

Online-Appendix zu

"Multi-Period Optimization of the Refuelling Infrastructure for Alternative Fuel Vehicles "

Alexander Böhle Karlsruher Institut für Technologie

Junior Management Science 6(4) (2021) 790-825

Appendix Α

 $\sum_{i \in N} o k_i^t$ $\frac{\sum_{i \in Q} y_q^t f_q^t}{\sum_{q \in Q} f_q^t}$

Model Formulations A.1

MP-NC FRLM incl. Minimal Flow Coverage Constraint

$\max \sum_{t \ \in \ T} \sum_{q \ \in \ Q} y_q^t$			(A.1)
st $\sum z^t$	$> a^t$	$\forall a \in O \ a \in A \ t \in T$	$(\Delta 2)$

s.t.
$$\sum_{i \in K_{j,k}^{q}} z_{i} \geq y_{q} \quad \forall q \in Q, \ a_{j,k} \in A_{q}, \ t \in I$$
(A.2)
$$\sum_{i \in K_{j,k}^{q}} f_{q}^{t} p r_{iq} g_{iq} x_{iq}^{t} \leq c_{i} z_{i}^{t} \quad \forall i \in N, \ t \in T$$
(A.3)

$$\sum_{i \in N} x_{iq}^{t} = y_{q}^{t} l_{q} \quad \forall q \in Q, t \in T$$

$$x_{iq}^{t} \leq z^{t} \quad \forall i \in N, q \in Q, t \text{ in } T$$
(A.5)

$$\begin{aligned} x_{iq} &\leq z_i &\forall i \in N, \ q \in Q, \ t \text{ in } I & (A.6) \\ z_i^t &\leq z_i^{t+1} &\forall i \in N, \ t \in T \setminus \{n\} & (A.7) \\ z_i^t - z_i^{t-1} &\leq k_i^t &\forall i \in N, \ t \in T \setminus \{1\} & (A.8) \\ z_i^1 &\leq k_i^1 &\forall i \in N & (A.9) \end{aligned}$$

$$\leq k_i \qquad \forall t \in T \tag{A.10}$$
$$\leq b_t \qquad \forall t \in T \tag{A.10}$$

$$\geq y_q^t, \qquad \forall \ q \ \in \ Q \tag{A.11}$$

$$\leq 1 \qquad \forall i \in N$$
 (A.12)

$$\sum_{t \in T} k_i^t \leq 1 \qquad \forall i \in N$$

$$(A.12)$$

$$z_i^t, k_i^t \in \{0,1\} \qquad \forall i \in N, t \in T$$

$$0 \leq x_{iq}^t \leq 1 \qquad \forall i \in N, q \in Q, t \in T$$

$$(A.13)$$

$$\forall i \in N, q \in Q, t \in T$$

$$(A.14)$$

$$\forall q \in Q, t \in T$$

$$(A.15)$$

Sets	
Ν	Set of all nodes on the Graph G
Q	Set of all OD pairs
Т	Set of all time periods
A_q	Set of all directional arcs on the path $q \in Q$ from origin to destination
$K^q_{j,k}$	Set of all potential station locations, that can refuel the directional arc
	$a_{j,k} \in A_q$
Variables	
z_i^t	Binary Variable that equals to one, if a refuelling facility is open at node
	i in time period t
k_i^t	Binary Variable that equals to one, if a refuelling facility is constructed
	at node i in time period t
x_{iq}^t	Semi-Continuous Variable that indicates the proportion of vehicles on
-	path q that are refuelled at node i in time period t
y_q^t	Semi-Continuous Variable that indicates the proportion of flow served
	on path q in time period t
Parameters	
p	Fuel efficiency / fuel consumption per vehicle range
0	Facility opening costs / construction costs
v^t	Fraction of the minimal amount of flow covered in period t
c_i	refuelling capacity at node i
d_q	total distance of path q
$ heta_q$	vehicle range of vehicles on path q
l_q	Number of refuelling occasions on path q depending on the total path
	distance, $l_q = \operatorname{ceil} \{ d_q / \theta_q \}$
b_t	Available budget in period t
f_q^t	Total vehicle flow on the OD path q in time period t
g_{iq}	Binary indicator, that is set to one, if node i is a potential station
	location on path q
r_{iq}	refuelled driving distance at node i on path q

Maximal Flow Covering MP-NC FRLM

$$\max \sum_{t \in T} \sum_{q \in Q} f_q^t y_q^t \tag{A.16}$$

s.t.
$$\sum_{i \in K_{j,k}^q} z_i^t \qquad \geq y_q^t \qquad \forall q \in Q, \ a_{j,k} \in A_q, \ t \in T \qquad (A.17)$$

$$\sum_{q \in Q} f_q^t p r_{iq} g_{iq} x_{iq}^t \leq c_i z_i^t \quad \forall i \in N, t \in T$$
(A.18)

$$\sum_{i \in K_{j,k}^q} x_{iq}^t \qquad = y_q^t \qquad \forall q \in Q, \ a_{j,k} \in A_q, \ t \in T \qquad (A.19)$$

$$\sum_{i \in N} x_{iq}^t = y_q^t l_q \quad \forall q \in Q, t \in T$$
(A.20)

$$\begin{aligned}
x_{iq}^t &\leq z_i^t &\forall i \in N, q \in Q, t \text{ in } T \\
z_i^t &\leq z_i^{t+1} &\forall i \in N, t \in T \setminus \{n\} \\
z_i^t - z_i^{t-1} &\leq k_i^t &\forall i \in N, t \in T \setminus \{1\}
\end{aligned}$$
(A.21)
(A.21)
(A.22)
(A.23)

$$\leq 1 \qquad \forall i \in N$$
 (A.26)

$$\begin{aligned} z_i^t - z_i^{t-1} &\leq k_i^t &\forall i \in N, t \in T \setminus \{1\} \\ (A.23)\\ z_i^1 &\leq k_i^1 &\forall i \in N \\ \sum_{i \in N} o k_i^t &\leq b_t &\forall t \in T \\ \sum_{i \in T} k_i^t &\leq 1 &\forall i \in N \\ \sum_{t \in T} k_i^t &\leq \{0,1\} \\ 0 &\leq x_{iq}^t &\leq 1 &\forall i \in N, t \in T \\ 0 &\leq y_q^t &\leq 1 &\forall i \in N, q \in Q, t \in T \\ (A.26)\\ \forall i \in N, q \in Q, t \in T \\ (A.27)\\ \forall i \in N, q \in Q, t \in T \\ (A.29) \end{aligned}$$

$$\forall q \in Q, t \in T \tag{A.29}$$

Sets	
N	Set of all nodes on the Graph G
Q	Set of all OD pairs
Т	Set of all time periods
A_q	Set of all directional arcs on the path $q \in Q$ from origin to destination
$K^q_{j,k}$	Set of all potential station locations, that can refuel the directional are
x 7 • 1 1	$a_{j,k} \in A_q$
Variables	
z_i^t	Binary Variable that equals to one, if a refuelling facility is open at node i in time period t
k_i^t	Binary Variable that equals to one, if a refuelling facility is constructed
<i>i i</i>	at node i in time period t
x_{iq}^t	Semi-Continuous Variable that indicates the proportion of vehicles or
	path q that are refuelled at node i in time period t
y_q^t	Semi-Continuous Variable that indicates the proportion of flow served
	on path q in time period t
Parameters	
p	Fuel efficiency / fuel consumption per vehicle range
0	Facility opening costs / construction costs
c_i	refuelling capacity at node i
d_q	total distance of path q
$ heta_q$	vehicle range of vehicles on path q
l_q	Number of refuelling occasions on path q depending on the total path
	distance, $l_q = \operatorname{ceil} \{ d_q / \theta_q \}$
b_t	Available budget in period t
f_q^t	Total vehicle flow on the OD path q in time period t
g_{iq}	Binary indicator, that is set to one, if node i is a potential station
	location on path q
r_{iq}	refuelled driving distance at node i on path q

A.2 Graphs and Charts

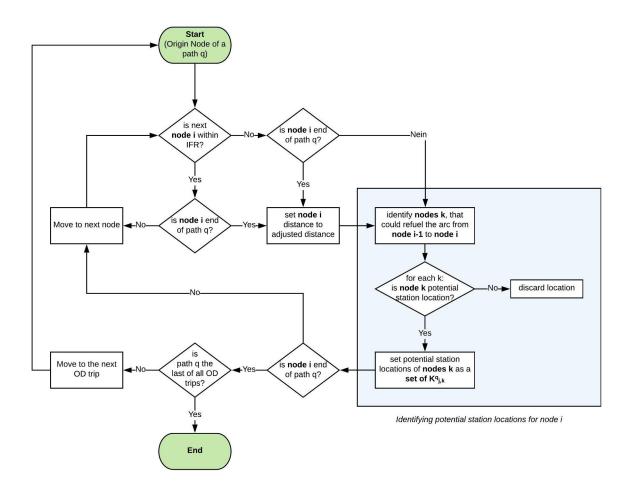


Figure 22: Flowchart to determine the Set $K^q_{j,k}$ in the NC-FRLM.

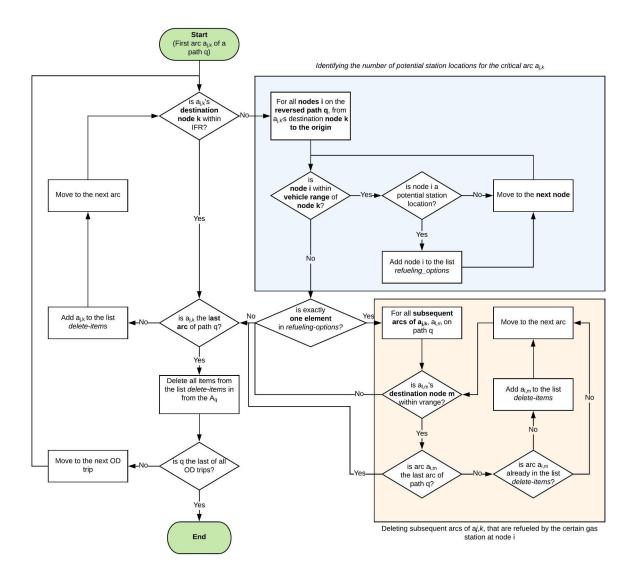


Figure 23: Flowchart to remove the non-critical arcs from ${\cal A}_q$ in the MP-NC FRLM.

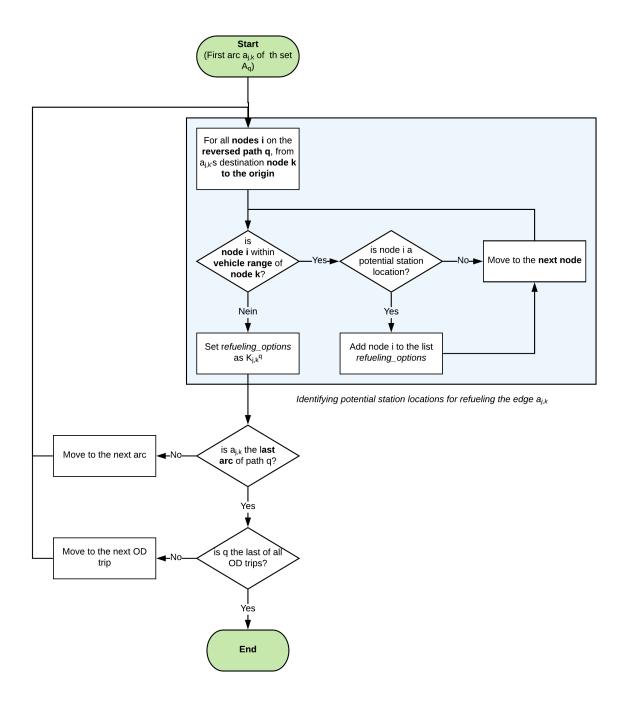


Figure 24: Flowchart to determine the Set $K^q_{j,k}$ in the MP-NC FRLM.

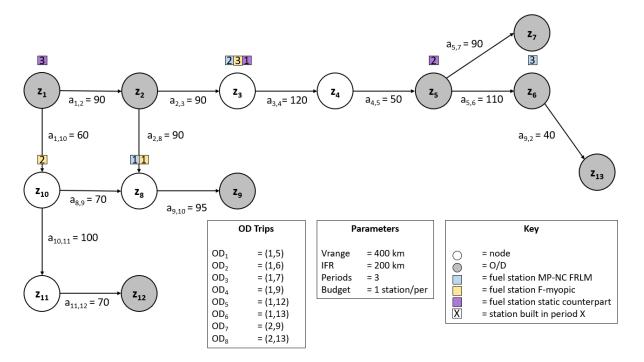


Figure 25: Exemplary problem in the numerical experiment with both VMPP > 0 and VMPS > 0

A.3 Tables

OD Trip	Flow in t=1	Flow in t=2	Flow in t=3
(1,5)	5	10	12
(1,6)	5	10	12
(1,7)	5	10	15
(1, 9)	5	10	15
(1,12)	5	10	15
(1, 13)	5	10	15
(2,9)	5	10	15
(2,13)	5	10	15

Table 12: OD flows of the VMPS, VMPP >0 problem in figure 25

		Period t=1	Period t=2	Period t=3
MP-NC FRLM	Operating Stations	z_8	z_8, z_3	z_8, z_3, z_6
	Paths Covered	(1,9), (2,9)	(1,9), (2,9), (1,5)	(1,9), (2,9), (1,5), (1,6), (2,13)
Static Counterpart	Operating Stations	z_8	z_8, z_1	$z_8, \ z_1, \ z_5$
	Paths Covered	(1,9), (2,9)	(1,9), (2,9)	(1,9), (2,9), (1,6), (1,7), (1,13)
F-Myopic	Operating Stations	z_8	$z_8, \ z_{10}$	$z_8, \ z_{10}, \ z_3$
	Paths Covered	(1,9), (2,9)	(1,9), (2,9), (1,12)	(1,9), (2,9), (1,12), (1,5)
Solution Value		Assessment Criterion		
MP-NC FRLM 1		10.0	VMPS	11.11~%
Static Counterpart		9.0	VMPP	11.11~%
F-Myopic		9.0		

Table 13: Operating stations and covered paths of the numerical experiment in figure 25