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Abstract

Worldwide the demand for solar photovoltaics (PV) has increased significantly over the past decades. This was driven by a
price reduction for solar PV systems. A two-stage least squares linear regression yields insights into the price sensitivity for
residential customers in the U.S., and California in particular. The specification includes instrumental variables as well as fixed
effects to account for the common issues of endogeneity and data heterogeneity in demand estimation problems, respectively.
The variation in the sales tax rate on solar PV and the movements of polysilicon spot prices are used to instrumentalise PV
price changes. The regression results imply an inelastic demand with a long-term price elasticity of -0.443, accounting for
differences over state and time. Investigating price elasticities for various income groups shows that lower-income customers
react more strongly to price changes compared to those with relatively high income (-0.521 vs. -0.195). Likewise, regions
with lower population density are more sensitive to price changes (-0.473 vs. -0.338). Besides price, installation costs and
technological efficiency majorly impact the system size installed. Results of this study can provide data-driven guidance to
efficient policy design and pricing strategies.
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1. Introduction

1.1. Central Issue
“The path towards sustainable energy sources will
be long and sometimes difficult. But America can-
not resist this transition; we must lead it.”

Barack Obama, 2013

Mounting greenhouse gas emissions (GHG) and global
climate change put especially industrialized countries under
pressure to act. In an attempt to reduce emissions and limit
global warming, the development and deployment of renew-
able energy sources is increasing worldwide as well as in the
United States (U.S.) (EIA, 2019c; IEA, 2019). Hence, the
importance of and focus on solar photovoltaics (PV) as one
source of renewable energy has risen continuously in the past
years. According to the International Energy Agency (IEA),
the technology is expected to be the main accelerator in re-
newable capacity growth from 2019 to 2024 (IEA, 2019). It is
little surprising, therefore, that investors, governments, and
researchers are taking interest in understanding which fac-
tors predominantly drive the solar PV demand. Especially

in the U.S., one of the world’s largest economies with many
different regional characteristics and incentive policies, this
issue is of vital importance for both firms and policymakers
(Gillingham & Tsvetanov, 2019a). Naturally, the installation
price and subsequent maintenance costs play an important
role when considering product demand. Installed price1 re-
ductions have led to a significant rise in installed systems
throughout the past decades (Barbose & Darghouth, 2019).
However, how sensitive are residential investors to a change
in prices? Which other factors are important when it comes
to deciding how much capacity to invest in? And do the an-
swers to these questions vary for different customer groups?

Relevant insights regarding this topic can be of tremen-
dous importance, as they enable federal and state govern-
ments to design better tailored, more efficient policy in-
centives and regulations while producing firms can make

1Hereinafter, installed price refers to the total costs for solar PV instal-
lation, including hardware costs as well as soft costs (customer acquisition,
system design, installation labour, permitting, inspection, etc.) and Balance-
of-System costs (racking, wiring, etc.) (Barbose & Darghouth, 2019).
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informed decisions on product design, pricing, and market
forecasts.

1.2. Research Aims
This study’s goal is threefold, placing particular emphasis

on the first of the three research questions:

(1) How high is the price elasticity of demand2 for solar
photovoltaic systems in the U.S.?

(2) Which other factors impact the installed system size,
and in what way?

(3) Can differences be observed for distinct subgroups of
the population?

The price for solar PV is probably easier to influence exter-
nally than other demand driving factors. Therefore, knowl-
edge of the marginal impact of price changes can be a crucial
lever to design better tailored policies and pricing in order
to globally increase the demand for and thereby the share of
solar energy generation.

To provide sound and data-driven answers to the key
questions outlined above, this study focusses on an econo-
metric approach to estimate demand elasticities. The model
specification includes instrumental variables as well as re-
gional and time fixed effects. This way, it addresses some
of the main challenges in demand estimation, accounting
for endogeneity in regressors and heterogeneity on a re-
gional level and over time, respectively (Cui, 2018; Gilling-
ham & Tsvetanov, 2019a). The analysis is mainly based on
a subset of U.S. pooled cross-sectional data collected and
pre-processed by the Lawrence Berkeley National Labora-
tory (NBNL) on distributed, grid-connected PV systems for
residential as well as non-residential customer segments
from 1998 to 2018. The data set contains key attributes of
installed systems, including system size, installed price, re-
ceived financial incentives, location, module technology, and
efficiency. A subset of observations is used for the estimation.
I supplement these data with information on production fac-
tors like polycrystalline silicon prices and installer labour
wages, as well as on incentive programs, electricity prices,
and income and tax levels3.

The analysis aims to derive insights that help to provide
tangible and actionable policy implications to promote eco-
nomic investment in solar PV and maximise the benefits of
political and commercial interventions. The estimates can
further be used to calculate program effectiveness and assess
social desirability by comparing the derived costs of carbon
emission abatement associated with solar PV rebates and tax
incentives to the estimated (social) cost of carbon emissions
assumed by the U.S. government (Gillingham & Tsvetanov,

2The price elasticity of demand is the percentage change in quantity de-
manded caused by a one percent change in price, moving along the demand
curve. The elasticity can be expressed as the slope of the relationship be-
tween the natural logarithm of quantity and price.

3An overview of selected variables can be found in Appendix A7, Table
18.

2019a). Also, looking beyond the scope of this study, iden-
tifying a valid method of demand estimation might be ben-
eficial to a much wider range of estimation problems, espe-
cially for early-stage technologies (Gillingham & Tsvetanov,
2019a).

The remainder of the paper at hand is structured as fol-
lows. Section 2 provides a brief introduction to today’s U.S.
energy infrastructure in general and the prevalence of solar
photovoltaics in particular, underlining the importance of the
topic in the light of current global environmental challenges.
It outlines current deployment and development of solar PV,
and gives insights into policies as well as the political environ-
ment regarding the technology in the U.S. The following sec-
tion 3 turns to the estimation of the solar PV demand curve.
It sheds light onto insights gained in relatively scarce preva-
lent literature on the topic and describes the Instrumental
Variable (IV) estimation methodology, its application to the
problem at hand, relevant data, and the estimation results.
Section 4 discusses the political and economic relevance and
implications of the findings. Lastly, section 5 critically as-
sesses the study, touches upon limitations, and draws a com-
prehensive conclusion, including an outlook on potential fu-
ture research.

2. Solar Photovoltaics in the U.S.

2.1. U.S. Energy Infrastructure and Solar Capacity today
The United States, as the world’s largest economy, have

a substantial influence on the global energy consumption as
well as its consequences. The energy mix in the U.S. is dom-
inated by fossil fuels, with petroleum, coal, and natural gas
making up more than 80% of the country’s energy production
in 2018, and fossil fuel consumption even having increased
by 4% relative to previous year levels (EIA, 2019a, 2019b).
As a result, the country generates about 15% of the global
energy-related CO2 emissions (Center for Sustainable Sys-
tems, 2019). According to the U.S. Environmental Protec-
tion Agency (EPA), U.S. GHG emissions, 80% of which are
CO2, have increased by 1.3% since 1990. Most of them stem
from burning of fossil fuels in transportation and electricity
generation (EPA, 2020).

Notwithstanding, clean energy sources have gained in im-
portance (EIA, 2020a). From the 1990s onward, renewable
sources other than hydropower and biomass started to take a
share in the U.S. energy mix (EIA, 2020a). Both U.S. produc-
tion and consumption from non-fossil energy sources reached
record levels in 2019, constituting 20% of the states’ total en-
ergy consumption (EIA, 2020b). A total of 19% of the U.S.
electricity was generated from renewable resources that year,
thereof 15% by solar power4, crowding out less efficient or
less ecological alternatives such as coal and oil (EIA, 2020a).

4One typically distinguishes between two types of solar power: solar ther-
mal and solar photovoltaic (Khan & Arsalan, 2016). Solar thermal converts
sunlight into heat which can subsequently be used for multiple purposes.
Solar photovoltaic applications, on the other hand, directly generate elec-
tricity from sunlight, using a semiconductor technology (Burr, 2014; Singh,
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Solar energy is abundant, inexhaustible, and amongst the
cleanest sustainable energy source to date (Denholm & Mar-
golis, 2007; Parida, Iniyan, & Goic, 2011), although negative
externalities are evidently not absent, arising during fabri-
cation, construction, and operation (Khan & Arsalan, 2016;
Nugent & Sovacool, 2014; Raman, 2013).

Solar power is one of the fastest-growing sources of en-
ergy, both globally and in the United States. In 2018, solar
energy accounted for about 2% of the total U.S. energy con-
sumption, but exhibited a growth of 22% compared to 2017
levels, highlighting the strong focus and large potential of the
technology (EIA, 2019c). The country’s total installed solar
PV capacity has reached over 81 GW5 in Q1 2020, following
extensive investment in the past years (Perea et al., 2020b).
For comparison, global PV installations reached 627 GW by
the end of 2019 (Feldman & Margolis, 2020). The U.S. instal-
lations in 2019 constitutes a 23% year-over-year increase and
represent nearly 40% of the total new U.S. electricity generat-
ing capacity installed that year (Perea et al., 2020a). Today’s
capacity was expected to more than double by 2025 before
forecasts declined moderately due to the impacts from the
coronavirus pandemic, which will most probably cause less
utility PV to be built in the coming years (Perea et al., 2020b).
However, especially residential solar saw a record-high in
capacity additions in 2019, while, on the other hand, non-
residential PV growth declined slightly due to unfavourable
policy changes in several states (Barbose & Darghouth, 2019;
EIA, 2019a).

2.2. Characteristics of Installations
Solar PV installations in the U.S. vary across customer

segments6 in numerous aspects, including system size, effi-
ciency, and module and inverter technology, constitute Bar-
bose and Darghouth (2019) from a representative U.S. data
set on PV installations7. Overall, systems grew in size, with
a median capacity of 6.4 kW for residential and 47 kW for
non-residential installations in 2018 (s. Appendix A1, Fig-
ure 1). Module efficiency is highest for residential applica-
tions, likely due to greater space constraints compared to
non-residential sites (s. Appendix A1, Figure 2). The resi-
dential share of monocrystalline silicon modules compared
to lower-quality polycrystalline silicon is largest (Barbose &
Darghouth, 2019), while production nowadays focusses on
even more efficient products such as monocrystalline p-type
PERC and n-type PERT, also for large-utility-scale systems

2013). These range between distributed small-scale residential to utility-
scale power generation facilities. Solar PV is the more mature and commer-
cially established technology (Khan & Arsalan, 2016).

5All energy is expressed in direct current (DC) units. Direct current de-
scribes the flow of energy into one direction only. All solar PV nowadays
produce DC power (Zainudin & Mekhilef, 2010).

6Distributed PV comprises residential as well as non-residential rooftop
PV installations of any size and ground-mounted systems of less than
7,000 kW. Non-residential systems are divided into small and large non-
residential, with a threshold of 100 kW, in accordance with Barbose and
Darghouth (2019).

7For a more detailed description, see section 3.4.1.

(Blakers, 2019; Burr, 2014; Platzer, 2012) (s. Appendix A1,
Figure 3). Furthermore, efficiency-enhancing module-level
power electronics8 (MLPE) like microinverters or DC power
optimizers are used particularly in residential installations as
small roof-top systems are constrained most with regard to
orientation and flexibility. On the contrary, ground-mounting
and tracking9 are more common for large non-residential and
utility-scale installations. According to Barbose and Dargh-
outh (2019), in 2018, only 3% of all residential systems
are ground-mounted. Less than 1% can track the sun, even
though many residential rooftop installations do not offer the
flexibility to freely choose the panel orientation, and only
slightly more than half of the systems were oriented south-
ward in 2018. This might be explained by lower rooftop in-
stallation costs, higher market penetration, and the fact that
systems became economically viable also without an optimal
panel orientation or tracking functionality (Barbose & Dargh-
outh, 2019).

2.3. Development of Installed Prices
Overall, renewable energy sources have become the

lowest-cost sources of power in many countries (IRENA,
2019). As one of those, solar photovoltaic has made huge
steps towards becoming a mature technology throughout
the last decade. In the U.S., average PV prices fell by 50%
between 2013 and 2018 (IRENA, 2019). This development
can primarily be attributed to higher efficiency, lower module
prices, and decreasing system costs and is expected to con-
tinue in the coming decades (IRENA, 2019). Capital costs of
solar PV include hardware costs as well as Balance-of-System
(BoS) and soft costs (Barbose & Darghouth, 2019; Elshurafa,
Albardi, Bigerna, & Bollino, 2018). While hardware mainly
refers to the PV module and inverter, BoS costs include rack-
ing and wiring as well as soft costs for customer acquisition,
system design, permitting, and labour costs for installation
and inspection (Barbose & Darghouth, 2019; Elshurafa et
al., 2018). Unlike hardware costs, these BoS costs differ re-
gionally due to their strong dependence on local wage rates,
taxes, and competition (Elshurafa et al., 2018; Gillingham et
al., 2016).

Barbose and Darghouth (2019) identify several key
trends in prices prior to incentives, using U.S. data from
30 states in the past 20 years. In 2019, national median in-
stalled prices in the U.S. ranged from $3.7/W over $3.0/W to
$2.4/W for residential to small and large non-residential sys-
tems, respectively (s. Appendix A1, Figure 4). These persist-
ing differences can mainly be attributed to higher economies

8Direct current power optimizers and microinverters are collectively re-
ferred to as module-level power electronics, or MLPE. They have replaced
standard string inverters in the past years, 55% of all residential PV systems
using some form of MLPE by 2014 (NREL, 2015). Both microinverters and
power optimizers can monitor the performance of individual solar panels,
rather than the solar panel system as a whole. They improve performance
for solar panels by reducing shading losses and the impact of multiple roof
planes (Deline, Meydbray, Donovan, & Forrest, 2012).

9Tracking is the technical ability of a system to flexibly change its orienta-
tion towards the sun compared to fixed-tilt systems (Barbose & Darghouth,
2019).
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of scale for larger installations (Barbose & Darghouth, 2019).
In the long term, installed prices fell due to the reduction in
both hardware, BoS, and soft costs. Modules and inverters
made up about 55% of these total cos reductions and fell
most between 2008 and 2012 (Barbose & Darghouth, 2019).
The remaining 45% can be attributed to reduced BoS costs.
While for residential PV, the decrease was mainly driven by
hardware cost, non-residential installers benefited to a major
extent from reduced BoS and soft costs (Barbose & Dargh-
outh, 2019). The decline in non-hardware costs cannot be
linked to a single factor, but rather a changing market and
policy environment as well as mechanical aspects. Regarding
technical reasons for price reduction, drivers are twofold: On
the one hand, installing larger systems on average reduced
costs per watt as fixed costs for permitting and customer
acquisition occur irrespective of installation size. On the
other hand, hardware technologies have improved and –
due to the extreme price deflation of PV in the past years –
were able to push less efficient polycrystalline modules out
of the market. Increased module efficiencies in turn lead to
a disproportionately low increase in area-related costs like
racking and wage costs for installation of a given capacity
(Barbose & Darghouth, 2019). Overall, in 2019, prices con-
tinued their declining trend, though at a slower pace. This
reduced marginal change is mainly due to lowered finan-
cial incentives and higher customer acquisition costs as most
early adopters already installed solar PV. Also, cost reductions
and efficiency gains become increasingly difficult to capture
as the market matures (Barbose & Darghouth, 2019). With
rising grid penetration, more significant cost reduction be-
comes necessary in order to make solar PV profitable for the
remaining potential customers, especially in states exhibiting
already high PV shares.

Looking at an absolute price level, Barbose and Dargh-
outh (2019) and Gillingham et al. (2016) find that costs
vary substantially across states (s. Appendix A2, Figure 9).
Smaller markets are generally associated with higher prices
but more significant cost reductions. Likewise, urban ar-
eas tend to show higher prices. According to Barbose and
Darghouth (2019), even on an individual installer-level, me-
dian installed prices deviate substantially. They are signifi-
cantly higher for systems with premium efficiency modules
and MLPE as well as ground-mounted systems. Interestingly,
tax-exempt customers, mostly non-residential, also exhibit
higher prices on average.

Understanding the key drivers and characteristics of PV
system price changes as well as distinct regional differences
is essential for the following estimation and interpretation of
the results, especially because changes in the installed price
need to be approximated through variation in correlated (in-
strumental) variables.

2.4. Incentive Policies and Political Environment
The United States implemented several utility, state, and

federal incentive mechanisms to foster growth of solar PV
(Barbose & Darghouth, 2019; Consumer Energy Alliance,
2018; Platzer, 2012; Shrimali & Jenner, 2013). Mostly, these

comprised of cash incentives through the state or utility PV
programs in the form of rebates or grants, performance-
based incentives (PBIs), and federal and state investment
tax credits (ITC) for both distributed and utility-scale sys-
tems. Furthermore, tax exemptions, rights for accelerated
depreciation, retail rate net metering, a market for solar re-
newable energy certificates (SRECs), and non-rebate market-
ing programs had been established, some of which still exist
(Barbose & Darghouth, 2019; Gillingham & Bollinger, 2019;
Shrimali & Jenner, 2013). Tax exemptions for schools, gov-
ernments, and non-profits result in a disproportionately large
share of reduced tax costs for non-residential customers, find
Barbose and Darghouth (2019). ITC supports investment
since 2005 by providing a dollar-for-dollar reduction in tax
liabilities (Platzer, 2012; SEIA, 2020). Distributed as well
as large-scale utility installations are eligible to tax credits
of up to 30% of purchase and installation costs. In 2015,
the ITC was extended to 2021 and 2022 for residential and
commercial applications, respectively, but the credit value
will start to decline in 2020 (SEIA, 2020). However, not only
ITC but also cash incentives have decreased throughout the
past decade (Barbose & Darghouth, 2019). Many regions
plan to phase out local government incentive programs in
the coming years or have already done so (Gillingham &
Tsvetanov, 2019a). At peak times providing cash incentives
of $4-6/W, those expired in most larger markets or dimin-
ished to less than $0.5/W on average. However, other forms
of financial support like SRECs have become more profitable
and thus more prevalent (Barbose & Darghouth, 2019). On a
state level, Renewable Portfolio Standards (RPS) encourage
investment in green technologies by requiring certain contri-
butions of renewable sources to the state’s energy generation
(Yin & Powers, 2010). SRECs markets facilitate compliance
with these obligations. PV system owners have the possi-
bility to sell SRECs from their installations, offering indirect
cash incentives. Several states prefer these generation-based
incentives over standard offer-based ones (Barbose & Dargh-
outh, 2019). If one can assume that demand side subsidies
are directly considered in the purchase decision and supply
side subsidies are passed on (at least partly) to consumers
(Dong, Wiser, & Rai, 2018; Gillingham & Tsvetanov, 2019a),
then the changes in incentives directly impact installed prices
and consequently solar PV demand10.

In spite of numerous programs put in place to promote
solar power usage, American energy policy has changed dras-
tically under the current administration. It reversed sev-
eral former agreements and targets and has, for instance, re-
placed the Clean Power Plan with a weaker Affordable Clean
Energy Rule (Keyes et al., 2019; Krupnick et al., 2018). As
the U.S. are one of the largest exporters of crude oil and nat-
ural gas (EIA, 2019a), economic interests seem to oppose the

10Gillingham and Tsvetanov (2019a) find a pass-through rate of cost re-
ductions from the installer to the consumer of 84%, Dong et al. (2018) even
find nearly 100% incentives pass-through for residential customers in Cali-
fornia, implying a competitive market and well-operating subsidy programs
from a pass-through perspective.



V. C. Bukow / Junior Management Science 7(3) (2022) 643-667 647

goal of deep decarbonisation and economy-wide emission re-
ductions of 80% by 2050, stated in the U.S. Nationally De-
termined Contribution (NDC) of the Paris Agreement (Den-
nis, 2019; United Nations, 2016). On November 4th, 2019,
the U.S. government officially announced to withdraw from
the Paris Agreement, although their pledge remains legally
valid until November 2020 (Dennis, 2019; Zhang, Dai, Lai,
& Wang, 2017). As a response, some states formed sub-
national climate initiatives and continue to strive for the pre-
viously set goals (Center for Climate and Energy Solutions,
2019; Friedman, 2019).

Furthermore, the current administration made some
changes regarding solar energy in particular. In January
2018, the U.S. government placed a ‘Section 201 Solar Tariff’
on imported solar cells and modules, rendering investment
more expensive – especially for utility-scale applications, as
hardware costs increase (SEIA, 2019). These frequent policy
and price changes make it an even more pressing matter to
understand their effective impact on the demand for more
renewable energy sources like solar photovoltaics.

3. Estimation of the Demand Curve

3.1. Evidence on Price Elasticity of Demand
So far, existing research on the demand for solar pho-

tovoltaic systems is very limited. Most research rather fo-
cusses on price elasticity of electricity demand than on the de-
mand for the generation technology itself (Bernstein & Grif-
fin, 2006; Mewton & Cacho, 2011; Miller & Alberini, 2016).
Also, as solar PV can still be considered a maturing technol-
ogy (Khan & Arsalan, 2016; van der Hulst et al., 2020), de-
mand and supply conditions are constantly changing, making
it harder to capture influences that remain valid over time.
Recently, Gillingham and Tsvetanov (2019a) were the first
to simultaneously address three main empirical challenges
in estimating the demand for residential solar PV: price en-
dogeneity, unobserved geographic heterogeneity, and excess
zeros in the outcome variable with count data. Using panel
data11 on Census block level from Connecticut on the count of
annual solar PV systems installed, Gillingham and Tsvetanov
(2019a) account for heterogeneity in block group-specific
characteristics by including geographic fixed effects and year
dummies (Wooldridge, 2005). Furthermore, the address the
issue of excess zeros in count data by applying a two-stage
Poisson hurdle model12 consisting of a logit regression with
a control function and a truncated Poisson estimated by a
General Method of Moments estimator. They include local
roofing contractor wage rates and state incentives for PV sys-
tems as instrumental variables to eliminate the endogeneity
in the price regressor. Their results suggest that residential

11Panel data are multidimensional data that include measurements pooled
over space and time. They are a combination of cross-section and time series
data (Baltagi, 2008).

12Hurdle models are motivated by sequential decision-making. The can
represent the process of first deciding whether to buy or not and secondly
deciding on the (positive) quantity to buy (Gillingham & Tsvetanov, 2019a).

consumers are relatively price insensitive (−0.65), meaning
that the demand decreases less than proportional to the price
increase.

Cui (2018) takes a slightly different approach to estimate
both demand and supply functions of rooftop solar panels
in California using data from the California Solar Initiatives
rebate program. Like Gillingham and Tsvetanov (2019a),
she estimates a hurdle model with count data to account
for zeros in installation numbers aggregated by zip code and
month. Likewise, Cui (2018) assumes a two-part non-linear
model and uses a control function instead of a two-stage least
squares estimator to account for endogeneity. Employing
changes in rebates as exogenous variable to estimate supply
and demand function simultaneously, she finds very different
results compared to Gillingham and Tsvetanov (2019a), with
a demand elasticity of -3.824 and supply elasticity of 5.572.
She also specifies one model estimating the system size in-
stead of installation count but does not obtain significant es-
timates. According to Cui (2018), customers are highly price
sensitive, wherefore rebates are a very effective way to pro-
mote PV adoption. Cui (2018) further states that elasticity is
not constant, but that consumers and sellers get more price
inelastic as prices decrease. Besides the different model spec-
ifications, regional characteristics might to some degree pro-
vide explanations for the deviating results of these two stud-
ies. Gillingham and Tsvetanov (2019b) state that, unlike in
Connecticut, the phase-out of subsidies could be anticipated
beforehand in California, probably impacting the timing of
investment decisions. Another aspect leading to differing es-
timates could be the limited sample of rebate installations
as well as the slightly less granular assessment on zip code
rather than Census block level.

Exploiting the changes in rebate rates for residential sys-
tems in California, Hughes and Podolefsky (2015) use a
reduced form equation to estimate the number of installa-
tions. They find relatively high rebate elasticities of about
-1.2, accounting for mean and utility specific unobservable
characteristics that affect PV adoption and vary over time.
Rogers and Sexton (2014) conclude that rebate elasticities
are slightly lower, estimating a reduced form rebate elasticity
of -0.4 for California.

Overall, the need for further research becomes apparent,
as prevalent insights are both divergent and scarce. Numer-
ous research designs are employed, ranging from different
predictors over various forms of model specifications and es-
timation methodologies. Therefore, there is no consensus on
typical demand curve characteristics and elasticities for so-
lar photovoltaics so far. To my knowledge, there is no study
yet providing substantial insight on the price elasticity of so-
lar photovoltaic installations’ system size installed, as will be
the focus of this study.

3.2. Methodology and Research Design
3.2.1. Issues in demand estimation

Estimating demand and supply curves and their factor
elasticities inherently poses the issue of simultaneous causal-



V. C. Bukow / Junior Management Science 7(3) (2022) 643-667648

ity13 because the observed data of prices and quantities rep-
resent a set of market equilibria where supply equals demand
(Angrist & Krueger, 2001). The price of a good influences its
quantity bought and vice versa. An ordinary least squares
(OLS) regression is incapable of isolating the effect of a price
increase on one of the two curves, making alternative meth-
ods of estimation indispensable (Stock & Watson, 2020). A
general linear model of solar PV demand would be specified
as follows (Eq. (1) and (2)):

Yi = β0 + β1X1i + · · ·+ βkXki + ui (1)

Or, in matrix algebra

Y = βX + u (2)

For i = 1, . . . , n observations, let Y denote the dependent
variable to be estimated: the size measured in watts of a solar
PV system installed. X represents the k demand shifters or
regressors incorporated in the model to estimate Y . The βs
measure the effect size of the respective variables and are the
coefficients of interest. The demand function is assumed to
be linear in its parameters here.

A standard OLS approach to estimate the demand curve
(Eq. (1)) makes several assumptions. One of them is that re-
gressors X1i , . . . , Xki and error term ui are uncorrelated, i.e.,
the conditional expectation of the error given the regressors
is zero (E [ui |X i ] = 0). Those regressors are called exoge-
nous. In other words, there is no unobserved variable that is
correlated with X and simultaneously changes Y . If this does
not hold true, resulting OLS estimates are inconsistent even
for large samples and other methods of estimation are nec-
essary (Stock & Watson, 2020). This is where one challenge
arises in this study. As for every supply-demand problem, the
above-stated assumption of exogenous regressors is violated.
An OLS estimation is biased because the simultaneous causal-
ity induces a correlation between the price regressor and the
unobservable error term. Thus, how can this demand func-
tion be estimated consistently with the present endogeneity
in prices? First, I define the model more precisely, separating
endogenous and exogenous regressors:

Y = βX + γW + u (3)

Y still denotes the system size. The right-hand side com-
bines its determining factors as well as the error term u. X
now represents the endogenous regressors correlated with u
while W denotes the truly exogenous regressors which are
not correlated with u. In this estimation, only price per watt
is assumed to be endogenous. With an endogenous regres-
sor X the estimate of β will be incorrect (Stock & Watson,
2020). It captures both the effect of independent changes
in X as well as changes in the error u due to simultaneous
changes in Y associated with X .

13Simultaneous causality means that “causality runs ‘backward’ from Y to
X as well as ‘forward’ from X to Y” (Stock & Watson, 2020, p. 428). It is one
cause for endogeneity in regression problems.

There are several possible solutions to obtain consistent
estimates in the case of simultaneous equations (Wooldridge,
2015). One, and probably the most frequently used one, is
an Instrumental Variable approach, first employed by Philip
Wright in 1928 (Angrist & Pischke, 2008; Wright, 1928).

3.2.2. Theory of instrumental variable estimation
The basic idea behind an IV estimation is to eliminate

any correlation of the endogenous regressors X with the er-
ror term u by finding other variables that can be used in
the regression in their stead. These variables are called in-
struments. Demand and supply estimation problems were
the first applications of instrumental variables, initially called
‘curve shifters’ (Angrist & Krueger, 2001). For demand esti-
mation, these curve shifters are used to trace out the slope of
the curve by an exogenous variation in the supply, modifying
cost conditions without affecting demand conditions (Angrist
& Pischke, 2008; Stock & Watson, 2020).

An instrument, let it be Z , needs to satisfy two conditions
of validity in order to produce meaningful results (Stock &
Watson, 2020): Firstly, it must be relevant, i.e., highly cor-
related with the endogenous regressor to be replaced in or-
der to serve as a good proxy variable (Cor (Z , X ) 6= 0). The
more variation in X can be explained by variation in the in-
strument, the more information will be sustained in the IV
regression. If an instrument explains only a minor part, it is
called weak (Stock & Watson, 2020). In this case, a weak in-
strument could be the price for an input factor that accounts
only for a very small share of the final price or – with hetero-
geneous outcomes – influences only few observations, like
the price for a rare module technology. Secondly and equally
important, an instrument must be exogenous. This means
that it must not affect the left-hand side of the equation –
the variable to be estimated (Cor (Z , u) = 0). The variation
in X that is related to Z is not related to u, neither through
a direct effect of Z on Y nor through a variable that is not
included in the model but is causally linked to both Y and Z
(Stock & Watson, 2020). Given these assumptions hold true,
the exogenous part of the variation in the endogenous regres-
sor X can be isolated via changes in Z and can subsequently
be used for a consistent estimation of Y (Angrist & Pischke,
2008; Stock & Watson, 2020). For this to work, one endoge-
nous regressor must have at least one but can have several in-
struments. An IV model is called overidentified if the number
of instruments exceeds the number of endogenous variables
(Stock & Watson, 2020). Otherwise, it is exactly identified.
Both relevance and exogeneity of instruments can be tested
statistically, at least for overidentified models, e.g., by using
the first stage F-statistic and the test on overidentifying re-
strictions (J-Statistic), respectively (Stock & Watson, 2020).

According to Angrist and Krueger (2001), the most ef-
ficient way to obtain estimates in an IV regression, espe-
cially when using numerous instruments, is the two-stage
least squares (TSLS) approach. It builds upon two OLS re-
gressions run in a row to compute the TSLS estimators.

(1) In the first stage, the part in the variation in X that
is uncorrelated with the error u is isolated by regressing the
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endogenous variable X on the instruments Z and all further
exogenous variables W . X is split into two components: one
that is correlated with the error and one that is not. For each
endogenous regressor – in this study only the price –the re-
duced form equation (4) needs to be estimated by OLS (Stock
& Watson, 2020):

X=πZ+δW+v (4)

(2) In the second stage of TSLS, the idea is to estimate
fitted values X̂ for all observations building on the first stage
results and subsequently use these fitted values X̂ instead of
the original values X for estimation of the actual model speci-
fication. The original equation (3) is estimated again by OLS,
only that X is replaced by X̂ :

Y = β bX + γW + eu (5)

This regression provides consistent estimates bβ TSLS , con-
verging asymptotically towards the true parameter as the
sample size increases (Stock & Watson, 2020). Consequently,
researchers should work with significant sample sizes when
applying an IV approach. However, if the explanatory vari-
able is in fact not endogenous, both TSLS and OLS estimator
are consistent, but the latter is more efficient. Therefore, it
is important to ensure the presence of endogeneity, for in-
stance by using the Durbin-Wu-Hausman test (Baum, Schaf-
fer, & Stillman, 2007).

3.2.3. Potential issues in instrumental variable estimation
Like many other statistical models, an instrumental vari-

able approach makes some model assumptions that need to
be satisfied in order to obtain valid estimates (Stock & Wat-
son, 2020). For IV models, these assumptions are modifica-
tions of the OLS assumptions for causal inference outlined in
Stock and Watson (2020). In practice it is often very hard
to meet all the requirements. Therefore, their validity in this
application is discussed in Appendix B1.

More generally, Angrist and Krueger (2001) point out that
IVs can solve the first-order problem to remove omitted vari-
able bias14 (OVB) only for a well-defined population. With
heterogeneous responses, not every single observation can be
explained by variation in the instruments as they only capture
part of the true variation in prices. For example, where mod-
ule costs do not differ significantly but mainly other hard-
ware, BoS, or soft costs are drivers of price changes, an in-
strument shifting module prices will not accurately depict
the price variation. Including several instruments can pos-
sibly counteract this to some extent. However, due to the
bias-variance trade-off (James, Witten, Hastie, & Tibshirani,
2013), using more instruments might increase the variance
of the estimators (Angrist & Krueger, 2001).

14“If the regressor [. . . ] is correlated with a variable that has been omitted
from the analysis [. . . ] and that determines, in part, the dependent variable
[. . . ], then the OLS estimator will have omitted variable bias. Omitted vari-
able bias occurs when two conditions are true: (1) the omitted variable is
correlated with the included regressor and (2) the omitted variable is a de-
terminant of the dependent variable.” (p. 212 Stock & Watson, 2020).

Lastly, another pitfall in IV estimation mentioned by An-
grist and Krueger (2001) are functional form issues for both
stage estimations. They emphasise that in a TSLS estimation
procedure, the consistency of the final estimates bβ TSLS does
not depend on the correct functional form of the first stage
regression (Kelejian, 1971). Therefore, I estimate a linear
regression for the first stage as a more complex non-linear
model does not generate consistent estimates unless the fit is
exactly right (Angrist & Krueger, 2001).

3.3. Application to Solar PV Demand Estimation
3.3.1. Specifying a multiple log-log linear regression model

The difficulties of demand estimation problems as well
as one possible solution to solve them have been introduced
in the previous sections. In the following, I apply this to
the estimation of solar PV price elasticity. The preferred
model15 specification in this study is a multiple linear regres-
sion with log-transformed continuous outcome and predictor
variables, including time and regional fixed effects on state
and year level, controlling for several potentially confound-
ing variables, and instrumenting for price. It is specified as
follows:

log (Y ) = β log (X) + γlog (W) +α+µ+ u (6)

Y is the system size installed in watts, X represents all
explanatory variables (exogenous and endogenous), W are
control variables, and α and µ are fixed effects. The primary
objective is to assess the constant elasticity of the system size
installed with respect to the explanatory variables. There-
fore, I estimate a log-log additive linear model (Eq. (6)). Its
coefficients can directly be interpreted as an expected per-
centage change in system size given a regressor increases by
one percent (Benoit, 2011). Rather than focussing on abso-
lute differences, I estimate the relative change, the elastic-
ity. If the price elasticity is constant, a percentage increase
in price can be expected to cause a proportionate change in
PV size demand over a wide range of prices. Thus, assuming
a constant elasticity implies that absolute changes in system
size may differ depending on the former level. This seems
reasonable because a price increase by 1% when prices are
low might well induce a shift in system size installed that is
different from the shift caused when initial prices are rela-
tively high. This means that a log transformation natively
handles non-linear relationships between system size and in-
dependent variables (Benoit, 2011; James et al., 2013). For
the data used here, regression plots show that the relation-
ship between system size and the explanatory variables af-
ter log-transformation is at least slightly more linear (s. Ap-
pendix A4, Figure 18 to Figure 21). Apart from simplifying
the functional form, log-transformed variables often follow
an approximately normal distribution for otherwise skewed
variables. In this case, several variables are right skewed

15Hereinafter, preferred and final model synonymously refer to the model
selected as the best model after conducting diagnostic and model validity
tests as well as plausibility considerations.
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(s. Appendix A4, Figure 22 and Figure 23), wherefore a trans-
formation seems appropriate in order to better satisfy the as-
sumptions of model linearity and normal distribution of the
errors.

The linear additive model of the logs holds further ad-
vantages over other specifications. It can easily incorporate
fixed effects to account for heterogeneity and instrumental
variables to eliminate endogeneity (Gillingham & Tsvetanov,
2019a). Furthermore, its coefficients allow a straightfor-
ward interpretation, making it very popular with many re-
searchers.

3.3.2. Deciding on the dependent variable
As described in section 3.1 above, most former research

estimates demand models with installation count instead of
system size as dependent variable (e.g., Cui, 2018; Gilling-
ham & Tsvetanov, 2019a; Hughes & Podolefsky, 2015).
Rather than determining to what extent price changes in-
fluence the system size installed they assess the propensity
of adoption, meaning the decision to invest in solar PV, mea-
sured by the number of installed systems in each area. Unlike
this study, those consequently also consider a zero-realisation
with the decision not to invest by using a two-stage hurdle
model. Thereby, they account for the fact that changes in
demand factors can incite markets to change from zero to
nonzero quantities, and vice versa. However, in order to
use count data, a very broad and high-quality data cover-
age is necessary such that a count of zero installations can
be attributed to the decision not to buy rather than missing
data. Additionally, in California, subsidies were phased out
in a way that depended on the total amount of installed PV
capacity, allowing consumers and firms to reasonably antic-
ipate the timing of subsidy declines and leading to bundled
installations shortly beforehand which would have to be ac-
counted for when using count data (Gillingham & Tsvetanov,
2019b).

Other research applies a dynamic discrete choice16 ap-
proach (e.g., Bollinger & Gillingham, 2019; Burr, 2014),
which might seem reasonable since most people would only
install a system once. However, Gillingham and Tsvetanov
(2019b) provide evidence that the investment in solar PV
can more often be treated like normal purchases rather than
a “buy-or-wait” decision. Furthermore, as more capacity can
be added later, the decision on the size of the solar PV sys-
tem is not necessarily a discrete choice. For those reasons,
this study takes system size as the dependent variable to be
explained.

3.3.3. Identifying suitable instrumental variables
Knowing of the endogeneity issue in the estimation, how

can the IV approach be applied to consistently estimate the
model elasticities β? The first step is to find suitable instru-
ments for the installed price per watt. Generally, the choice of

16A dynamic discrete choice model estimates the decision of a forward-
looking agent over a finite number of options who is taking the utility of
future alternatives into account (Heckman & Navarro, 2007).

good instruments first and foremost relies on a profound un-
derstanding of the economic mechanism behind the relation-
ship of interest (Angrist & Krueger, 2001; Angrist & Pischke,
2008). This leads to plausible and more intuitive results com-
pared to abstract theoretical models based on hard-to-verify
assumptions about certain distributions and relationships, so
Angrist and Krueger (2001). To trace out the demand curve,
one or more instruments that impact the supply of PV mod-
ules but not their demand have to be found. A typical supply-
side instrument shifts costs of sales or production as these can
be expected to affect supply without impacting demand (An-
grist & Krueger, 2001; MacKay & Miller, 2019). Although
statistical tests can assist to evaluate the relevance and exo-
geneity of instruments, it is useful to think about whether a
chosen instrument plausibly satisfies these conditions (Stock
& Watson, 2020). In complex demand models, especially
the exogeneity of instruments can be challenging to assess.
In this study, the preferred model employs two instrumental
variables to approximate changes in the price for solar PV:
Polycrystalline silicon prices and the sales tax rate on solar
PV installations.

The first instrument, price quotes for polycrystalline sil-
icon or ‘polysilicon’, aims to capture the variation in input
factor costs. Polysilicon is the main raw material used for PV
module production (Woodhouse, Smith, Ramdas, & Margo-
lis, 2019). According to Woodhouse et al. (2019), crystalline-
silicon made up about 90% of all PV production in 2014,
increasing to over 95% in the subsequent years. Polysili-
con is the basis for production of both multi- and monocrys-
talline silicon ingots of different purity and efficiency levels,
which are then processed to wafers, manufactured into cells,
and eventually fabricated into entire PV modules. Therefore,
nearly all PV modules installed in the market in the past years
used polysilicon as one factor of production. Moreover, the
installed price of solar PV is to about 55% determined by
hardware component costs (e.g., module, inverter) and to
45% by BoS and soft costs (e.g., installation labour, acqui-
sition cost, system design, permit and inspection, installer
margins, loan-related fees). As the following estimation con-
siders only residential systems, for which the price decline
in the past years was mainly driven by hardware cost reduc-
tion, instrumenting price changes via variation in those costs
seems reasonable (Barbose & Darghouth, 2019). Therefore,
input factor prices can be assumed to represent a relevant
instrument. Further, as it seems plausible to assume that a
residential customer’s demand does not directly rely on the
level of the price for polysilicon, these should be exogenous
and influence demand only indirectly through the installed
price. Even though there are possibly several relevant vari-
ables omitted from the model, these are similarly unlikely to
be related to global polysilicon prices and will, therefore, not
cause a correlation of this instrument with the error. Notwith-
standing, a potential limitation of the power of the polysili-
con prices as an instrument could be the fact that these are
relevant only at the very beginning of a complex and costly
production chain, making up less than 10% of the production
costs of monocrystalline PV modules in 2018 (Woodhouse et
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al., 2019). Consequently, final module prices could differ sig-
nificantly reflecting costs of subsequent production steps or
further input factors even for initially equal polysilicon input
costs, leading to a relatively weak instrument. This would im-
ply that further production cost factors for PV modules need
to be incorporated as instruments in the first stage estima-
tion to approximate the price development more precisely.
However, further data on hardware production costs are lim-
ited and soft costs are rather hard to quantify as they differ
severely, depending on changing market and policy environ-
ments (Barbose & Darghouth, 2019). To account for a part
of cost fluctuations for different modules and inverters, I in-
clude dummies indicating the type of module technology as
well as MLPE in the model, where this information is avail-
able.

The second variable to instrumentalise installed prices is
the sales tax rate levied on the hardware costs of installed sys-
tems, again assumed to be 55% of the total installed price.
Tax rates are a popular instrument for price changes (Fron-
del & Vance, 2013; Stock & Watson, 2020). For one thing,
they can be assumed to be relevant, as after-tax sales prices
are adjusted to incorporate changes in taxes and often make
up quite a noticeable part of the price for the final customer.
We would assume prices to increase alongside rising sales tax
rates, expecting producers to pass on at least part of the ad-
ditional costs to consumers. The question whether tax rates
can be considered exogenous is somewhat harder to answer.
On the one hand, a change in tax rates can plausibly be as-
sumed to impact consumer demand solely through the ad-
justment in prices and not directly through the mere fact
that tax rates changed. However, unlike polysilicon prices,
tax rates are more likely to be related to some of the omitted
variables in the error term. While unobserved variables like
hours of sunshine and irradiance are unrelated to setting tax
rates, electricity prices may change alongside tax rates and
simultaneously influence the amount of solar PV invested in.
Also, incentive payments could be linked to tax policy, be-
cause general sales tax as well as many incentive programs
are determined by state governments through political and fi-
nancial considerations (Tax Policy Center, 2020). If these are
not entirely captured by fixed effects included in the model,
this might lead to inconsistent TSLS estimates. For this rea-
son, the exogeneity test result will be particularly relevant
here. In this study, the sales tax rate includes any poten-
tial tax exemptions granted to solar PV investors through the
state government (Barbose & Darghouth, 2019; Shrimali &
Jenner, 2013) which might lead to other-than-expected coef-
ficients in the first stage linking tax rate and price per watt, if
tax exemptions are primarily granted where prices are higher.

Apart from the instruments described in more detail
above, I estimate specifications using further potential sup-
ply shifters given in section 3.4.2.2. However, mostly due
to missing data and limited granularity, these did not yield
meaningful estimates.

3.3.4. Defining relevant explanatory variables and controls
Other than price, further aspects determine the size of

a solar photovoltaic system to be installed. In this estima-
tion, I include information on the module efficiency assessing
the energy conversion efficiency of the modules, and dum-
mies indicating ground-mounting, tracking functionality, and
the fact whether the system is installed as retrofit on an ex-
isting house or during the construction of a new building.
Apart from these, data on the kind of module technology
and MLPE are incorporated in the model. Module technolo-
gies are grouped into polysilicon, monocrystalline silicon, or
other technologies. As MLPE categories I consider microin-
verters, DC optimizers, or no power electronics.

Naturally, there might be a large range of other variables
that could turn out relevant determinants of the system size
installed. However, as for the decision to invest in a good, es-
pecially a more complex one like a solar PV system, investors
take many different variables into account, including the data
on all these will probably be unattainable. This is no major
cause for concern if the omitted factor is not correlated with
any variable included in the model. However, if it is, this vari-
able’s coefficient estimate will be biased, reflecting not only
its own effect but also that of the omitted variable (Stock
& Watson, 2020). For this reason, control variables, though
their coefficients are not of primary interest and might not
have a sound causal interpretation, need to be incorporated
in a model if their absence would otherwise cause OVB (An-
grist & Pischke, 2008; Stock & Watson, 2020). In the final
model, I include information on the number of households
and the adjusted gross income per household on zip code
level per year. A high level of income might positively re-
late to the propensity to invest in solar PV and its system size
while the number of households, approximating the popula-
tion and building density, could negatively impact the system
size installed. In addition, they could in numerous ways be
related to predictive variables included in the model, e.g., the
efficiency, tracking equipment, or ground-mounting, assum-
ing that richer people can afford to buy higher-class modules
and higher population density requires the purchase of roof-
mounted installations. By including the information in the
model, I avoid confounding effects in the estimates of my co-
efficients of interest (Stock & Watson, 2020).

3.3.5. Accounting for heterogeneity through fixed effects
In a pooled data setting, fixed effects allow to eliminate

OVB caused by factors that are not included in the model and
which vary across states, but are constant over time (state
fixed effects αi), or which vary over time, but are constant
across states (time fixed effects µt) (Borenstein, Hedges, Hig-
gins, & Rothstein, 2010; Stock & Watson, 2020). They mea-
sure the residual difference across state and time, respec-
tively, after accounting for all other factors in the model.
Including an interaction term between state and time fixed
effects allows the time effect to be different for individual
states and vice versa (Stock & Watson, 2020). In this study,
state fixed effects might capture e.g., weather conditions and
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hours of sunshine, established institutions, as well as preva-
lent fundamental culture and values. Time fixed effects, on
the other hand, can account for aggregate time-varying de-
mand shocks across states, U.S. economic and population
growth, inflation, technological progress, and federal policy
changes. One needs to bear in mind that time fixed effects
might capture the impact of varying production factor input
prices as well, if those are not included in the model. The in-
teraction of both state and time fixed effects represents how
state-specific factors change over time, e.g., state legislature
and regulations, and subsidy and tax policies, as well as mar-
ket conditions, prominent mindsets, trends, and acceptance
of innovative technologies in a state. These interaction ef-
fects will only change estimations if enough data from differ-
ent states and time frames is included, however. After data
selection, this does not hold true for this study. The final
model is estimated without interaction as there was no sig-
nificant difference in the coefficient estimates.

3.4. Data
3.4.1. ‘Tracking the Sun’ data

Data set and structure

The original data of which a subset is used for estimation
were collected and pre-processed in the ‘Tracking the Sun’
(TTS) data set by the Lawrence Berkeley National Labora-
tory (LBNL). Overall, the data cover PV systems installed in
the U.S. from 1998 throughout 2018 with trends of the first
half of 2019 (Barbose & Darghouth, 2019) (s. Appendix A2,
Figure 5). The installation data were primarily reported to
state agencies and utilities managing PV incentive programs,
SREC registration, or interconnection processes in 30 states.
The sample contains project-level information on nominal in-
stalled prices, system size, tax payment, financial incentives,
module and inverter technology, efficiency, location, and fur-
ther relevant characteristics of grid-connected, distributed
solar PV systems. It excludes utility-scale systems. Barbose
and Darghouth (2019) also dropped duplicate observations17

and those where information on system size or installation
date were missing. They corrected the data for obvious errors
and standardised installer, module and inverter labels. Over-
all, 1,543,831 PV systems are included in the full sample,
making up about 80% of all U.S. distributed PV systems in-
stalled throughout 2018 (Barbose & Darghouth, 2019). Most
data stem from California, as solar PV is most prevalent here.
In line with this, sample coverage tends to be weaker in small
and mid-sized state markets.

Data selection

To improve accuracy, interpretability, and generalisabil-
ity of the demand estimation, only a subset of the full TTS

17Few duplicate systems with redundant information were left in the sam-
ple. Those were deleted to ensure that one installation from one point in
time is only included in the sample once.

data sample18 is used. First, I drop all observations with in-
valid price information. For this purpose, I exclude systems
where installed prices are missing, which are about 23% of
all observations. Among the remaining, I filter extreme out-
liers by including only installations with an installed price
per watt between 1 and 10 USD. Those are prices between
the 1st and 99th percentile in this data set, rounded inward
to the nearest integer (s. Appendix A3, Figure 10). Likewise,
all third-party owned systems (39.4% of full sample), sys-
tems with appraised price values (25.4% of full sample), self-
installed systems (1.4% of full sample), and systems with bat-
tery backup (0.7% of full sample) are not considered in the
estimation data set. All of these generally exhibit less repre-
sentative price quotes (Barbose & Darghouth, 2019; Gilling-
ham & Tsvetanov, 2019a). By excluding them, I prevent out-
liers and erroneous or unrepresentative values to distort the
estimates. Thereafter, 613,157 observations (about 40% of
full sample) remain in this price sample.

Apart from invalid price observations, further installa-
tions are removed from the estimation data set. To start
with, I focus on residential systems only, because as shown
above, installed prices and installation characteristics vary
substantially across customer segments (Barbose & Dargh-
outh, 2019) and residential systems make up almost 95%
of the full sample and 93% of the price sample, respectively
(s. Appendix A2, Figure 6). Also, price variations in residen-
tial PV systems are more likely to be captured by the instru-
ments as their price decline was mainly driven by hardware
cost reduction, whereas non-residential installers benefited
to a major extent from lower BoS and soft costs (Barbose &
Darghouth, 2019). Again, to account for outliers and in line
with the customer categorisation by Barbose and Darghouth
(2019), installations with system size bigger than 20,000 W
are excluded (s. Appendix A3, Figure 11). As I assume effi-
ciency to be non-negative, I also drop all observations with an
efficiency of less than 0%. Those are less than 0.1% of the full
sample and look like reporting errors rather than true values.
Lastly, I consider only systems that were installed after 2009
(94% of full sample, 89% of price sample), as prior to this,
data coverage in the sample is very limited and complemen-
tary instrument data on polysilicon prices is not available on
a weekly basis.

All in all, these selection criteria lead to the estimation
sample with 501,394 observations from 21 states and 9 years,
representing 32.5% of the full TTS sample. Before being able
to use this data for estimation, several data pre-processing
steps need to be taken – namely the transformation and gen-
eration of predictors. Please refer to the Appendix B2 for a
description of the most important steps.

18Hereinafter, full sample refers to the ‘Tracking the Sun’ data set as pub-
lished by the LBNL (Barbose & Darghouth, 2019). Price sample refers to
the sample left after applying all price-related selection criteria described.
Estimation sample refers to the sample left after applying all selection cri-
teria, also non-price related. The final sample is the sample left for model
estimation after dropping all observations which have missing values in one
or more of the included variables described in section 3.5.1.
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Apart from the Tracking the Sun data set, further instru-
ment as well as control data are included in the estimation.
I elaborate on the more relevant in the following.

3.4.2. Complementary data

Polysilicon price data

Besides the tax rate, which is extracted directly from the
TTS data set, I use the movement in price quotes for polysil-
icon as means to instrumentalise price changes in solar PV.
Therefore, these need to be added to the estimation sample.
There are different indices and data providers for polysilicon
spot prices. Polysilicon production is concentrated almost
entirely in China (Platzer, 2012; Woodhouse et al., 2019).
Hence, figures referring to China commodity prices can be
applied globally. I compare four different data sources pro-
viding weekly price quotes extracted from Bloomberg for
China, international spot outside mainland China, compa-
nies regardless of region, and PVinsights poll prices for mul-
tiple contributors19. They are provided in USD per kg for
comparable polysilicon purity from end of 2009 to mid-2019.
However, only the PVinsights data are complete for the years
2010-2018. As those are correlated at over 99% with polysil-
icon spot prices from the other three indices and all but the
data for China exhibit very similar median prices (s. Ap-
pendix A3, Figure 12 to Figure 14), I only use PVinsights poll
prices in the subsequent estimations.

Despite the fact that in the estimation sample, polysilicon
modules make up only about 35% of all observations, com-
pared to 38% monocrystalline silicon, the price movement
can be expected to be similar, as polysilicon is the fundamen-
tal input material for both module types (EIA, 2019d; Wood-
house et al., 2019).

Further instrument data

Although in the final estimation, only polysilicon price
movement and changes in the sales tax rate are used to es-
timate installed PV price movements, I evaluated the quality
of other instrument data, which I only outline briefly.

As next to hardware cost, BoS and soft costs for e.g., as-
sembly, installation, and wiring make up about 45% of in-
stalled prices, PV costs can be expected to move in line with
solar PV installer wages. Furthermore, changes are proba-
bly exogenous as those wages neither influence demand di-
rectly nor through other relevant variables, once accounting
for income. Therefore, I consider the mean hourly and an-
nual wage rates for U.S. solar PV installers estimated in the
Occupational Employment Statistics Survey by the U.S. Bu-
reau of Labor Statistics (BLS) for the years 2012 to 2018 in
the estimation. Unfortunately, these data were not available
on a more granular level regarding time frame and location,

19Bloomberg indices: SSPSPSNC (BNEF survey), SSPSPSNI (BNEF sur-
vey), SSPFPSNO (BNEF survey), SOLRAPS (PVinsights poll).

and did, therefore, not capture enough variation to serve as
decent instruments for installed prices.

Another instrument I perceived promising is the number
and scope of incentive programs, taken from the Database of
State Incentives for Renewables and Efficiency (DSIRE). Be-
cause financial compensation reduces the effective installed
price, it can be expected to provide a relevant instrument.
However, those programs might reduce the marginal costs
by also affecting other demand or supply conditions (Gilling-
ham & Tsvetanov, 2019a), e.g., if there were a link between
lower sales tax and offering incentives to promote consump-
tion. Moreover, as the data available were highly incomplete
with respect to start and end date as well as the size of fi-
nancial benefit, I could only include the overall number of
programs per state, which is by far not detailed enough to
provide an accurate and valid approximation of the PV price
changes.

Apart from these additional external data sources I also
assess the absolute amount of sales tax paid per watt as well
as the rebate or grant provided per watt contained in the TTS
data set as instruments. I discard the former because it shows
a substantially lower coefficient of determination20 R2 in the
first stage compared to the tax rate and might additionally
suffer from endogeneity due to the measurement in absolute
dollar values. The latter could not be used because it did not
provide enough data points for sufficient variation, with al-
most 10% missing values and over 50% zero rebate or grant.
For those reasons, those instruments were not used in the
final model.

Control variables

It is almost impossible to include all relevant predictors
in a model, be it for the complexity and number of vari-
ables or for the unavailability of the required data. Nev-
ertheless, some relevant information can be obtained from
publicly available sources and included in the data in order
to improve the estimation and prevent bias through omitted
variables. An overview over the variables added to the es-
timation sample can be found in Appendix A3, Table 3. As
outlined in section 3.3.4, I use yearly income and personal
tax data gathered by the U.S. Internal Revenue Service (IRS)
on zip code level for the years 2008 to 2017. More specif-
ically, I join information on adjusted gross income, wages
and salaries, the number of households approximated by the
number of returns, the population approximated by the num-
ber of personal exemptions, the taxable income, and the in-
come tax paid. As many of these variables showed an almost
perfect correlation, I keep only the number of households and
the adjusted gross income as controls. The data is available
on a yearly basis for the whole time period considered in the
estimation.

20The fraction of sample variance of the dependent variable that is ex-
plained by the model, i.e., the variance in the regressors (Stock & Watson,
2020).
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Moreover, I add the average electricity price for end cus-
tomers by state and year provided by the U.S. Energy Infor-
mation Administration (EIA). However, this did not add sub-
stantial quality to the estimation as electricity prices differ
regionally on a smaller-than-state level and vary significantly
throughout the year. Therefore, the data did not accurately
picture the relevant electricity price movements and did not
significantly impact the demanded system size which is why
I do not include this variable in the final estimation.

Some data transformations are conducted to use the sam-
ple for the estimation of the log-log linear model. For detailed
information, please refer to Appendix B3.

3.5. Estimation Results
3.5.1. Preferred econometric model

The model specification selected for the final estimation
of the price elasticity of demand is given in equation (7).
As already outlined above, it comprises several technology-
related factors as well as economic control variables and fixed
effects for state and installation year. The installed price is in-
strumentalised by the polysilicon spot price and the sales tax
rate.

log(systemsize) = β1 log(price) + β2 log(e f f icienc y)
+ β3Dnew + β4Dtracking + β5Dground

+ β6Dtechnology + β7Dmlpe

+ γ1 log(households) + γ2 log(income)
+α+µ+ u

(7)

To estimate this model, 172,106 complete observations
are used (11% of full TTS sample). It must be noted that
these observations no longer represent the entire U.S. be-
cause by far not every state included in the initial sample
has valid observations for all relevant variables. Thus, the
data used for estimating the model is representative at most
for the states included, namely California, Texas, Arizona,
and other states initially grouped as there were not enough
observations available at the individual state level. Since a
major part (99%) of the remaining sample stems from Cali-
fornia, the results mostly picture the situation present there
rather than the whole U.S. Likewise, only the years 2010 to
2017 are still represented in the data and only a minor share
of installations uses tracking or is ground-mounted. Sum-
mary statistics of the remaining data are provided in Ap-
pendix A5. The estimation results, models with different
instruments and subsets of predictors, a comparison to al-
ternative functional specifications to check the robustness of
the results, as well as estimations for regional and economic
subgroups is provided in the following to answer the three
research questions introduced above.

3.5.2. Price elasticity of demand
The final model yields a constant long-term price elas-

ticity of residential demand for solar PV of -0.443 (Table 1,
model (3)). A 1% increase in the price per watt reduces the

system size by about 0.44%. This means that investors are
rather insensitive to price changes, as the system size de-
clines less than proportional to the increase in price per watt.
The finding is broadly in line with the slightly higher elastic-
ity estimate of -0.65 obtained by Gillingham and Tsvetanov
(2019a) for Connecticut and slightly lower elasticity of -0.4
found by Rogers and Sexton (2014) for California. How-
ever, this comparison of estimates is not entirely valid for
two main reasons. Firstly, both Gillingham and Tsvetanov
(2019a) and Rogers and Sexton (2014) estimate the effect
of a price increase on the adoption, i.e., the number of in-
stallations, rather than the system size. Among those who
purchase a solar PV system, the price elasticity of system size
demand could be lower since the decision on how much ca-
pacity to buy might be less sensitive to changes in the price
level than the decision to buy at all or not. Secondly, the fi-
nal data set contains mainly Californian installations where
price elasticities could be lower as found by Rogers and Sex-
ton (2014). Thus, the estimate is not directly comparable to
Connecticut.

3.5.3. Impact of further relevant variables

Explanatory variables

Next to prices, further variables turn out to be highly rel-
evant in determining the system size to be purchased, all pa-
rameters being significant at a 0.1% level in the preferred
model (3). Generally, for the interpretation of regression co-
efficients two aspects need to be considered: the significance
of an effect and the effect size itself. Findings might be signif-
icant in terms of p-value, but this does not imply a practical
significance in terms of effect size. Large data sets like the
estimation data used here tend to produce highly significant
estimates already for very minor effect sizes as very small dif-
ferences can be detected as sample size rises (Lin, Lucas Jr,
& Shmueli, 2013).

Increasing module efficiency by 1% results in a 0.41% in-
crease in the installed system size. In absolute terms, this
percentage change is almost as large as for installed price
per watt. At first glance, the direction of the effect might
seem somewhat counterintuitive: with increasing efficiency,
less solar PV capacity should be sufficient to generate a given
amount of energy, implying that, where there is little space
and smaller systems are installed, higher efficiency modules
are purchased, and vice versa. On the other hand, how-
ever, higher efficiency also makes the whole installation more
profitable and worthwhile investing in, possibly inducing in-
vestors to purchase more and larger models. Furthermore,
higher module efficiency results in relatively lower BoS and
soft costs for installation per generated kWh of electrical en-
ergy. As these are not explicitly modelled here, the efficiency
coefficient might incorporate this positive effect.

Strongly related to the module efficiency are both the
type of module technology and module-level power electronics.
As these factor variables are not log-transformed they can-
not be interpreted as elasticities but rather as an expected
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percentage change from one group to the other (Benoit,
2011). A change in the respective variable changes the
system size by e bβ , or approximately by bβ * 100%. Rela-
tive to polysilicon modules, using monocrystalline technol-
ogy causes system size to increase by 4.7%. Likewise, the
presence of both microinverters and DC optimizers is only
weakly but positively related to system size installed. Intu-
itively, this might be related to the fact that installations with
high-quality monocrystalline modules and MLPE technology
became more and more prevalent, replacing less efficient
systems (Barbose & Darghouth, 2019). Simultaneously, sys-
tem size continuously increased (s. Appendix A2, Figure 7
and Figure 8). If the year fixed effects included in the model
do not entirely capture this movement, the positive, though
small coefficient might have resulted from this correlation.

Aside from efficiency-related aspects, the fact that a sys-
tem is installed on a new construction, not as a retrofit on an
existing house, strongly determines the system size installed,
reducing it by 88.1%. The negative relationship could be due
to the fact that new constructions are probably more space-
constrained, offering less possibilities to install larger solar
PV systems. Additionally, it should be taken into considera-
tion that over 90% of the estimation sample are retrofits and
that in the full sample, over 80% of the new construction
installations were installed by a single company (Barbose &
Darghouth, 2019). The estimate might, therefore, not offer
an entirely valid representation.

Regarding the effect of tracking technology, the model
states a 10.3% decrease in system size installed. As tracking
is mainly used to improve the effective efficiency of a solar
PV installation by maximising the amount of time the panels
face the sun, this is probably particularly relevant for smaller
systems with no space available to install further modules.
On the contrary, installations that are ground-mounted show
a 37.1% larger system size than rooftop systems. While the
latter are constrained by a natural space limit of the house’s
roof, ground-mounted installations are likely to have a larger
area available. Rooftop installations are also much more
common among residential customers, accounting for over
95% of the estimation data.

For a percentage increase in the electricity price the model
implies a 0.85% increase in system size (model (1)). The
effect’s direction is reasonable as higher electricity prices
might induce customers to invest in more solar PV capacity
in order to save money on the electricity bill or even earn
some through net metering initiatives. However, this ef-
fect is not significant at a 5% level and the model exhibits
high collinearity between numerous variables and electric-
ity price, presumably because the information is aggregated
and averaged on a state and year level. True electricity price
movements may show substantial variation throughout the
year or within a state.

Control variables

The effects’ directions and sizes are consistent through-

out the estimated models, using different sets of instruments
and/ or different explanatory variables as regressors (s. Ta-
ble 1). Some model specifications exhibit substantial multi-
collinearity, like for instance module efficiency and a dummy
indicating a premium module in model (2) or several highly
correlated control variables in models (4) and (6)21. As final
model, I select the best specification in terms of a high coeffi-
cient of determination, a low residual standard error, low VIF
values, and satisfactory diagnostic test results. Additionally,
less complex models are preferable over more complex ones
even if the bias of the estimates is lower for large models,
because the variance increases in complexity (James et al.,
2013). For these reasons, I refrain from including data on
wages, population, taxable income, and income tax payment
and limit the control variables to adjusted gross income per
household and the number of households in a zip code area.
Those are important to account for as they control for the
average wealth and housing density in a given area. These
aspects might influence the system size installed directly as
well as through other factors included in the model. The
preferred model estimates a small but negative elasticity of
-0.04% upon a 1% increase in the number of households and
a positive effect of 0.06% on system size resulting from a
1% increase in the adjusted gross income per household. Both
estimate directions are plausible as higher income and more
money available enable customers to invest in larger systems.
Further, an increase in the number of households is often
related to more urbanised regions where space is generally
more limited, and installer costs might be higher due to larger
market concentration. If more competition reduces installer
experience and forces them to operate at smaller and less ef-
ficient scales (O’Shaughnessy, 2018), the coefficients might
capture the effect of a resulting upward movement in prices
compared to less densely populated regions, eventually de-
creasing the system size bought. Contrary to this, Gillingham
et al. (2016) find that installer density is associated with sub-
stantially lower prices, likely due to reduced price mark-ups,
which is more in line with common economic market theory
(Mankiw, 2020; O’Shaughnessy, 2018).

Fixed effects

Besides explanatory and control variables the model in-
cludes fixed effects for the year and the U.S. state of instal-
lation. They are hard to interpret since fixed effects gen-
erally capture all influence over time and across states, re-
spectively, that is not otherwise controlled for in the model.
Time fixed effects are negative for all years throughout 2017
when compared to 2010 levels and only positive year-over-
year for 2012 to 2013 (s. Appendix A6, Figure 24) despite the
fact that median system size increased continuously (s. Ap-
pendix A6, Figure 7). One plausible reason for the negative

21I test all models on multicollinearity by computing the correlation ma-
trices (s. Appendix A3, Figure 16 and Figure 17) and the VIF that indicates
how much the variance of a coefficient is inflated (James et al., 2013) (s. Ap-
pendix A6, Table 13).
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impact on installed capacity is that the fixed effects capture
unobserved cost and price trends that are not included in the
model. This might be the phase-out of incentive programs
and rebates over the years, making systems less profitable
(ceteris paribus). Cash rebates, for instance, are capacity-
dependent, ending if a certain amount of solar PV has been
installed in a given area (Consumer Energy Alliance, 2018;
Shrimali & Jenner, 2013). On a federal level, the reduc-
tion of ITCs has been postponed to 2020, however. Further-
more, global negative demand shocks pushing up prices, pol-
icy changes and import tariffs, increasing wage rates, higher
customer acquisition costs for more mature markets, and the
price development of substitute sources of electricity like nat-
ural gas might be captured by the year coefficients (Burr,
2014; Newell & Raimi, 2014). As some of the factors named
above change frequently, using more granular time effects on
quarterly or weekly intervals might further improve the esti-
mation. This will be part of the robustness checks in section
3.5.4.2 below.

State fixed effects capture differences across states, esti-
mates showing a positive coefficient for Arizona and other
states and a small but negative coefficient for Texas com-
pared to California (s. Appendix A6, Figure 25). However, as
there are only four distinct state groups in the model and Cal-
ifornia accounts for a major part of installations, these state
fixed effects must be interpreted with caution. In terms of
price-related aspects the effect sizes might be determined by
the different implementation of various incentive programs
like capacity- or performance-based compensation, local re-
bates, tax exemptions, and retail net metering compensation
present in some U.S. states (Barbose & Darghouth, 2019;
Burr, 2014). In California for instance, the California So-
lar Initiative offers capacity-based rebates, however with a
declining absolute rebate amount per watt as system size in-
creases (Burr, 2014). This may cause Californian investors
to see a low marginal benefit in installing higher capacities,
which is in line with the observation that California exhibits
a systematically lower median system size than most other
U.S. states (s. Appendix A2, Figure 8). Furthermore, BoS
costs differ regionally as they depend more heavily on local
wage rates, taxes and competition (Barbose & Darghouth,
2019). As they are not included as a model variable, these
differences might be captured by the state coefficients. Apart
from price and cost factors, local solar irradiance most likely
plays another significant role as it varies across regions. Ari-
zona is the sunniest state in the U.S. (NREL, 2020), increas-
ing the profitability per kilowatts capacity installed compared
to other states and, thus, incentivising customers to purchase
larger systems. For California and Texas, the solar irradiance
is similar on average though it differs within states and cities,
suggesting that fixed effects on zip code or census block level
might have further improved the estimation.

3.5.4. Robustness comparison to other model specifications

Varying the instruments

As already outlined above, I assess the predictive power
of several instrument combinations to obtain the best possi-
ble approximation of the variation in solar PV installed prices.
The results are displayed in Appendix A6. Particular impor-
tance is placed on the model quality measured by R2 of the
first stage as it is predictive for the accurate representation of
price in the second stage estimation. Individual instruments
as well as different instrument combinations are tested. For
individual instruments, variation in the tax rate can explain
52.6% of the variation in price per watt, which is up to twice
as much as all other instrument candidates (s. Appendix A6,
Table 8). Adding polysilicon price movements as second in-
strument hardly improves the R2 value (52.7%). Neverthe-
less, I use the combined set as instruments because polysili-
con price movements capture the input factor cost side of the
price development which might be more relevant and predic-
tive in some model applications and time frames, also beyond
the scope of this study. The first stage coefficient on polysili-
con price is positive, price per watt increasing by 0.059% as
polysilicon prices increase by 1%. Counterintuitively, with a
percent-increase in the sales tax rate, the installed price per
watt decreases. This can be explained by the fact that tax
exemptions granted by the government are already regarded
here. If more generous financial incentives like tax exemp-
tions are granted in regions where prices are higher – which
is in line with findings by Gillingham et al. (2016) – then the
resulting effect of an increase in taxes can turn negative. For
the data at hand this seems to be the case for some states
(s. Appendix A6, Table 12). Further, it is not unreasonable to
assume that there are numerous omitted variables taking ef-
fect here. Possible examples could be more subsidies granted
to installers or lower BoS costs where tax rates are high. This
needs to be investigated in more detail to identify the causa-
tion behind the estimated correlation.

Estimating the second stage as a simple linear model
without further predictors the coefficient of determination22

is low for all estimations, highlighting the need for further
predictor variables (s. Appendix A6, Table 9). Therefore, nu-
merous other model specifications are tested against the final
model also in terms of instrumental variables used. Includ-
ing the explanatory and control variables of the final model
and accounting for year and state fixed effects strongly im-
proves the predictive accuracy of the first stage, resulting in
an R2 of 0.992 for the final model (s. Appendix A6, Table
10). Nearly all the variation in the installed price per watt
is now captured by the model. However, the polysilicon
price coefficient in the first stage reduced form estimating
the installed price is now very small and negative (-0.004),
though still significant. This is counterintuitive as final prices
are expected to move in the same direction as input factor

22Although R2 is not a valid metric for IV regression estimates since “the
actual values, not the instruments for the endogenous right-hand-side vari-
ables, are used to determine the model sum of squares” (Sribney, Wiggins,
& Drukker, 2020), the value is also considered for evaluation as the correct
manual computation of the second stage resulted in very similar R2 values
for all relevant model specifications.



V. C. Bukow / Junior Management Science 7(3) (2022) 643-667 659

costs. One possible explanation might be that time fixed ef-
fects now included in the model capture the effect of related
changes in input costs that are correlated with the polysilicon
price and had before been represented by its coefficient. This
hypothesis is supported by a negligible Pearson correlation
of price per watt and polysilicon price, only once year is held
constant (s. Appendix A2, Figure 16 and Figure 17). Tax
rate still has a negative and substantial impact on installed
prices (-1.260). Adding further instruments improves the
model only at the cost of high multicollinearity, if at all.
Furthermore, diagnostic test results show endogeneity of
instruments for some specifications23. On the other hand,
using only the polysilicon price greatly reduces the R2 to
0.188, in line with the findings from the simple linear first
stage regression above. This shows that changes in polysili-
con price do not suffice to capture the variation in the input
factor costs. It might improve the predictive power to use
variation in costs for intermediate products, as long as these
variations can still be considered exogenous to the residential
investment decision. Such production factors further down
the value chain could be wafers or cells, and labour costs for
technology development and system installation on a more
granular distinction regarding region and time.

Fortunately, the predictive accuracy and good overall fit
of the IV model – not the coefficients of the first stage – are
of primary interest here. Therefore, a poor model specifica-
tion in the first stage does not necessarily imply inconsistent
coefficient estimates in the second stage as long as the fitted
price values are accurate (Angrist & Krueger, 2001).

Varying the functional form

Next to instrument sets, I test four alternative model spec-
ifications against the final model described above as bench-
mark (Table 2, model (1)): A second-degree polynomial in
the first stage, interaction of state and year fixed effects, quar-
terly time fixed effects, and no fixed effects.

The first alternative aims to obtain better prediction in the
first stage. I estimate the price per watt with a second-degree
polynomial for tax rate. Both coefficients are still highly sig-
nificant, indicating that there might indeed be a non-linear
relationship between prices and tax rate, also visible when
investigating the regression plot of installed price on tax rate
(s. Appendix A3, Figure 15). However, as the first stage coef-
ficient of determination was already very high it could only
be improved by 0.001 to 99.3% (s. Appendix A6, Table 11).
Moreover, as mentioned above, the goodness of fit in the sec-
ond stage does not depend on getting the first stage func-
tional form exactly right (Angrist & Krueger, 2001; Kelejian,
1971), which is why the more complex first stage specifica-
tion is not considered further.

Several legitimate reasons suggest that including an in-
teraction between state and year might substantially improve

23Details on diagnostic tests are provided in section 3.5.6 ‘Tests on validity
and model specification’ for the final model.

the estimation by accounting for within-state differences over
time, in effect allowing each state regression its own inter-
cept and slope value (Borenstein et al., 2010). Contrary to
expectations, the resulting elasticity estimates show hardly
any difference, however. Presumably, the result would have
turned out different for a broader range of data. With almost
exclusively Californian installations from the years 2015 to
2017, the information available to detect state-specific dif-
ferences over time is very limited. Notwithstanding, the first
stage R2 is slightly higher at 0.993 (s. Appendix A6, Table
11).

Quarterly fixed effects are tested against the baseline with
yearly fixed effects to account for changes over shorter time
intervals. The resulting estimates are displayed in Appendix
A6, Figure 26. The second stage R2 improves only marginally
by 0.001, potentially because control data is only added on
a yearly basis, offering no variation over quarters. I would
generally expect more specific fixed effects to improve the
estimation if there is reason to assume that there are differ-
ences between observational units. E.g., county, zip code, or
even census block fixed effects could better capture constant
regional differences in irradiance, community mindsets, and
neighbourhood spillover.

Lastly, I use a model estimated without fixed effects as a
simple benchmark to test whether they make a difference to
the model fit. Surprisingly, the second stage R2 is not much
lower than for the other specifications, also when estimating
it manually for the second stage. However, the first stage co-
efficient of determination diminishes (s. Appendix A6, Table
11), implying a worse fit of price per watt used in the subse-
quent step.

All in all, it is reassuring that the estimates do not differ
much across most specifications which is why I choose the
baseline, the simplest of the equally well performing models.

3.5.5. Impact of regional and economic differences
In the U.S., income inequality is a serious issue that is

strongly linked to state welfare and policies (Jansa, 2020).
I therefore group the observations in strata of income and
population density as well as by state and estimate their price
elasticities separately.

Income level impacts the price elasticity (Andreyeva, Long,
& Brownell, 2010), although the effect has not been stud-
ied extensively, with most research rather focussing directly
on income elasticities (Zhu, Li, Zhou, Zhang, & Yang, 2018).
One expects consumers to be more price sensitive if they have
little money to spend and vice versa (Mankiw, 2020). Run-
ning the preferred model regression for four different income
groups24 I find declining price elasticities as income level
increases, meaning that households in zip codes with high
average income have a substantially lower price elasticity (-
0.195), i.e., are less price sensitive, than households with less

24Observations are grouped by adjusted gross income per house-
hold. Equal intervals in thousands of USD are (1) low: (16.5,442],
(2) low/medium: (442,867], (3) medium/high: (867,1.29e+03], (4) high:
(1.29e+03,1.72e+03].
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Table 2: IV regression results of robustness checks for the final model against alternative specifications

Alternative specifications: Instrumental Variable Estimation Results
Dependent Variable: System Size (W)

IV: IV: IV: IV: IV:
Baseline Polynomial Interaction Quarterly No fixed

in first stage state and year fixed effects fixed effects
(1) (2) (3) (4) (5)

Price per Watt −0.443∗∗∗ −0.446∗∗∗ −0.443∗∗∗ −0.443∗∗∗ −0.385∗∗∗

(0.004) (0, 004) (0, 004) (0.004) (0.005)
Module Efficiency 0.408∗∗∗ 0.408∗∗∗ 0.409∗∗∗ 0.411∗∗∗ 0.243∗∗∗

(0.012) (0.012) (0.012) (0.012) (0.012)
Dummy: New Construction −0.883∗∗∗ −0.884∗∗∗ −0.884∗∗∗ −0.870∗∗∗ −0.858∗∗∗

(0.005) (0.005) (0.005) (0.005) (0.004)
Dummy: Tracking −0.106∗∗∗ −0.106∗∗∗ −0.104∗∗∗ −0.105∗∗∗ −0.111∗∗∗

(0.014) (0.014) (0.014) (0.014) (0.013)
Dummy: Grotud-mounted 0.371∗∗∗ 0.371∗∗∗ 0.371∗∗∗ 0.371∗∗∗ 0.359∗∗∗

(0.005) (0.005) (0.005) (0.005) (0.005)
Module Technology: Mono 0.047∗∗∗ 0.048∗∗∗ 0.047∗∗∗ 0.048∗∗∗ 0.052∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)
Module Technology: Other 0.088∗∗∗ 0.089∗∗∗ 0.088∗∗∗ 0.089∗∗∗ 0.101∗∗∗

(0.007) (0.007) (0.007) (0.007) (0.007)
MLPE: DC Optimizer 0.053∗∗∗ 0.053∗∗∗ 0.053∗∗∗ 0.054∗∗∗ 0.051∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
MLPE: None −0.018∗∗∗ −0.018∗∗∗ −0.018∗∗∗ −0.017∗∗∗ 0.010∗∗∗

(0.003) (0.003) (0.003) (0.003) (0.003)
Households −0.043∗∗∗ −0.043∗∗∗ −0.043∗∗∗ −0.043∗∗∗ −0.046∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
AGL/Household 0.061∗∗∗ 0.061∗∗∗ 0.061∗∗∗ 0.060∗∗∗ 0.062∗∗∗

(0.002) (0.002) (0.002) (0.002) (0.002)
Constant 8.090∗∗∗ 8.090∗∗∗ 8.080∗∗∗ 8.100∗∗∗ 8.230∗∗∗

(0.043) (0.043) (0.043) (0.046) (0.043)
Time FE Year Year Year Quarter None
State 11: Yes Yes Yes Yes No
Interaction No No Yes No No
Polynotaials No Yes No No No
Cbservations 172,106 172,106 172,106 172,106 172,106
R2 0.331 0.331 0.331 0.332 0.323
Adjusted R2 0.331 0.331 0.331 0.332 0.323
Residual Std. Error 0.409 0.409 0.409 0.409 0.411

(df= 172084) (df= 172084) (df= 172070) (df= 172060) (df= 172094)

Note: Second stage OLS regression results of explanatory variables on system size. The final model as baseline estimation
compared to alternative specifications including a second-degree polynomial in the first stage, interaction of the fixed effects,
quarterly time fixed effects, and no fixed effects. All use the same instruments polysilicon price and tax rate for price per
watt.
Source: Own analysis, estimation sample

money available (-0.521) (s. Appendix A6, Table 14). These
insights, though maybe unsurprising, are highly relevant in
the context of targeted marketing and sales for price discrim-
ination strategies as well as policy measures for tailored state
subsidies and rebate campaigns.

The relevance of population density on price sensitivity is
worth investigating as respective insights could help to focus

firms’ and governments’ attention on regions where it is most
profitable, both in an economic and societal welfare sense.
The regression results displayed in Appendix A6, Table 15 for
three groups of population density25 show small but consis-
tent differences throughout. Low population density regions

25Observations are grouped by the number of households. Equal intervals
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are associated with a slightly higher price sensitivity (-0.473)
than areas with high population density (-0.338). I control
for income which might be correlated with the number of
households in a zip code area, if the suburbs of metropoli-
tan areas show systematically higher average income levels
(Pendall & Carruthers, 2003; Schuetz et al., 2018).

I also run the regression separately for the states Califor-
nia, Arizona, and Texas, which are still included in the sample
data when estimating the full model. Notably, the estimates
for California hardly change compared to the full model as
those made up most of the final observations. Coefficient es-
timates for Arizona and Texas deviate substantially for some
variables, based on relatively few observations and partly
missing variation in instrument data (s. Appendix A6, Ta-
ble 16). This strongly suggests that statements can be made
about California, but that the generalisability of the results
to other Southern states let alone the entire U.S. should be
considered with great caution.

3.5.6. Tests on validity and model specification
In order to ensure the sound application of the IV esti-

mation approach, the validity of the instruments needs to be
tested (Stock & Watson, 2020). This comprises two main
aspects already outlined in section 3.2.2: Relevance and en-
dogeneity. The diagnostic tests results for the final model are
shown in Appendix A7, Table 17.

Relevance of the instruments can be assessed in a straight-
forward way by calculating the correlation coefficient be-
tween the instrument and the endogenous regressor it re-
places (s. Appendix A3, Figure 16). The higher the correla-
tion the more information is kept and the better its suitability
as an instrument. On the contrary, weak instruments tend to
mirror the OLS estimate (Angrist & Krueger, 2001; Angrist &
Pischke, 2008). I use the first stage F-statistic test on weak
instruments for the preferred model, effectively testing if co-
efficients on the instruments are all zero in the first stage.
The resulting p-value of the test statistic is <0.001%. Hence,
I can reject the hypothesis that the instruments are irrelevant.

Exogeneity of instruments is somewhat more complex to
determine. It is only possible for an overidentified model that
has more instruments than endogenous variables to be re-
placed26. Fortunately, this is the case here. The Sargan test
(or J-Statistic) can be used to determine whether the residu-
als ûTSLS of the IV model can be explained by the instruments.
If they cannot, one can assume that the instruments are in-
deed exogenous and valid for estimation. For the preferred
model, the Sargan test statistic is insignificant. I cannot reject
the hypothesis that the instruments show coefficients differ-
ent from zero to explain the model residuals (Stock & Wat-
son, 2020). Therefore, I can assume exogeneity of the instru-
ments chosen here.

in thousands are (1) low: (0.09,18.1], (2) medium: (18.1,36.2], (3) high:
(36.2,54.3].

26For an exactly identified model it is not possible to test exogeneity for-
mally, but one must rely on logical reasoning (Stock & Watson, 2020).

Additionally, I use the Wu-Hausman test to evaluate
whether endogeneity is actually present in the original model
(6) as otherwise OLS would be preferable over TSLS (Stock
& Watson, 2020). The test statistic is again highly signifi-
cant, and I can reject the hypothesis that OLS is consistent,
supporting the TSLS approach used for estimation.

Apart from IV-related tests, I assess some general regres-
sion assumptions, outlined in Appendix B1. Corresponding
plots are shown in Appendix A7, Figure 27 and Figure 28.
The linearity assumption of the model seems valid for the
first but not for the second stage. This implies that poten-
tially a different type of model could improve the fit. This is
not unreasonable as the final model selected here can only
explain a rather small share of the variance in the installed
system size. Plotting the residuals against the predicted sys-
tem size values suggests that the i.i.d. assumption is vio-
lated and heteroskedasticity is present in both the first and the
second stage. This is at least partly accounted for by using
heteroskedasticity-robust standard errors in order to obtain
valid test statistics and p-values. The normality assumption
does not hold in the first stage and indicates heavy left and
right tails in the second stage regression. However, due to
the high sample size this is a minor issue here as the esti-
mates converge asymptotically towards the true parameter
as the number of observations increases (Ghasemi & Zahe-
diasl, 2012; Lumley, Diehr, Emerson, & Chen, 2002; Stock &
Watson, 2020).

4. Insight Relevance

4.1. Economic and Policy Implications
The U.S. are still one of the world’s major emitters of

greenhouse gases (EPA, 2020). In order to sustainably re-
duce emissions conscious consumption, energy efficiency
measures, public policy encouragement, and, most impor-
tantly, the increased deployment and implementation of
renewable energy sources are necessary (Jaforullah & King,
2015). How can the insights obtained in the analysis be
leveraged to move further towards a more sustainable energy
landscape in the U.S.? First of all, the knowledge of price
elasticities and a more differentiated view on the sensitivity
for various subgroups of the population can help to build
more targeted and, thus, more effective and cost-efficient
incentive programs. If in line with the general political di-
rections, subsidies could be set higher for those who react
stronger to price changes. Here, final cost reductions will
promote an increase in solar PV capacity most. On the other
hand, where price sensitivity is low, benefits like tax reduc-
tions could be decreased, generating higher governmental
tax income which could ultimately be invested into initiatives
where it has a potentially bigger impact. Besides the envi-
ronmental benefit of more energy generated from renewable
resources, the U.S. economy could profit substantially, also
from the creation of new job opportunities for higher- and
lower-skilled workers (Wei, Patadia, & Kammen, 2010).

Likewise, the results can be useful as quantitative evi-
dence and guidance in the ongoing discussions on reducing
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or completely phasing out financial incentives (Gillingham &
Tsvetanov, 2019a). From relative changes in installed capac-
ity, policymakers can derive absolute capacity added. This
allows forecasting changes in the overall capacity upon pol-
icy modifications using simple policy simulations and deploy-
ing the prior estimated pass-through rate and price elasticity
(Gillingham & Tsvetanov, 2019a). Moreover, Gillingham and
Tsvetanov (2019a) show that the potential reduction of GHG
emissions from certain programs can be quantified. Natu-
rally, the assumed amount of avoided emissions depends on
the expectations on the type of generation that is displaced
by renewables, both today and in future (Gillingham & Tsve-
tanov, 2019a). Gillingham and Tsvetanov (2019a) estimate
the cost of abatement through state incentives for solar PV to
lie notably above the U.S. government social costs of carbon
estimate. Directly comparing the costs of the program to the
social benefit of pollution abated allows to evaluate the cost-
effectiveness and social desirability in an economic welfare
sense. This method could be used to rank policy programs
according to a quantifiable impact on social welfare and in-
vest funds where they create the greatest benefit, also going
beyond solar PV. This would take into account that a new
technology should always be assessed not only in the light
of cost-effectiveness but also environmental friendliness and
social acceptance (Khan & Arsalan, 2016).

4.2. Business Implications
While governments can clearly leverage the insights on

demand elasticities for solar PV in numerous ways, firms can
also capitalise on them. Seeing that residential consumers
are not very price sensitive, pricing strategies can be opti-
mised to maximise profits, assuming that they operate in an
imperfect market and do not set prices equal to marginal
costs (Gillingham & Tsvetanov, 2019a; Mankiw, 2020). Be-
sides that, more data-driven and cost-optimal decisions on re-
search and development efforts to reduce costs even further
can be taken. As the study also indicates different price sen-
sitivity for population groups and regions, firms could con-
sider targeted price discrimination. Likewise, the possibility
to forecast the shift in consumption upon price changes more
accurately also in the short-term enables firms to improve
their production planning and draw near actual demand for
a better supply-demand-fit.

5. Concluding Remarks and Outlook

5.1. Critical Review
Several aspects need to be mentioned when assessing the

quality of the estimation results, regarding both data and
methodology.

Data quality. The estimation results can only ever be as
good as the quality of the data they are based on. The data
in the TTS sample are self-reported by installers, depending
on reporting conventions which potentially vary significantly.
The scope of installed prices can sometimes even include war-
ranties, monitoring and maintenance, re-roofing costs, and

loan-related fees (Barbose & Darghouth, 2019). Addition-
ally, installed prices do not necessarily reflect actual costs as
they include profit margins and other installer-related char-
acteristics which cannot be captured by cost-related instru-
ments. What is more, according to Barbose and Darghouth
(2019) the data set likely contains all kinds of systems, not
only turnkey solutions, which is not fully visible from the sys-
tem information and, thus, not considered in the estimation.

Data coverage. The data were only collected for some
states mainly through incentive administrators (Barbose &
Darghouth, 2019) which might cover most but probably not
all installed systems in the U.S. This objection is further sup-
ported by a weak or missing sample coverage for smaller, of-
ten lower-cost, state markets. Self-selection bias could be
present here (Heckman, 1990). Discarding observations with
missing predictor values in the final data sample and assum-
ing them to be missing at random can likewise lead to biased
estimates, especially if installations with missing values dif-
fer systematically from the completely observed cases (Gel-
man & Hill, 2006). Furthermore, a broader data coverage is
necessary for potential instrument data in order to optimally
capture the variation in prices.

Data granularity. The sample of installations collected by
the LNBL contains information on the installation date, mak-
ing it possible to identify the timeframe of the decision to
invest quite accurately, assuming that buyers base their de-
cision on the most up-to-date information available at that
point in time. The same holds true for very detailed location
data, provided at zip code level. Unfortunately, most of the
complementary data joined to the TTS sample were avail-
able only for a much broader time frame and region. This
prevented the model from identifying variation on a more
granular level which might have otherwise added significant
information to the estimation and greatly improved its accu-
racy.

Besides those data-related aspects, I shed light on draw-
backs of the estimation methodology and model specifica-
tion.

Omitted variables. The most evident and pressing issue is
the fact that by far not all relevant variables could be consid-
ered in the final model, either due to unavailability or unob-
servability of the information. For one thing, I did not con-
sider the actual performance potential of individual systems,
which is to a major part determined by the weather condi-
tions and the amount of sunshine received in a certain instal-
lation location. Adding solar irradiance data on zip code or
census block level could greatly improve the estimation. This
is relevant for the initial decision to invest but might also in-
fluence the size of the system installed. Equally important,
the initial installed price is only one determining factor to as-
sess the economics of a PV installation. To gain comprehen-
sive insights on the profitability and benefits, aspects such as
ongoing operating and maintenance costs, effective perfor-
mance, later retrofitting costs, saved electricity costs and pay-
back period could also be considered as they are possibly al-
ready taken into account in the decision on how much capac-
ity to invest in. Furthermore, both federal, state, and utility
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support policies and regulations have hardly been taken into
consideration but are most likely to have a tremendous effect
on the buying decision. Capacity- and performance-based
incentives will particularly impact the size of the system in-
stalled. Those data were not or only incompletely available
and should be added for future estimations, if possible. Fur-
ther, sociodemographic aspects, like investor age and educa-
tion as well as idealistic values and mindset might impact the
demand. The latter are unobservable but could be inferred
from political party membership or voting behaviour (Iizuka,
2016; Matthew E. Kahn & Matsusaka, 1997). Additionally,
Bollinger and Gillingham (2012), Graziano and Gillingham
(2015), and Palm (2017) find significantly positive peer ef-
fects on the adoption of solar panels, suggesting that previ-
ous installations in the vicinity matter through neighbours
attitudes and social influence. The omission of these vari-
ables, if they are correlated with any variable included in the
model, will cause endogeneity and biased estimation results
(Stock & Watson, 2020).

Model specification. The test on linearity in the second
stage of estimating the log-log model suggests that the actual
relationship might not be represented entirely accurately. It
might be worth the effort to investigate which form better de-
scribes the relationship to improve the representation of the
demand curve and obtain correct elasticity estimates. In case
the price enters the model in a non-linear way or the model
is even non-linear in its parameters (Imbens & Wooldridge,
2007; Wooldridge, 2015), control functions rather than stan-
dard IV methods should be applied, as done by Gillingham
and Tsvetanov (2019a). Also, examining more profoundly
which variables are highly relevant, differentiating between
regions and population groups, would further back up the
estimation. This could also help to identify even better in-
struments to further improve the first stage estimation.

5.2. Limitations
As with most research, the estimation results in this study

are highly context-sensitive. Consequently, their application
to other contexts is neither straight-forward nor generally
possible. Although the goal of the study is to estimate the PV
demand and price elasticity for the entire U.S., the final data
sample contains almost exclusively Californian installations.
Therefore, generalising these estimation results even to other
states, let alone countries or cultures, is not unreservedly rec-
ommended, but must be done under consideration of numer-
ous relevant aspects, if at all. Additionally, the estimation
sample is limited to residential customers. There is good rea-
son to assume that estimates would be substantially differ-
ent in non-residential and utility-scale applications (Barbose
& Darghouth, 2019). Furthermore, as pointed out several
times before, the price sensitivity is estimated regarding the
system size demanded rather than the discrete adoption deci-
sion. This needs to be taken into consideration not only when
interpreting the coefficient estimates but also when general-
ising to a broader scope as the price elasticities regarding the
system size are only accurate given that a consumer decided
to invest in solar PV.

Lastly, one needs to be aware that correlation does not im-
ply causation (Altman & Krzywinski, 2015; Holland, 1986).
More than often, there are multiple ways to interpret coeffi-
cients. As a regression is unable to picture a causal direction,
one needs to bear in mind that equations build on assump-
tions regarding the underlying causality (Altman & Krzywin-
ski, 2015). If I do not entirely account for endogeneity in the
model, variation in some variables might still bias coefficient
estimates. This raises the question whether it is justifiable to
report ceteris paribus effects.

5.3. Outlook and Conclusion
The study provides methodological insights as well as

practical recommendations. Thoroughly and holistically ad-
dressing the concerns outlined above would be another big
step forward towards applying the model not only to solar
photovoltaics but also to many other recent and emerging
technologies (Gillingham & Tsvetanov, 2019a, 2019b). This
can yield valuable insights for future governmental policies
and firm decisions alike, potentially also providing a way
to assess the effectiveness of different types of programs.
Further, extending the estimation to the technology adop-
tion as explained variable in a two-stage model would en-
able more far-reaching and differentiated statements (e.g.,
Bollinger & Gillingham, 2012; Cui, 2018; Dong & Sigrin,
2019; Gillingham & Tsvetanov, 2019a; Palm, 2017; Rogers
& Sexton, 2014).

Understanding the factors determining the propensity to
invest in solar PV is particularly relevant when it comes to
demand forecasting. The within-sample insights obtained
in this study could be leveraged in order to make out-of-
sample predictions. Numerous machine learning techniques
are well-applicable to the estimation problem at hand. Es-
pecially non-parametric, tree-based learners like Random
Forest and Gradient Boosting have proven highly beneficial
for both classification and regression in many economic and
business applications (James et al., 2013; Murdoch, Singh,
Kumbier, Abbasi-Asl, & Yu, 2019). At the expense of in-
terpretability (Orrù, Monaro, Conversano, Gemignani, &
Sartori, 2020), they can use huge amounts of data and fea-
tures while making no assumption on the functional form,
which is convenient when the model is complex. Further-
more, non-parametric learners natively handle outliers and
multicollinearity and are able to capture regional differences
and non-linear relationships, which is highly relevant in case
location matters (James et al., 2013). Using these methods
on the estimation problem at hand could greatly supplement
the interpretable insights obtained in this study and increase
its relevance for researchers, businesses, as well as state and
federal governments.

For now, the study successfully provides insights on the
price elasticity for solar PV – if not for the entire U.S., at
least for California. It shows that customers are generally
rather insensitive to price changes. It also brings to light the
relevance of other factors impacting the demand, module ef-
ficiency being almost as relevant as price per watt when it
comes to the system size installed. The comparison of price
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elasticities within various population subsets highlights the
potential of more targeted interventions to maximise the en-
ergy amount generated from renewable resources and pro-
mote the reduction of greenhouse gas emissions. Thereby,
solar photovoltaics can indeed make a major contribution to
the sustainable transformation of the energy and electricity
generation landscape in the United States. Setting sound
policies and incentive programs based on the findings de-
scribed above, America could even attain to become what
Barack Obama aspired to seven years ago: A leader in the
global transition towards a sustainable economy.
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