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48 A APPENDIX

A Appendix

Dynamic Conditional Correlation Multivariate Generalized Autoregressive

Conditional Heteroskedasticity Model

There is another model that could have served to test the two hypotheses of this thesis.

Unfortunately, it could not be used reliably. The residuals were not normally distributed

and presented heteroskedasticity in their variance. Still, it is useful to share it for research

purposes. Finally, it is important to mention that the DCC-MGARCH model has been

used in literature, but mostly to explain financial variables, which are volatile. The model

will be specified in the next paragraphs.

This paper has two main objectives: first, to show whether the UK CPF has been more

effective in tackling the CO2 emissions in the UK than the EU ETS in Germany. A

coefficient between the carbon price and the CO2 emissions will be calculated to deter-

mine the magnitude of this relationship in each country. Second, test whether there are

spillovers effects between the carbon price and electricity produced by renewables in these

two countries. The spillover effect will be calculated by the same econometric model. The

magnitude of the spillover effect is important since the goal of Germany and the UK is to

produce clean electricity in the long term. Therefore, the carbon price must promote the

elimination of GHG emissions and not the switch from coal-fired plants to gas. Finally,

the seasonality effect is being considered.

The weekly logarithmic variation of energy and economic variables are used. This ap-

proach goes in line with (Manera, Nicolini, & Vignati, 2013), who employed the same

econometric model to test correlations among energy commodities. The energy variables

used price of natural gas, coal, EU ETS and UK CPF, the electricity demand, the electric-

ity production from solar, wind, and nuclear sources; and CO2 emissions of Coal, Natural

Gas, and Lignite. The Coal-to-Gas price ratio has been used by (Gugler et al., 2021),

(Abrell et al., 2021), and many others because it represents the cost relationship between

the two most important electricity fuels. (Gugler et al., 2021) and (Koch et al., 2014)

utilized the production from renewable sources in their models. The electricity production

from renewables influences the ones from coal and natural gas because the are ranked in

the merit-order curve. The economic variables used are the prices of the Financial Times

Stock Exchange 100 (FTSE 100), which represents the 100 biggest companies listed in the

London Stock Exchange, and the Deutscher Aktien Index (DAX), which represents the 30

largest companies listed in the Frankfurt Stock Exchange. Several authors have included
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economic variables in their analysis of the carbon price. For example, (Koch et al., 2014)

employed the returns of the European stock exchange and concluded that the EU ETS

was not affected by demand shocks. Still, there is not a homogeneous consensus of the

effects of an economic recession on the carbon price. During the time frame analyzed in

this document, the Covid-19 economic crisis took place.

As the carbon price is time-varying, it is crucial for its correct modeling to 1) measure the

volatility of the electricity production per source and 2) consider the economic variables

that have an impact on their price. For the first point, the Generalized Autoregressive

Conditional Heteroskedasticity (GARCH) model is useful. It assumes that not only past

variations but also the volatility of the CO2 emissions has an impact on the present value

of the CO2 emissions. For the second point, the GARCH multivariate Dynamic Condi-

tional Correlation model (DCC-GARCH) considers that past variations and volatility of

the other variables employed, such as the carbon price, affect the CO2 emissions. The

added value of the multivariate DCC-GARCH model is that both points can be tested per

variable. Hence, the model will measure the impact that previous returns and deviations

of each variable have on itself, and how these affect the other variables dynamically.

The univariate GARCH model specified by Engle (2013) is as follows:

(i) rt = mt +
√
htεt

(ii) ht+1 = ω + α(rt −mt)
2 + βht = ω + αhtε

2
t + βht

The first equation (i) represents the returns of the financial asset (rt) in terms of the

average of the returns (mt) and the residuals (
√
htεt). ht represents the variance of the

residuals, and εt the error term, which has a variance of one. The second equation (ii) is

the GARCH model for the variance of the residuals (ht+1) which is explained by the past

realizations of itself (ht) and the constants ω, α, and β. To estimate the constants ω, α,

and β; the model updates the previous forecast of h and the residual (Engle, 2013). The

way the model optimizes is considering weights of (1 – α – β, α, β). Note that the weight

of ω is calculated by difference the (1 – α – β).

In this paper, the Dynamic Conditional Correlation Multivariate GARCH (MGARCH-

DCC) is applied, which allows the use of many variables without increasing the model’s

complexity. The MGARCH-DCC model is used in this paper for the following reasons:

1) the model captures the heteroscedasticity of the variance, and 2) estimates the condi-

tional correlations between electricity variables that vary over time (Bali and Engle (2010);

Ewing, Malik, and Ozfidan (2002)). For instance, the correlation between the carbon price

and CO2 emissions may decrease during an economic crisis, because demand for electricity
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generated by coal may shrink due to economic depression instead. The MGARCH-DCC

model is determined in two steps. First, each variable is estimated following a univariate

GARCH model. Second, the correlation among all the variables is calculated. This dy-

namic process is expressed by the variable ρij,t that alters the MGARCH model as shown

below.

(iii) hij,t = ρij,t
√
hii,thjj,t

The variable ρij,t represents the dynamic conditional correlation among all the variables

included in the MGARCH. The i represents the number of variables considered in the

model. For this paper, there are six variables per country: clean electricity generation,

CO2 emissions from coal, gas and lignite, carbon price, electricity demand, coal-to-gas

price ratio and the stock market index. The j represents the same as i, but the distinc-

tion is made in order to emphasize that the model is expressed in matrix terms and that

different combinations of the variables are considered. The t represents the day of the

observations since the MGARCH is a time-series model.

Therefore, the MGARCH-DCC specified by Engle (2002) is comprised as follows:

(iv) Xt = µt +H
1/2
t εt

(v) Ht = DtRtDt

(vi) Rt = Q∗−1
t QtQ

∗−1
t

(vii) Dt = diag(
√
h11,t, . . . ,

√
hjj,t)

(viii) Qt+1 = (1− α− β)$ = Q+ αQt + βδi,tδj,t

The fourth equation (iv) represents the univariate GARCH model with the inclusion of

the matrix of time-varying conditional covariance (H
1/2
t ). This equation (iv) expresses

the vector of returns (Xt) and the vector of conditional returns (µt) per asset, where εt

is the vector of standardized residuals. Ht which is represented by the fifth equation (v)

is a matrix of time-varying conditional covariance that is built by the matrices Dt and

Rt. The diagonal matrix Dt which is shown in the seventh equation (vii) consists of the

standard deviations of the estimated returns by the univariate GARCH model.

Dt =


σ2
1,t 0 · · · 0

0 σ2
2,t · · · 0

...
...

. . .
...

0 0 · · · σ2
i,t


The eighth equation (viii) shows Qt+1 which represents the unconditional correlation

matrices that build the Rt, which is a symmetric conditional correlation matrix. This
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equation (viii) exhibits the coefficients that are relevant to test our hypotheses. Rt is

represented by the sixth equation (vi). Finally, the model obliges that α and β are non-

negative and that the sum of both is lower than 1.

Rt =


1 ρ12,t · · · ρ1i,t

ρ12,t 1 · · · ρ2i,t
...

...
. . .

...

ρ1i,t ρ2i,t · · · 1


The alpha (α) represents the spillover effect, which shows if the variation in the volatil-

ity of a carbon price impact another. For example, if there is an abrupt change in the

price of price of the EUA or UK CPF, the α will measure how this increase in volatil-

ity impacts the CO2 emissions. The beta (β) outlines the persistent effects that exhibit

if this variation has a future repercussion in another asset. For instance, if there is an

economic crisis, the volatility of carbon price would increase positively. This could lead

to a increase in the volatility of CO2 emissions that would last for many periods ahead,

as the carbon price is considered a cost for the generation of electricity by fossil fuels.

These two variables are useful to test if the carbon’s volatility affects the volatility of the

CO2 emissions and if the impact is persistent enough to influence persistently the future

development of the CO2 emissions. These effects are important for the industry, because

clean electricity investments require a stable carbon price to be profitable (Hirst, 2018).

Under the multivariate model, the α is represented by the variable dcca and the β by dccb

and they test the effect among the six variables.

Q-Q Plots for Residuals of the DCC-MGARCH model

As mentioned above, the model was not used since its residuals are not normally dis-

tributed. Below are the Q-Q plots which show this behaviour.
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Figure created by the author

Figure created by the author
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Q-Q Plots of Residuals

The Q-Q Plots of the models used in this study are shown below. As mentioned above,

the residuals of the models employed are normally distributed.

Figure created by the author

Figure created by the author
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Figure created by the author

Figure created by the author
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Figure created by the author

Figure created by the author
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