited ability to change their results. While using dif-
ferent past estimation windows for the computation of risk
factor loadings used in the cross-sectional regression does
not influence the findings in either the equal- nor the value-
weighed context, changing the estimation technique of the
cross-sectional regression step by implementation of the GLS
technique with a diagonal weighting matrix consisting of the
inverse of the stock variances estimated from rolling win-
dows over the current month allows researchers to reverse
the IVOL puzzle and obtain a positive risk premium instead
that is, however, not statistically significant. Nevertheless,
using other windows for the estimation of the stock variance
used in the weighting matrix does not change results notably.
Then shifting to the portfolio-related adjustments, I modify
the way portfolios can be characterized and lastly also use
bivariate dependent portfolio sorts to disentangle the effect
of the IVOL puzzle that might be due to other firm-related ef-
fects. The portfolio characterization adjustments cover mod-
ifications in the trading strategy used for portfolio formation,
the breakpoints used to subdivide stocks into portfolios, the
number of portfolios that are computed as well as further
risk-correction models used for alpha computation. Except
for the trading strategies that involve a longer holding period
than 1 month, researchers are not able to change their results
when using EW portfolio sorts. However, the VW portfolio
sorts are more sensitive to similar adjustments. Researchers
that use trading strategies with longer holding periods than
1 month or breakpoints based on the NYSE stocks or equal
market shares are only able to find an IVOL puzzle when they
analyze the FF3 model alphas. No IVOL puzzle is found at all,
however, by researchers that would compute alphas relative
to the SY4, HOUS or the DANIEL3 model for their VW portfo-
lio sorts. Conversely, an increase in the number of portfolios
lets the puzzle appear more present in the VW portfolio anal-
ysis. Lastly, I discovered that when researchers control for
the maximum daily return over the past month by means of
bivariate dependent portfolios sorts, they can conclude that
the IVOL puzzle is not statistically relevant or existent at all,
regardless of the weighting scheme they use in their study. In
addition, those researchers that focus on EW portfolios can
also resolve the puzzle when they control for the value effect
in their study captured by the BM. All in all, I need to remark
that my analysis was only able to investigate a fraction of ad-
justments that could possibly be employed by researchers to
bias their results towards a specific direction. My aim is to
draw attention to the fact that the configuration of the re-
searcher design can be important to understand results that
contradict theoretically sophisticated predictions and hence
trigger a debate in the literature. Furthermore, this study
should help to understand why researchers are then also able
to provide empirical evidence on contradictory results, even
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though they appear to use the same data and methodology.
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