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Appendix for the model from Douglas (2009)

A.1. Managerial wage payment in the first-best-case with risk-free debt

With the participation constraints (5) in place, the incentive compatibility constraints (6) hold
aslongasuy, >w (v(xi, a)) — A(a). The shareholders ensure this by setting w (v(xi, a)) =0

for all a # a’, because this leads to —A(a) < 0 < u,. They seek to minimize the wage payment

to the manager, so that the participation constraints (5) bind in the optimum:
W(Ui) - A(ai) =1u,
© W(Ui) =u, + A(ai) (A1)
The manager receives the wage payment w(v') if he chooses the desired action a' and

nothing otherwise. With a* = af®, this leads to w"Z (v), as given in (7).

A.2. Binding constraints in the second-best-case with risk-free debt

Firstly, consider the participation constraints, given by (9). Because of A'(a) > 0 it follows with
Ax > 0 that wt — A(a* — Ax) > w! — A(ab) and with (11) and (12) this results in:

wh — A(a?) > wt — A(ab) (A2)
Hence, only the participation constraint (PC,) binds.

As explained in Appendix A.1, the incentive compatibility constraints (IC;) automatically hold
as long as the participation constraints (PC;) hold, but they do not bind. The incentive

compatibility constraints (IC;) and (IC,), given by (11) and (12), can be rearranged:
wi —wl < A(a? + Ax) — A(ab) (A3)
wi —wl > A(a?) — A(at — Ax) (A4)

Both of the constraints can only bind in case of A(a” + Ax) — A(al) = A(a”) — A(a® — Ax).

However, with a’ > a, A’(a) > 0 and A" (a) > 0, it follows that:
A(af! + Ax) — A(at) > A(af) — A(a* — Ax) (A5)

Thus, only one of the two constraints can bind. The binding constraint has to be (IC,), because
otherwise the shareholders could decrease w” in order to increase their expected payoff,

which would not represent the optimum.
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A.3. Results of the second-best-case with risk-free debt
With (PC;) and (IC,) binding, the Lagrange function of the problem in (9) to (12) is given by:

L=o(+a¥ —wi)+ (1 -0o)xt +al —wh) — F +0,[wh — A(a") — u,]

(A6)
+0,[wf — A(a") — wt + A(a* — Ax)]
L is maximized with respect to w,w’, a’, al by calculating the first-order-conditions:
oL

avV—H=—O'+92=O (A?)

oL

oL o
sar =0~ 0:A4(@") =0 (A9)
oL

3aL = 1—0—6,4(a¥) + 0,4 (a* —Ax) =0 (A10)

From (A7) it follows directly that 8, = ¢. Inserting this into (A8) leads to 6, = 1. With 6, = g,
(A9) leads to A’(a") = 1. Douglas (2009) assumes that A'(a"®) = 1 and A" (a) > 0, so that
af = aff; = aFB. With the above solutions for 8; and 8,, (A10) can be rearranged as follows:

(1-0)(1—-A4'(a")) = o(4'(a¥) — A'(a* — Ax)) (A11)
As the right side of (A11) is positive, the left side needs to be positive, too, so that A’ (a®) < 1.
With A’(afB) = 1 and 4" (a) > 0, it follows that a’ = ak; < af? = alf;.

Using the disutility function A(a) = %az, given in (1), the result for a; is as follows:

A,(agB) = kagB =1

Ud a?B =

% = afB (A12)
Moreover, a; is calculated by:
1—0—A'(akg) + oA’ (akg —Ax) =0
o 1—o0—kaky +ok(aks —Ax) =0

o katz(1-0)=1-0—-ckAx

o
= 1_0Ax=aFB—1_0Ax (A13)

With K, (c) = /(1 — 0), it follows that al; = af® — K, (0)Ax, as given in (14). Note that ¢ > 0
leads to K; > 0, so that ak; < afB. For K; > a8 /Ax, it directly follows that ak; = 0, as the

action cannot be negative.
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A.4. Agency costs in the second-best-case with risk-free debt

The agency costs for the high state are calculated as follows:

ACH (akp) = [x" + af® —wFB(v(xM,afB))| — [x" + afB — wi]
= wi —wfB(v(x¥,af?))
=uy + A(afB) + A(akp) — A(aky — Ax) — A(aFB) — u,
= A(agp) — A(agg — Ax)
The agency costs for the low state are given by:
ACt(akp) =[xt + af® —wFB(v(xt, afB))]| — [xt + aky — wis]
= xl + af® — A(afB) —uy — xb — aky + A(akp) + u,

= [aFB - A(aFB)] - [al§B - A(als“B)]

The derivatives of the agency costs with respect to ak; are:

dACH L L
Sk = A'(agp) — A'(asp — Ax)
Qsp
oACT 1+ A'(agp)
=— a
daky SB

(A14)

(A15)

(A16)

(A17)

As A" (a) > 0, it follows that 0ACH /daky > 0. Also, aky < af®, so that A’(aky) < A'(afB) =1,

which leads to dACL/daky < 0.

The action aky that minimizes the total agency costs AC, given in (19), is calculated by the first-

order-condition:

0AC

L
dagg

= g[A'(agp) — A'(asp — A)] + (1 —0)[-1+ A'(agp)] = 0

Using the disutility function A(a) = %az, this leads to:

olkaty — k(aky — AX)] + (1 — 0)[-1 + kakz] =0
o kakg(c—c+1—0)=1-0—ckAx
1 o

« al§B=__

k 1—0Ax

Hence, the solution for ak; derived in (A13) minimizes the agency costs.

(A18)

(A19)
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A.5. Results of the second-best-case with risky debt
With (PC;) and (IC,) binding, the Lagrange function of the problem with the objective function
(20) and the constraints (9) to (12) is given by:
L=1-m)[A-PRolx! +a —wH —F) + p((1 — o) (x" + ab —wh) + oF)]
+m[(1 — o) (wh — A(a")) + o(w! — A(a™))] + 6,[w" — A(a) — uy] (A20)
+0,[wH — A(a") — wt + A(a* — Ax)]

This function is maximized with respect to w¥,wt, a’,a’ by calculating the first-order-

conditions as follows:

;A/—LH=—(1—m)(1—B)a+ma+92=0 (A21)
%=—(1—m),8(1—0)+m(1—a)+91—92=O (A22)
OL ’ H reH
o5 = (L=m)(1 = B)o — moA' (") — ,4'(a") = 0 (A23)
8L ’ L ’ L ! L
50 = 1 =m)P —0) = m(1 - 0)A'(a") = 6:4'(a") + 0,4’ (a" — Ax) = 0 (A24)

From equation (A21) it follows directly that 8, = o[(1 — m)(1 — B) — m]. With this result for 6,,
equation (A22) leads to 6; = (1 —m)(c(1 — ) + (1 — 0)B) — m. The equation (A23) can now

be solved as follows:
1-mA-p)o=A@)(c(1-m)(A-pL)—om+om)
o A@@)=1=4'a"?)
o al=ad" = ang,RD (A25)
Given the values of 6, and 6,, the equation (A24) can be rearranged, as shown below:
(1-m)BA—0)(1-A4'(a") = a(4'(a") — A'(a" — Ax)) (1 - m)(1 = B) —m) (A26)

With A”(a) > 0, it follows that A’(al) — A’(a® — Ax) >0 and m < (1—)/(2 —B) leads to
(1 —m)(1 - B) —m > 0, so that the right side of the equation is positive.?”® Hence, the left side
needs to be positive as well, leading to 1 — A’(a’) > 0 and therefore A’(al) < 1. Because of

A'(a*®) =1 and A" (a) > 0, this means that a’ = aéz zp < a.

275 The condition m < (1 — 8)/(2 — B) is needed to obtain the results shown below. It is similar to not giving the
manager too much control on the board of directors, as mentioned in footnote 77.
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Using the disutility function A(a) = gaz, given in (1), leads to the following result for agy gp:

A,(ang,RD) = kang,RD =1

1

© afprp = o a™® (A27)
The result for af; 5, is calculated as follows:
A-mpA—-0)—m(- U)Al(aéB,RD) - 92Al(a§B,RD) + 91Al(a§B,RD - Ax) =0
o (1-mpl-o0)—-m(l- O-)kaéB,RD - 92ka§B,RD + 6’1"(“’5“13,}&0 - Ax) =0
© kagppplm(1 —0) + (1 —m)(c(1 =) + (1 = 0)B) —m—a(1 —m)(1 - B) + om]
=(1-mpBA-o0)-— 0((1 -m)(1-8) — m)Ax
1 0((1—m)(1—ﬁ)—m) B a((l—m)(l—ﬁ)—m)
© ASprp =7~ A—m{d =g Ax = afB — A—m=-o0p Ax (A28)
With K, (c, B,m) = "(((11‘_2))((11‘_{?);’”) it follows:
asprp = a® — Kp(a, B, m)Ax (A29)

Note that m < (1—B)/(2—pB) leads to K, >0, so that aézzp < af®. If K, > af®/Ax, the
managerial action is set as afz zp = 0 in order to avoid any negative action. For further

investigation, the derivatives of afy p, with respect to m and  are calculated:

dasprp _ 0a"™®  0(KAx) 0 OKZA
oam  om om aom X

_ (o= -1 -mA -0+ 1A -0)po((1-m)(A - —m) Ax
- (1-m)?(1 - 0)?p?
_o(1-p)1-m)+o(l-m)—0o(l-m)(1—-p) +0mA

B A -m32(1-o)p )

o

= A== >0 (A30)

dasprp _ 0a"™®  0(KAx) 0 OKZA

g o o 0B
_ —e(1-m)?*(1-0)p—-(1-m)(1—0)o((1—m)(1—p)—m) Ax
B (1-m)*(1 - 0)?p?
_a(l—m)ﬁ+a(1—m)(1—ﬁ)—amA c(l1—m)—om

(1-m)(1 - 0)B? Y= A-ma-ope™ (A31)

Withm < (1 - B)/(2 — B) < 1/2, it follows that dagg rp/3B > 0.
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A.6. Graphical presentation of ag; ),

Figure | shows agg gp, given by (A28), as a function of B for different values of m.

L
AspRD 4

—m=0

m=0,3

Figure I: Managerial action aéy g, as function of p. Own graphic, functions calculated according to

Douglas (2009), pp.173-174.276

As agp gp is almost constant for values of g > 0,5, figure | only focuses on § < 0,5.

A.7. Mean preserving variations of Ax

With the constant expected value of the investment = > 0, the following equation holds:

ox+ (1 —-o)xt=n
With Ax = x¥ — xL, this can be rewritten as:
ox+ (1 —-o)xf —Ax)=m
o xf=0-0)Ax+n
Calculating the derivative with respect to Ax leads to:

0 a0
oAx g

With Ax = x¥ — xL, (A32) can also be written as:

o(Ax+xH)+ A -o)xl=n

o xt=—0Ax+m

276 The values used for the calculation of the functions are: ¢ = 0,5; Ax = 0,1; k = 0,08.

(A32)

(A33)

(A34)

(A35)
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The derivative with respect to Ax leads to:

a L
£=—0<0 (A36)

A.8. Calculation and analysis of the stakeholders’ payoff functions

With the disutility function A(a) = gaz, as in (1), and therefore agz p, as in (A29), the specific

payoff function of each stakeholder can be derived, as shown below.

For the manager’s utility function M, given by (23), this leads to:
M(Ax) =0 (uo + A (aéB_RD (Ax)) — A(akg gp(Ax) — Ax)) + (1 -0y,

=uyto (A (aéB_RD (Ax)) — A(akg gp(Ax) — Ax))
2

k(1 1 2
(E - KzAx) - (E — K;Ax — Ax)

<i _ 2KAx 1 2(1+K,)Ax

|
IS
o
+
Q

I

Il
&

+
Q

+ K#(Ax)? — P + — % 1+ KZ)Z(Ax)2>

2Ax
2% _ a2+ 2K2)> (A37)

For the debtholders’ payoff function D, given by (24), it follows:

D(Ax) =oF +(1— 0)(xL(Ax) + agg rp (Ax) — uy — A(asp rp (Ax)))

1 k(1 2
oF+(1—-o0) n—an+E—K2Ax—u0—E(E—KZAx)

=oF+(1—-o0)|(mr—0Ax —uy+—-—K,Ax —

k  2kKAx ko, )

1

2 e _k 2

( K 2 T ok g0
1 1 k

=0F+(1—0)<7T uO—UAx—KZAx+k 2k+K2Ax—EK22(Ax)2)

—oF+(1—0)(n— ) +(1-0) (—EKZ (Bx)? — an) (A38)
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The shareholders’ expected payoff, given by (25), is specified as follows:

S(Ax) =0 (xH(Ax) +af® —uy—A(afB) - A (aéB_RD(Ax)) + A(akg gp (Ax) — Ax) — F)
2

— o+ =+ r g~ | (R hox) — (E-tpax—ax) |-
=og|m+( U)xkuo % 2|\x L Ax " SAx — Ax

1
a<n+——u0—F+(1—J)Ax

2k

k[1 2K,Ax 5 , 1 2(14+K;)Ax 5 5

_E[ﬁ_ . + K5 (Ax) _E+T_(1+KZ) (Ax)

1 k 2Ax ) )
=0(n+——uo—F+(1—a)Ax——[—+(Ax)Z(KZ—1—21{2—1{2)])

2k 21 k

1 k 5
=0 n+ﬁ—uo—F—0Ax+§(Ax) (1+ 2K,) (A39)

All of the payoff functions have the form of a parabola. The functions D(Ax) and M(Ax) are
facing downwards and have a maximum point, while S(Ax) is facing upwards with a minimum

point. For further investigation, the maximum and minimum points are derived:

OMABY) _ ok 2k ax +0 =0
dAx 2 z
1
T k(1 +2Ky) (A40)
0D (Ax) )
IV —(1-0)kKsAx—0(1—0)=0
o
o Ax= e (A41)
as(Ax) _
A —0°+k(1+2K,)0Ax =0
_ o
AX = A T 2K (A42)

A.9. Calculation of the boundaries for Ax

The maximum point of D(Ax) lies at a value Ax < 0, as shown in (A41), so that the debtholders
prefer to minimize Ax. For all values of Ax that are smaller than the minimum point of S(Ax),
given by (A42), the shareholders prefer to decrease Ax, just like the debtholders. As these two
groups always have the maijority of the votes on the board, any Ax below the minimum point

of S(Ax) would lead to the minimum value of Ax, which would mean that the investment and
XXVIII



therefore the debt would be practically riskless. Hence, setting Ax = o/k(1 + 2K,) ensures
that the shareholders always prefer to increase the risk and the case of a practically riskless

investment and debt does not occur.?””

The upper bound Ax is set, so that the assumption a* > Ax, introduced in section 3.1.2, holds.
With aég zp as in (A29), it follows:

1
——K,Ax > A
 ~ KaAx = Ax

o A (A43)

<
=+ Ky

Hence, the upper bound is Ax = 1/k(1 + K,)

A.10. Increase in the shareholders’ payoff without managerial influence

As the risk Ax(B) of the investment is modelled as function of B, the only term in the
shareholders’ payoff function S(Ax), given by (A39), that is contingent on the managerial
influence m is the term K,. The derivative of the function S(Ax) with respect to K, is calculated
as follows:

dS(Ax)
K,

=k(Ax)2 >0 (Ad44)

K, can be rearranged:

_o(@-m@A-p-m)

T A ma - op
ey e e (A45)
The derivative of K, with respect to m is given by:
%_ _a(l—m)(l—a)ﬁ+ (1-0)Bom _ 3 o(l1—m)+om
om (1 -m)2(1 - 0)2p?  (1-mPA-o)p
- d (A46)

=T a-mea-op "

As 0K,/0m < 0 and dS(Ax)/dK, > 0, it follows that dS(Ax)/dm < 0. Thus, m = 0 maximizes
S(Ax), so that:

S(Ax,m=0)>S(Ax,m) Vm>0 (A47)

277 This is what footnote 83 in section 3.1.3.1 refers to.
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A.11. Derivative of agency costs AC with respect to Ax

Firstly, consider AC*, as in (18). As dafg pp/0Ax = —K, < 0 and 0AC*(als rp)/0ass rp < O,
similar to (A18), it follows that dACL/dAx > 0. As per assumption, the condition Ax < Ax™
holds, which means that the manager’s expected payoff increases with increasing values of
Ax. Hence, his information rent ACY, as in (17), increases with Ax. With dACt/dAx > 0 and
dACH /aAx > 0, it follows that dAC /dAx > 0.

A.12. Proof for Ax < Ax™ in both cases of control allocation

Initial manager control

Firstly, calculate the Lagrange function of the problem in (26) and (27):

£ =g+ (4(aks rp (08, 5,m)) — A ek e (B, B, ) — Bx(B))

(A48)
+6 5 (8x(8), kg rp (Ax(B), B, m) ) — S (8x(8), akg rp (Ax(B), B,m = 0)) + ]
The first-order-condition with respect to m is given by:
oL d (A(aI§B,RD) - A(al§B,RD - Ax)) (')agB’RD
om ° 0agg rp om
(A49)

0 aS(AxJaéB,RD) aaéB,RD -0
daks rp om

Several terms of (A49) can be specified and simplified. With A(a), given by (1), it follows:

0 (A(aéB,RD) - A(aéB,RD - Ax))

L
0agp rp

= kakp pp — k(akprp — Ax) = kAx (A50)

Consider the shareholders’ payoff function, given by (25), with wif ., as given in (15) with
agg rp instead of agy:
S(Ax,aktgrp) =0 (x”(Ax) + afB — (uo + A(a™®) + A(akg pp) — Alaks rp — Ax)) — F) (A51)

For the derivative it follows:

9S(Ax, atg rp) Y 0 (_A(aéB.RD) + A(asg,rp — Ax))

= —okAx (A52)
aa.éB,RD aa.éB,RD
Inserting (A50) and (A52) into (A49) leads to:
dak dak
okAx g4sB,RD — OokAx 94sb.RD =0 (A53)
am adm
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With daég gp/dm > 0, as shown in (A30), it follows from (A53) that 6 = 1 and the constraint
(27) binds.

With 8 = 1 the first-order-condition of £ with respect to g is given by:278

o
B aa.éB,RD

oL ] (A(aéB,RD) — A(aég rp — Ax)) <aa§B,RD>
B

N d (A(abL‘B,RD) — A(agppp — Ax)) 0aép rp
0ags rp dAx
+ 0 (A(aéB,RD) - A(abL‘B,RD - Ax)) JAx (A54)

dAx ap

<E)S(Ax, ags rp (Ax))) B <OS(Ax, as rD,0 (Ax))) 0Ax

dAx dAx aB
n <65(Ax, aéB,RD)) <aal§B,RD> _ <65(Ax, aI§B,RD,o)> <aal§B,RD,o> —0
0agp ko op 0a5p k0 B

With A(a), given by (1), and aéz zp, given by (A29), S can be specified as in (A39). This leads

to the following derivative, also used in (A42):

3S(Ax, akg pp(Ax)) B
dAx -

—0? + k(1 + 2K,)oAx (AS5)
With (A50), (A52) and (A55) the first order-condition (A54) can be simplified as follows:?"®

d aéB,RD 0 al§B,RD p 0Ax
kAx( op + | kAx a4 (atg rp — Ax) %

oA
+[—0% + k(1 + 2K,)00x — (=02 + k(1 + 2Ky =g )oAx) | a_ﬁx

das dag
— okAx < ;ZRD> + okAx <—S§’;D’O> =0

dasg rp . 0Ax
0 [(kAX <W + A (aéB‘RD - AX) W

dak
+ 0kAx< SB'RD’()) =0

g

0Ax
+[20kAx(K2——k§mFm)]?ﬁ?

(A56)

ap

278 Note that ap gp o represents the case with m = 0.
27° Note that K, o represents the case with m = 0.

XXXI



The managerial utility function M is given in (23) and ACH is given in (17). Thus, with (A50) it
follows:
oM\ (0Ax 0Ax daks epo
(= - )] — = ) = A57
a[(an)<aﬁ )] + [20kAx (K, — Kz meo)] T +akAx< T 0 (A7)
Note that daézzp/9B >0, as shown in Appendix A.5, so that dalzppo/0B >0 holds.
Moreover, dAx/dfB < 0 holds as per assumption. With dK,/dm < 0, as shown in (A46), it
follows that (KZ - Kz,mzo) < 0. Hence, the second and third term on the left side of (A57) are

positive, so that the first one needs to be negative, which leads to dM /dAx > 0. Considering

the function of M, displayed in figure 2, this means that Ax < Ax™.

Initial board control

Firstly, calculate the Lagrange function of the problem in (28) and (29), expressed as a

maximization problem, including the constraint that m > 0:

£ = —AC (kg o (AxX(B), B, ), Ax(B) ) + B — 6,(F — F) (A58)

The first-order-conditions with respect to m and S are given by the following:

oL 0AC dak
= - SBRD | 6,=0 (A59)
om aaSB_RD om

oL 0AC 0aé rp dagp rp ) (00X 0AC\ (0Ax B
= (o )((Ccteem) (Moo (50)- (e ) e =0 ae

Given AC from (19) and AC* from (17) with ag; 5 instead of aéy, the following derivative can

be calculated:2%

0AC _ dACH
dAx ? 0Ax

= UA,(aéB,RD — Ax) (A61)
Inserting this into (A60) leads to:

aAC aaéB’RD aaéB,RD an , L an
< ) < o8 )" \Tanx (5) ”M(W%@z—o (A62)

dak
SB,RD 0
>0 <0 <0 <0

If the constraint for m binds, it follows that 6; > 0. With daggz zrp/dm > 0, as shown in A.5, this
leads to 0AC/dafs rp > 0, so that (A59) holds. This means that the first term in (A.62) is

positive, while the second one is negative. As Douglas (2009) states that the effect of Ax on

280 Note that (A61) is the derivative with respect to Ax, whereby af; r, is considered as a variable and not as a
function of Ax.
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the agency costs is greater than the effect of afy ), the modulus of the second term in (A62)

is greater than the one of the first, so that the addition of the two first terms is negative. Hence,

6, > 0 and the constraint for 8 binds.

If the constraint for m does not bind, it follows that 6; = 0 and therefore dAC/dagg pp = 0. Thus,

the first term in (A62) is eliminated, while the second term is negative. This means that 6, > 0

and the constraint for g binds.

Overall, the condition g = E holds, so that Ax = Ax < AxM.
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Appendix for the model from Berkovitch and Israel (1996)

A.13. Replacement policy preferred by the manager

The first-order-condition of (30) with respect to y is calculated as follows:

oM dG(y|a)

— ——w—="2=0

dy dy

o —wg(yla) =0

o y=0=yM (AB3)

A.14. Replacement policy preferred by the shareholders

With y(P) = y$ > F, equation (31) is solved as follows:
v =F = =Py
F

oo F
o yS-F= jo (v — F)h(y)dy - jo (v — )h()dy

o)

o) F
o yS-F= f yh()dy f Fh()dy — f (v — DhG)dy
0 0

0

F
o Y —F=5-[FHO)? - jo v — Hh()dy
F
o yS—F=v—F+f (F — »)h(y)dy
0

F
o YS(F) =y + f (F — ph(y)dy (AB4)
0

A.15. Characteristics of the critical value y°*

The only term in yS(F), given by (32), that is contingent on F is the integral, which is simplified
via partial integration:

F F F
f (F — Yh()dy = [(F — HO)IE — f (~1) « Hy)dy = f H()dy (AB5)
0 0 0
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Without determining the derivative of (A65) with respect to F, it can already be seen that an
increasing F raises the upper bound of the integral and therefore its total value, as the
integrand H(y) is positive. Hence, yS(F) increases in F, with the following values for F = 0 and

for F - oo:

0
Y5O =7+ j 0 - h()dy =F+0=7 (A66)
0

[oe]

F
lim y(F) =5+ Jim | (F=phGddy =5+ [ Jim(F-nhG)dy = (A67)
—00 - Jg 0 —00

A.16. Replacement policy preferred by the debtholders with absolute control

Assume that y(P) < F. While the debtholders receive y(P) if the manager stays on the job,

their payoff in case of the liquidation of the firm is:
D = min {F,y} (AB8)
Fory > y(P) it follows that D > y(P) and the debtholders prefer the liquidation of the firm.

If y(P) > F holds, the debtholders receive F as long as the manager stays on the job. In case
of y > y(P), the liquidation of the firm also leads to a payoff of F, so that the debtholders are
indifferent between the two options. When being indifferent, they are assumed to always

choose the liquidation of the firm.

Overall, the debtholders wish to liquidate the firm if y > y(P).

A.17. Replacement policy preferred by the debtholders with partial control
With y(P) = yP > F equation (33) is solved in the following:
F o)
yP =f yh(y)dy+f Fh(y)dy
0 F
o yP =f yh(y)dy—f yh(y)dy+f Fh(y)dy
0 F F

o YPFE) =F- f (v — F)h()dy (AB9)
F
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A.18. Characteristics of the critical value y”

Only the integral in y? (F), given by (34), is contingent on F. Using (A65), it can be rewritten as

follows:28"
o) oo F
f (y = F)h(y)dy = f (y — F)h(y)dy — J (y — F)h(y)dy
F 0 0

F
=5 — FIHO)IS + f (F — h()dy
0

F
=?—F+f H()dy
0

=y~ F+[H™ )],
=y —F + H™(F) — H"(0) (A70)

The derivative with respect to F is calculated by:

a (o)
o UF (y — F)h(y)dy] =—1+H(F) (A71)

As H(F) < 1, it follows that the integral decreases in F. Because it is subtracted in the function

of yP (F), the overall function increases in F, with the following values for F = 0 and for F — co:

YP(0) =5 — f (v — OhG)dy =F -7 =0 (AT2)
0

Jim y* @ =7 - Jim [ 0-Pho)y =7~ [ im0 -Pho)y=7-0=F (AT
F 00

A.19. Unique interior solution for problem of managerial effort choice

The assumptions G, < 0 and G,, > 0 lead to —wG,(y¢|a) being a strictly decreasing function,
which is positive for all values of a. As per assumption A(a) is increasing and convex, so that
A'(a) > 0 increases strictly, as A" (a) > 0. Hence, the functions —wG,(y¢|a) and kA'(a*) have

exactly one intersection at a*, representing the unique solution of equation (36).

A.20. Changes in the managerial effort choice due to changes in y¢

Generally, the total differential of a function f with respect to y¢ and a* is calculated as follows:

of of . .

= — ¢ o
df = 3 5 dy" + 5 7da (A74)

281 Note that H™ represents the indefinite integral of H with respect to y.
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Using (A74) on the first-order-condition, given in (36), leads to:
~wgo(¥¢la)dy’ — wGaq(y¢la*)da” = A" (a")da’
o wg,(¢la)dyt = (—wGa(y€la) — A" (a"))da’

da” _ wgq(y©la)
dy© (_ wGaa(ycla*) - TA”(a*))

L d

(A75)

As Berkovitch and Israel (1996) assume that G,, > 0 and A" > 0, the denominator of the above
expression is negative. This leads to the following results:

*

TE<0 if 90%la) >0 (T6)
a* . Cl s
ayc >0, if ga(y“la*) <0 (AT7)

A.21. Optimal replacement policy [y*]

The first-order-condition of y, given by (37), with respect to the critical value y¢ is calculated

as follows:
A3 Cc - A..C a a a a
9yC — 9yC yc)’g y Y| Tygyy ayC yc)’ga Y T YGq

Simplify the first term by using partial integration:2®2
P\ raianay| = 2| veotan - [ evland
3y° ycygya Y| = ye |[PE0IaN ’ yla*)dy

a [ [}
= 3y¢ [Jim G»/la) —y“G(y“la*) —fCG(yIa*)dy]

ay“| y
= 2 [ lim G(yla*) —y°G(y©la*) — [G’"t(yla*)]mc]
0y¢ ly-o y
o [ C(C . Int
=——|lim G(yla") —y“*G(y"|a*) — lim G™ (y|a®)
ay | y— o0 y—00

+G1nt(yC |a*)]

=—-GWCla") -y gla’) + G(y¢la*) = =y g(y¢la®) (A79)
This leads to:
ax P R X — Cl o
==—y g(la”) +yg(y“la”) + 5 f v9a(yla)dy +yG,(y*|a®) (A80)
dy dy y€

282 Note that G'™ is the indefinite integral of G.
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In the following, focus on the point y¢ = y:
aX S Al A* = * aa* * * - *
T2 = F9F1a) +F9F1a) + 52| | ygaGladdy +56,Gla")
y

aa* o5} _
3y° U_ vga(yla’)dy + yGa(Vla*)] (A81)
y

Partial integration and the condition lim yG,(y|a) = 0 lead to:
y—00

o)

oy da*| - . _ .
3yC = 3yt _[yGa(YIQ*)]y - Jy Ge(yla)dy +yG,(Yla )]
oa*[ _ o _
- 557|761 - [0l ray + 76 51a)
_Je —fooGa(yIa*)dy] (A82)
ay¢| 7

As G, < 0, the integral is positive.

If g,() < 0 and therefore da*/dy‘ > 0, as shown in (A77), it follows that dy/dy‘ > 0. With

lim dx/dy‘ = —o, there must be an optimal y* >y that satisfies the first-order-condition
y —00

dx/0y¢ = 0. The monotone likelihood ratio property states that g,(y|a)/g(y|a) increases in
y, sothat g,(y¢) < 0forall y¢ <y, as the conditions g,(y¥) < 0 and g(y|a) > 0 hold. Following
from this, dy/dy¢ > 0 for all y¢ <y and therefore y(y¥) > x(y°) for all y¢ <y. Hence, the

optimal solution is not y* <y, but can only be y* > y.

If go(¥) > 0, it follows that da*/dy® < 0, as shown in (A76), which leads to dy/dy¢ < 0. With
lém0 dx/dy¢ = o, there exists a y* <y, for which the first-order-condition dy/dy¢ = 0 holds.
y g

The monotone likelihood ratio property states that g,(yla)/g(y|a) is increasing in y. As
ga(¥) > 0 and also g(y|a) > 0 generally holds, it follows that g,(y¢) > 0 for all y¢ > y. Thus,
dx/dy° < 0 holds for all y¢ >, so that y(y¥) > x(y©) for all y¢ >7%. This means that the
optimal solution can only be y* <y and not y* > y.

Overall, the optimal solution is y* >y for g,(¥) < 0 and y* <y for g,(y) > 0.
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Appendix for the model from John and John (1993)

A.22. Expected value of the investment

The manager invests in the safe project if ¢ < q and in the risky project otherwise. With q being

uniformly distributed over [0,1], V(q) is calculated by:

V(@) = —1+ Prob(q <q)l+ (1 —Prob(q <q))[qH + (1 — q)L]

q 1 q 1

Y el VO PO el H+(1-q)L
=—I+ql+(1-9)[qH+ (1 —q)L] (A83)
As q is uniformly distributed over [0,1], it follows that ¢ = (g + 1)/2 and therefore:

V@=—1+al+(1—a)[$y+<1—azi>L]

(1—62)H+(1—a)2

=—]+7ql
+ql + > >

L (A84)

A.23. Optimal investment policy

The first-order-condition of V(q), given by (40), with respect to q is:
av
@=1—6H—(1—5)L=0
dq
o qH-L)=I1-1L

_ I-L

H—-L
A.24. Investment policy of equity-aligned manager in all-equity firm

The manager chooses the risky project if his expected payoff for this project is higher than for

the safe project. With the compensation scheme as in (42), the following inequation holds:

elgH + (1 —q)L] > el
o gH+(A—-q)L>1 (A86)
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For the cutoff level g, (A86) needs to hold as equation:
gH+ (1 —-9L=1
I—L

© =g~ 1 (A87)

A.25. Pareto-Optimum

The condition E[u] = w, always holds, as the participation constraint binds. Thus, the manager

is not affected by the pareto-optimum, as his expected payoff equals w, in any case.

In an all-equity firm the shareholders’ expected payoff is given by the following:

(1-3°) . (1-7)7?
> H+ > L—wy

S@) =V@) —wo=—I+7l + (A88)

The first-order-condition with respect to g is the same as in Appendix A.23 and therefore leads
to g, as in (A85). Hence, § does not only maximize V(q) but also S(g). While E[u] = wy,

maximizing S(gq) means obtaining the pareto-optimum.

The above derivation continues to hold if debt of the face value F > 0 is introduced to the
problem. The debtholders break even because they set the bond value B equal to their
expected payoff D in t = 2. The shareholders’ expected payoff in t = 2 is then calculated as

follows:
S(@=V(@)+B—-D—w, (A89)

With B = D the direct impact of the debtholders can be eliminated, which leads to S(q), as in

(A88), and therefore to the same results as above.

A.26. Investment policies [q] with g = q

As shown in Appendix A.25, the policy that maximizes V(q), as in (40), also represents the

pareto-optimum. V(@) can be rearranged as follows:

_ _ H H_, L _ L_,
V(q)=—l+q[+§—5q +§—Lq+§q
T _ 1
=7[L—H]+Q[I—L]+E[H+L]—[ (A90)

With L — H < 0 the function has the form of a downward facing parabola with the maximum

point at g, so that all points g # ¢ lead to lower values of V(q) and cannot be optimal.
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Considering the function for V(g) as in (40), if q increases, the factor multiplied with the safe
return I increases, while the factors multiplied with the risky returns L and H decrease, so that
the return of the investment and therefore the final cash flow is less risky. Analogously, if ¢

decreases, the risk of the cash flow increases.

A.27. Investment policy of equity-aligned manager with debt outstanding

Firstly, note that the shareholders receive the constant proportion (1 — €) of the residual, while
the manager receives the proportion €. Hence, both of them make the decision based on the

residual payoff, as displayed by inequation (45).
In case of F < L, inequation (45) becomes:
qH-F)+(1-q¢)(L—-F)>I-F (A91)

F can be eliminated, so that (A91) becomes (43). As shown in Appendix A.23, this leads to
q =4, asin (41).

If L < F < I, inequation (45) becomes:
qH-F)+(1-q)*0>1—-F (A92)
For the cutoff level q it follows:

qH—F)=I1-F

_ I-F
© d=p—F (A93)
If F > I, inequation (45) becomes:
gqmax{H—F,0}+(1—-q)*0>0 (A94)
For F > H, it follows:
q*0+(1—-q)*x0>0 (A95)

There is no solution to the inequation (A95) and it does not make sense for the firm to issue

debt in order to make the investment, as there is no residual left in any case.
For F < H, it follows:
q(H-F)+(1—-g)*x0>0 (A96)

This leads to the cutoff level g:

o g= (A97)

Thus, the manager always chooses the risky project.
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A.28. Analysis of the cutoff level q = ﬁ

— I-F .
The cutoff level g = = can also be written as:

I-F I1-L—(F-L)
H-F H-L—-(F-1)

q= (A98)

With § = % < 1, as given in (41), subtracting the same term (F — L) from the numerator and
denominator decreases the fraction, so that g < g.

Also, q decreases in F:

0q —-(H-F)+(U—-F) _ [-H
aF — (H — F)? " (H-F)?

<0 (A99)

A.29. Agency costs in case of equity-aligned manager with risky debt

For F < L, the optimal policy with g, given by (41), is implemented and no agency costs occur.

The agency costs for F > L are calculated as follows:

AC=V(@ -V (aF)

I e O P )l
=—l+ql+——F—H+——L
— T(F)2 —3(M)?
—(—1+6(F)1 +(1 Z(F))H+(1 Z(F)) L)
. — H . L . _ 2
=1(§-3() +5 @F? - +5 (A -9*~ 1 -7®)") (A100)

If L < F <, the agency costs are a quadratic function in F, as q(F) is calculated by (A98).

For F > I, the equation (A100) can be simplified:

_ A2 _ A\2
AC=V(@) - V() =~ +41+ 9Dy =D L—(

11
5 5 —I+EH+—L) (A101)

2

Thus, the agency costs are not contingent on F but stay constant.
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Figure Il shows the agency costs AC, given by (A100), graphically as a function of F.
AC

A

Figure II: Agency costs AC with an equity-aligned manager as function of F. Own graphic, calculations
made according to John and John (1993), pp.957-960.283

A.30. Investment policy induced by incentive contract with risky debt
For the determination of the cutoff level q, (51) needs to hold as equation, which leads to:

qW+aH-F)+A-9W -9) =W +a( —F)
o qla(H-F)+9]=a(l-F)+9

9
a(l-F)+9 [1-F+7

o q= = =q (A102)
a(H—F)+9 H_FJ% m
A.31. Optimal value for a
Given (41) and (52), setting q,, = g leads to:
I—-F+ i I—1L
q, = ?9 =TI = g
H—F+_
Y
o —F+—=-L
a
19 ~
s = —=
a=p_=¢ (A103)
The derivative of @ with respect to F is calculated as follows:
02__ 0 o A104
oF  (F—1L)2 ( )

283 The values used to calculated the functionare: L=1; [ =2; H = 5.
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A.32. Investment policy with a + &
The derivative of q,, , as in (52), with respect to « is calculated as follows:

0q,, (U-F)aH-F)+9)—H-F)(al-F)+9) 9[I-F)—(H-F)]
da (a(H — F) +9)? ~ (a(H—F) +9)2
9( — H)

~(@H-F) +9)?

<0 (A105)

Thus, a higher a leads to a lower g, and therefore to a riskier final cash flow, while a lower «

leads to a safer cash flow, similar to the explication in Appendix A.26.

A.33. Alternative compensation structure

Assume that W is paid out of the return of the investment and is senior to F, whereas the
remaining structure of the compensation scheme stays the same. With L—-W < F <I—-W,

the manager chooses the risky project if:
WH+algtH-W-F)]-1-q@)9>W+a(l—-W —F) (A106)
The cutoff level is calculated as follows:

alg(H-W-F)]-A-@9=a(l -W -F)
o glaH=-W-=F)]+9=a(l—-W—F)+9

I—W—F+g
o g= 5 (A107)
H-—W—F+2

The goal is to set g = g, with § given by (41):

%
I—W—F+E I—1L

H-w-F+2 H-L

9
o —W-F+—=-L
a

B 9
" W-—-L+F

o a

(A108)

Thus, the values of W and 9 are set, so that the manager’s participation constraint binds and

a is set according to (A108) in order to induce the ideal investment policy [§].
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A.34. Calculation of g

m,alt

With the performance-related part of the wage payment being senior to the debt payment and

for (1 —a)L < F < (1 — a)I, the manager chooses the risky project if:
WH+qgaH+ (1 —q)(al —9) > W + al (A109)
For the cutoff level, (A109) needs to hold as equation, which leads to:

qaH+ (1 —q)(aLl —9) = al
o q(aH—alL+9)=al —aL+9

9
_ al—alL+9 I—L+E _
Ud = = =
1= aH —al+9 H_p1+9 Tmait (A110)
a
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Appendix for the model derived in section 4

A.35. The shareholders’ incentive to lie to the debtholders

In the following, I, H and the compensation scheme u are reported by the shareholders. They
can report any value I or H that is higher than F without the debtholders noticing, as the
debtholders only receive F in these cases and cannot deduce the actual return of the
investment from that. The debtholders are only able to recognize lies concerning the value of
L if the return is actually low, as this equates to their payoff. This is why the firm never lies

about L in order to avoid the contractual punishment in form of the liquidation.?®*

The debtholders know that their expected payoff D,(q) is given by (57). With the information
about the general structure of the investment, they can predict that the investment policy [§],
given by (41), is preferred by the shareholders, as derived in Appendix A.25, and therefore
implemented by the firm. Thus, their expected payoff becomes D, (§), which is known by the
shareholders. The derivative with respect to § is calculated as follows:

dD,(9)
0q

=F—GF-(1-§)L=1-§)F—-L)>0 (A111)

Hence, D,(§) and therefore the bond value B; increase in 4. For any g, > G, reported by the
shareholders, it follows that B, = D;(g,) > D,(§Q), so that the shareholders gain a profit at the
cost of the debtholders without them noticing, as they cannot deduce the actual value of § from
the realized payoff. Hence, the shareholders report the wrong values of I and H and the
according compensation scheme u to support the highest possible §,., so that the information

cannot be trusted.

A.36. Worst case for debtholders

The debtholders expect to receive the payoff D;(q), given by (57). The worst case for them

occurs if D;(q) is minimized. For further investigation, calculate the following derivative:

aD
61—?=F—EF—(1—E)L=(1—@)(F—L)>0 (A112)
Note that this is similar to the derivative in (A111) but with g instead of §.2% It follows that D, (q)

is minimized for the minimum value of g, which is zero. Thus, the worst case occurs if g = 0.

284 Also see footnote 199 for this.
285 The cutoff level 7 is used, because the debtholders do not have any information and cannot predict the cutoff
level § preferred by the shareholders.
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A.37. Calculation of AB(q)

With D, (g) from (57) and B, from (58), the difference AB(q) is calculated by the following:

1-7° 1-79)?
AB@)=D1@)_B1=EF+( 261 )F+( 261) L—B;

LlF
2 2 2

(a-? 1\ (1 (1-77
-< 2 ‘5)”(5‘ 2 )”
=<%_(1‘2@2>(F_L>>o (A113)

For every q € (0,1] the first term cannot be negative and with F > L the second one cannot be
negative either, so that AB(q) > 0.

:—(1_6)2L+<1—(1_26)2>F !

A.38. Shareholders’ payoff function without debtholder control

With V(q) from (56), D,(q) from (57) and B; from (58), the shareholders’ payoff function is
calculated as follows:

$1(@ =V(@) + By — D1(q) — E[u]

_ =2 Y Y Y
=—I+§I+(1 2q )H+(1 26) L+Bl—(1 261) L—<1—(1 a)>F

2
—E[u]

=—1+6(1—F)+(1 2q )(H—F)+(1 Zq) (L—=L)+B; —E[u] (A114)
=0

A.39. Calculation and analysis of q,

The first-order-condition of the shareholders’ payoff function, given in (59) with E[u] = w,, with
respect to q is calculated as follows:

051(q) _ _
37 =]|-F-qH-F)=0

o qH-F)=I-F

_ I-F I-L-(F-1) _
U d = = =
1T"H-F " H-L-F-L %

(A115)
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With § = ﬁ < 1, given by (41), subtracting the same value (F — L) from the numerator and

the denominator decreases the expression, which leads to g, < §. Following from the

Appendix A.26, the policy [q, ] is riskier than the policy [g].

The derivative of g, with respect to F is the same as the derivative of g with respect to F, given

in (A99), which means that dq, /0F < 0.

A.40. Shareholders’ payoff function with initial debtholder control
With V(q) from (56) and D,(q) = D,(q), as in (57), the shareholders’ payoff function is given
by:

S2(q) = V(@) + B, — D,(q) — E[u]

_ _ 2
( (H ry+ 4 q)

=—I+B,+q(I—-F)+ (L—-L)—E[u] (A116)
As B, = D,(q) and E[u] = w,, this leads to:

— RV
(1 Zq) (1 Zq)L_WO

S;(@ =V(@ —Elul =—-1+ql + (A117)
A.41. Calculation and analysis of investment policy g,

The first-order-condition of the objective function, given in (66), with respect to q is calculated

as follows:

95,(q) _9D,(q)
1-5 7 +B 97
o A-PU-qH-A-QL]+B[F—qF —(A—-qL]=0
o g-A-BH-BF+Ll+(1—-BI—-L+BF=0
o q1-BH+BF—-L]=QQ—-p)—L+pF

(1-B)I—L+pBF
(1—B)H—L+pF

(=PI -1—BL—PL+BF

=0

L d q:

© IS pH_(-RL_PpLt BF
o BF-L)
oo TUER A118
R NGED R A1)
=P
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-L
(13)

denominator increases the expression, which leads to g, > §. Following from the Appendix

With § = —< 1, given by (41), adding the same value 272 t5 the numerator and the

A.26, the policy [q,] is less risky than the policy [§].

For the determination of the derivative of g, with respect to , focus on the term B( D that is

added to the numerator and denominator ofﬁ in order to generate g, . If this term increases,

so does the whole fraction. The derivative of the term with respect to 8 is given by:

[ﬁ(F L)]
A-p ' _F-DA-H-CHEEFE-L)_ F-LA-B+BF-L)
ap (1-p)? (1-p)?
F—-L
=357 >0 (A119)

As the term added to the numerator and denominator increases in 3, so does the fraction and
it follows that dgq,/dp > 0.

A.42. Calculation of @, with initial debtholder control

With (61) and (67), the shareholders calculate @, via the equation g, = q,:

9 y_p+BE=-L

I-F+5 (1-5
9 B(F—1)

H-F+3 H-L+T0—py
9 BF-L)

—Ft-= L+—(1_ﬁ)

9_(-RF-1) BF-L)

a 1-8 1-p)
9 (F-1L)

a A-p)

_91-p)

(F-L)

= &, (A120)
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A.43. Expanded graphical presentation of S,(q,)
Figure Il expands the interval of 5 to [0; 1] for figure 9.

Si

—SZ @2)
S(@)

B

0 1

Figure Ill: Expanded illustration of shareholders’ payoff S,(q,) vs. optimal expected payoff S(§). Own
graphic, S(§) calculated according to John and John (1993), pp.957-958.256

A.44. Obtaining the optimal solution with initial debtholder control

With g = 0, the cutoff level q,, given in (67), becomes:

0% (F—1L
_ _"“—(1(—/3))_1—L_A
q2_H_L+O*(F_L)_H_L_q (A121)
1-p)

Thus, the optimal policy, as in (41), is induced and the shareholders’ expected payoff, as in
(65), becomes:
1-— ~2 1—-0 2
(1-3°) +( 7)

S2(@ =~1+§41 +———H -

L—wy=5(9) (A122)
Note that above equation holds for S(§), given by (44).

As shown in Appendix A.41, q, > g for g > 0, so that the optimal solution is only obtained for

g =0.

286 The values used to calculate the functions are: L =0; I =5; H=11; wo = 0; F = 1.



A.45. Shareholders’ payoff function with state-contingent debtholder control

With V(q) from (56) and D3(q) from (69), the shareholders’ payoff function is given by:

=2
53(5)=V@)+B3_D3@)+( _)

(F—L)—E[u]

(1 —q)2

=—1+B3+a(1—F)+( — )(H P+ (L+F-L)—F)—E[u] (A123)

The debtholders calculate the bond value B; = D;(q), which leads to:

— )2 _ R
53@=V@+( _)(F L)—Eu]=-1+7q 1+( )H+(1 zq)

F—E[u] (A124)

A.46. Calculation and analysis of investment policy q,

With the shareholders’ payoff function given in (70) and the condition (72), the first-order-

condition with respect to q is calculated as follows:

953(q)
dq

=I-qgH-(1-@QF+(1—-q)C=0

o g[H-F+Cl=1-F+cC
I-F+C I—-L+(C—(F-L))
H—-F+C H-L+(C—-(F-L))

R d q:

=1, (A125)

As per assumption C > F — L, so that a positive term (C — (F — L)) is added to the numerator
and denominator of § = % < 1, as given in (41). This leads to an increase of the whole
fraction, which means that q, > §. Following from the Appendix A.26, the policy [q,] is less
risky than the policy [§].

The derivative of g, with respect to C is given by:

0, H-F+C—(-F+C) _ H-I
ac (H—TF + C)? TH-Ff0Z

>0 (A126)
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A.47. Calculation of @; with state-contingent debtholder control

With (61) and (73) the shareholders calculate @; via the equation g, = q.:

9
o a=-=0 (A127)

A.48. Obtaining the optimal solution with state-contingent debtholder control

In the following, the condition € = F — L holds, so that q,, given by (73), becomes:

_ I-L+(F-L-(F-L) I1-1L
q3_H—L+(F—L—(F—L))_H—L

=g (A128)

This holds for G, given by (41), and leads to the following changes in the shareholders’

expected payoff, given by (76):

1 — G2 1—§)> 1—§)>
53(61)=—1+q1+( Zq)H+( Zq)F wo—( zq)

1_’\2 1_/*2
—r+qr+l 2q D i 4§ 2") L—wy =S (A129)

(F-1L)

Note that above equation holds for S(§), as given in (44).

As shown Appendix A.47, q, > g for C > F — L. Moreover, C > F — L means that the costs of

the restructuring exceed its additional value, so that the terms do not eliminate each other, as

they do in (A129). Thus, the optimum can only be obtained for C = F — L.

A.49. Comparison of policies: No control vs. initial control

Both of the critical values q,, given by (60), and q,, given by (67), are of the form ¢, = ((:I__LL))Y:Z

whereby the first- and second-order derivative with respect to n; are calculated as follows:

aﬁl H—L+nl—(1_L+nZ) H-—1
_l_ = A130
anl (H —L +nl)2 (H - L +nl)2 > 0 ( )
0%q, —2(H-L+ H-1
7, _ - n)(H — 1) A131)

anlz (H — L+ nl)4

Forn, > —(H — L) it follows that 9%g,/dn;,* < 0.
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As 97,/m, > 0 and ny = —(F — 1) < 552 = ny, it follows that 7, <G,

According to the Appendix A.26, this means that the policy [q, ] is riskier than [q,].

Given the cutoff levels in (41), (60) and (67), the following differences are calculated for further

investigation:
[ P kGl (A132)
T U= L " H-L-(F-1)
|Q—EI—I_L+ﬁ((1F ﬁL)) -l (A133)
2l ST T BF-L H-L
H— L+ —p

Assume that g = 0,5, so that n; = —(F — L) and n, = (F — L). This means that |n,| = |n,| and
n, >ny >—(H—L). As 9q,/0n; >0 and 92gq,/on,*> <0, the difference |§ —gq,| must be
smaller than |§ — q,|. If B < 0,5, the values of n, and g, decrease, so that the difference

|a — q,| becomes even smaller. Hence, |§ — q,| > |§ — 7, holds for B < 0,5.

A.50. Analytical and graphical presentation of g,;;

In order to determine S, S1(q,), given by (64), is compared with S,(q,), given by (65) with

q=3y

I+l +

L —w, — AB(q,)

L0-30) (1-7,)°

=-I+7q > H+ > L—-w,

(1 B a12) (1 B a1)2
2 H+ 2

(A134)

This equation holds for the cutoff levels q,and q,, given by (60) and (67), and for f = B
Solving (A134) for B.,i+ leads to the following:

+( - HWVo +¥
Berit = ( 31 (A135)
With:
® = (H—F)?L? + [(H—F)I?> + (2FH — 2H?)I + F?H — F3]L + (F? — FH)I? (A136)
+ (2FH? — 2F?H)I — F?H? + F3H
W= (H-F)’L+(H—-F)I>+ (2FH —2H?)I + FH?> — F*H (A137)
Q= (H—F)I?+ (2FH — 2H?)I + 2FH? — 3F?H + F3 (A138)
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Note that the algebraic sign before (I — H)Y® needs to be a minus in order to receive a
plausible result. B.,;+ can be plotted as a function of F, with L < F < I, leading to figure IV. For

illustration purposes, 8 = 0,5 and f = 1 have been inserted in the figure, too.

Ba
S—
_Bcrit
B=0,5
p=1
"F
L |

Figure IV: Critical value B.,;; for comparison of options of no debtholder control and of initial
debtholder control.?87

A.51. Comparison of policies: No control vs. state-contingent control

The critical values g, and q,, given by (60) and (73), have the form gq, =((111%):;’l. With

dq,/0n; > 0, as shown in equation (A130) and ny = —(F — L) < (C — (F — L)) = ns, it follows

thatq, <7q,.
According to the Appendix A.26, this means that the policy [q, ] is riskier than [q,].

Given the cutoff levels in (41), (60) and (73), the following differences are calculated for further

investigation:

|q_q1|_H—L_H—L—(F—L) (A139)
o I-L+(C—-(F-L) I-L
=%l =y T-L (A140)

For C = 2(F — L) it follows that n; = —(F — L) and n3 = (F — L). Hence, with |n;| = |n;| and
ns >n,; > —(H — L), this case is similar to the one in Appendix A.49, so that for C = 2(F — L)
the difference | — gq,| is smaller than the difference |§ — q,|. In case that € < 2(F — L), the

value of n; becomes smaller, leading to a further decrease of g, and thus of the difference

| —q,|. Overall, this means that |§ — q,| > |§ — q,| for ¢ < 2(F - L).

287 The values used to calculate the function of ;s are: L=0; I =5; H=11; wy = 0; F = 1.
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A.52. Calculation of C,, 1

For the determination of C,,¢ 1, 51(61), given in (64), is compared with S5(q,), given in (76):

1-7,° 1-7,)°
—1+611+( ql)H+( qu)L—wo—AB(al)

(A141)

1-7,° 1-3,)° 1-7,)°
=—I+631+( 2q3 )H+( 2q3) F_<W0 +%Ccrit,1>

The above holds for the cutoff levels g, and q,, given by (60) and (73), and for C = C,p¢ 1-
Solving (A141) for C.i¢, leads to:

(H — F)L — FH? + 2F2H — F3

Cerita =~ — )L + 12 — 2HI + H? — FH 1 2 (A142)
This is shown graphically as a function of F in figure 11.
A.53. Comparison of policies: Initial control vs. state-contingent control
Given the cutoff levels in (41), (67) and (73), the following differences are calculated:
_ L BEF=L)
|@—E|=I a-p -t (A143)
2 H_L+ﬁ(F—L) H-L
1-p)
., I-L+(C—-(F-L) I-1
@l =g rec-F-n) F-L (A144)
_ _ . — _ (-L)+ny
Both of the cutoff levels g, and q,, given by (67) and (73), have the form q, = Hbyins

Assuming that C = 2(F — L) and = 0,5 leads ton, = n3 = F — L, so that |§ — q,| = |§ — |-
In case of C > 2(F — L), it follows that n; > F — L, whereas f < 0,5 leads to n, < F — L, which

means that with 9g,/dn; > 0, as in (A130), the condition |§ —q,| < |§ — q,| holds.
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A.54. Calculation of C,,;

In order to determine Ce,t 2, S2(q,), as given in (65), is compared with S5(q,), given in (76):

1-7,° 1-7,)°
La-3), Zqz)L_WO

2

1-7,° 1-3,)° 1-7,)°
=—I+631+( 2613 )H+( 2q3) F_<W0 +%Ccrit,2>

~1+7,1
(A145)

The equation holds for g, and q,, given by (67) and (73), and for C = C,;;;,. Solving (A145) for
Cerit2 leads to:
(@, - 1)°(H - )L -1+ (q,H + (1 - q,)F)2l = q,°H? + (3,> — 1)FH

Corit = — = — — (A146)
o (@, - 1)L+ (3, - 1)21+(1-7,")H

As q, is a function of B, C¢, is also a function of g and can be graphically displayed, as

shown in figure 12 as well as figure V.

A.55. Expanded graphical presentation of C,;;
Figure V expands the interval of § to [0; 1] for figure 12.

CM

Ccrit,z

Cmin

Figure V: Expanded illustration of the critical value C.,; , for comparison of options of initial debtholder
control and of state-contingent debtholder control.?88

288 The values used to calculate the functions are: L =0; I =5; H=11; wy = 0; F = 1.
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A.56. Situations with negative expected payoffs of the shareholders

At first, consider the shareholders’ expected payoff S; (61), given in (64), and examine when it

becomes negative:

Si(q)=-1+ql+

1-q,° 1-q,)"
( 1)H+( Zl)L—wo—AB(al)<o

2

(1 _512)

(1 B 51)2
2 2

1.1
o —I[+sF+sL+qU-F)+

SF+5 (H-—F) +

(L-L)—w,<0

— 2
1
o —I+E(L+H)+§1(1—F)—%(H—F)—wo<0

R d

(“20+L+H=2w)(H = F) +20 = F)? = (= F)*
2(H — F) <

2
o (—21+L+H—2w0)<H—F>+<I—F> <0 (A147)

>0 >0

Note that even for w, = 0 this inequation can be true if the first term is negative and its modulus
is high enough. Hence, all combinations of L, I, H, F, for which (A147) holds with w, = 0, lead

to Sl(ﬁl) < 0, regardless of the value of w,. Setting w, > 0 would even further decrease
51(61)'

Now, consider the shareholders’ expected payoff S, (ﬁz), given in (65) with g = q,:

52(62) = -] +azl Wq < O

o V(g,)-wy <0 (A148)

(1 B 522) (1 B 62)2
+ > H+ > L—

As V(q) is a downward facing parabola with the maximum value at 4, as shown in Appendix
A.26, and q, > g, as shown in Appendix A.41, V(ﬁz) becomes minimal for the maximum value

of g,. Consider g, = 1, so that:
V) =—-14+1%1404+0=0 (A149)

Thus, even with the minimal value of V, inequation (A148) can only hold if wy > 0, so that

S,(q,) = 0, as long as w, = 0.

Finally, consider the shareholders’ expected payoff S;(q,), given by (76):

1-7q,° 1-7,)°
53(63)=—1+631+( 2q3 )H+( 2q3) (F-C)—wp<0 (A150)
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As q, is set by the board, acting on behalf of the shareholders, it maximizes S;(q), so that the

following condition holds:
S3(q5) = S:3(@=1D)=—I+1x1+0+0—-wy=—-w, (A151)
Thus with w, = 0 it follows that S3(,) = 0.

For the comparison of the three different options, w, can be set equal to zero without the loss
of generality, as it has exactly the same impact on each payoff function of the shareholders. It
follows that for all combinations of I, L, H, F, for which inequation (A147) holds, the options with

debtholder control dominate, as they cannot yield negative expected payoffs.

A.57. Endogenizing F in the case of initial debtholder control

If F is determined endogenously, this is done via the equation B, = D,(q,) = D;(q,), With D;
as in (57). This leads to:

1-7,° 1-7,)°
Bz=62F+( 2612 )F+( zqz)L (A152)

As q,, given by (67), is a function of 8, solving (A152) for F leads to a solution, which is also a

function of .

With dq,/dp > 0, as shown in Appendix A.42, and B, being constant, it follows from (A152)

that F decreases in . A decrease in F also decreases the term B((li_;)) which is added to the

numerator and denominator of ﬁ in order to create q,. As % < 1, a decrease in this term
also decreases the whole fraction and therefore q,. While g, decreases, it approaches the
ideal cutoff level g, which leads to an increase in S,(q,). This is in contrast to the direct effect

of g on S,(q,), as q, increases in S, so that the overall function decreases, as in figure 9.

A.58. Agency costs without debtholder control when debtholders assume L = 0

With the debtholders assuming that L = 0, B,, given by (58), becomes:
1
Biaie = EF (A153)

Consider the shareholders’ expected payoff S;(q), given by (59). As B; . represents a
constant, the first-order-condition and therefore the value of g, do not change. By 4;; only
affects AB(q) = D1(q) — B;. With dAB(q)/0B; = -1 <0 and By 4, < B;, By leads to a
higher AB(q) and therefore increases the agency costs.
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A.59. Shareholders’ expected payoff with long-term aspects

The debtholders price the debt equal to their expected payoff, which means B = D. The future
savings Z can only be expected after the safe or the high return, as the relationship only

continues in these cases. With (56), this leads to:
Sir(@) =V(@) +B—D—wy +E[Z]

_ — 72 _
(Zq) (12q) o+Z+(

(1- )(H+Z)+(1_2—a)2L—WO (A154)

=—I+ql + Z

——I+qU+2)+

A.60. Calculation of q, .

The first-order-condition of S;+(q), given by (79), with respect to q leads to:

aS
W@=I+Z—E(H+Z)—(1—E)L=O
o qH+Z-L)=1+Z-1L
_ I-L+Z _
C A=y _1xz7 " Qr (A155)

With g =ﬁ< 1, as given in (41), adding the same value Z to the numerator and the
denominator increases the expression, which leads to g, > 4. As shown in Appendix A.26,
this means that [q, ] leads to a final cash flow that is less risky than the one generated by [g].

It also follows that increasing the value of Z increases the fraction for the same reasons as

stated above, so that dq,./dZ > 0.
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