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Abstract

Backtesting of risk measure estimates is an integral part for an effective risk management. With the growing importance of the
Expected Shortfall (ES) to potentially replace the Value at Risk (VaR) as a primary measure for market risk this also calls for
suitable backtesting solutions. Although a variety of approaches has been proposed in the past, there is still an on-going discussion
whether the ES can be properly backtested. The thesis adds to this discussion in the following way. Five of the most promising
backtests for the ES are implemented, compared based on theoretical properties like empirical size and power and tested against
ES estimation models which are fitted to historical returns of the S&P 500. In addition, all backtests in scope are assessed against
a set of criteria which reflect their practical applicability for both regulators and financial institutions. Results presented within
this thesis confirm that backtesting the ES is indeed not much more complicated than backtesting the VaR. Backtesting ES might
be conceptually less straight forward, but there are multiple promising approaches which allow for a reasonable validation of ES
estimation models.
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1. Introduction

This thesis deals with the ability to backtest the Expected Short-
fall (ES) risk measure. Indeed, backtesting the ES has been
one of the most interesting topics in the field of financial risk
management over the last two decades. Until today there is
no consensus amongst researches on how to backtest the ES.
Furthermore, there is still an ongoing and controversial debate
on whether it is possible to backtest the ES at all. This thesis
aims to shed light on the diverse literature on backtesting the
ES. Moreover, it yields a comprehensive evaluation of multiple
backtesting methodologies, suggested within the literature, also
with regard to their practical applicability for financial institu-
tions.

Within the financial industry, it is common practice to make use
of so called risk measures in order to determine potential risks
inherited in an investment portfolio. Risk measures are map-
pings of random variables, i.e. the Profit and Loss (P&L) dis-
tribution of a portfolio, into real-valued scalars, which represent
the capital amount that needs to be held by a financial institu-
tion as a buffer against unexpected portfolio losses. Amongst
practitioners, the ES together with the Value at Risk (VaR) are
by far the two most relevant risk measures, which will both be

defined in more detail in the course of this thesis.
Besides the estimation of these risk measures, it is fundamental,
especially for regulators, to be able to ex-ante verify the accu-
racy of a risk forecasting model, to ensure that capital buffers
are sufficient. This process is referred to as the backtesting of
a certain risk measure. As outlined by Kratz, Lok, and Mc-
Neil (2018), a backtest is a statistical procedure which com-
pares forecasts to actual realizations in order to judge the cor-
rectness of the implemented forecasting model. In the case of
risk management, a set of ex-ante VaR or ES estimates is com-
pared to realized portfolio returns in order to verify if the ap-
plied estimation model accurately forecasts the risk of the un-
derlying portfolio. For regulators it is of particular interest to
detect estimation models which underestimate the actual under-
lying risk, as an insufficient coverage against adverse scenarios
might threaten the functioning of the whole financial system in
times of market distress.
For many years the VaR has been the predominant risk mea-
sure in practice. Nevertheless, it is well known that the VaR
does not belong to the class of coherent risk measures, defined
by Artzner, Delbaen, Eber, and Heath (1999), as it fails to con-
sistently account for portfolio diversification. Furthermore, the
VaR only accounts for a predefined quantile of the P&L distri-
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bution but ignores the tail of extreme events beyond that quan-
tile, which is for example noted in Danielsson et al. (2001).
Thus, it appears to be consequential, that the Basel Committee
of Banking Supervision in their “Fundamental Review of the
Trading Book” (see Basel Committee (n.d.-a)), proposes to re-
place the VaR as a primary measure for market risk by the ES.
Indeed, the ES makes up for the weaknesses of the VaR listed
above, which will be outlined in the course of the following
chapter. Furthermore, as for example argued in Emmer, Kratz,
and Tasche (2015), most forecasting models for the VaR can
easily be generalised for the estimation of the ES.
Nevertheless, there is one major concern about the ES both
practitioners and researchers worry about - the ability to back-
test the ES. Indeed, backtesting VaR is more or less intuitive and
the respective literature is well developed.1. In comparison to
the VaR, there is still an ongoing discussion on whether the ES
is even backtestable at all. This was originally fueled by Gneit-
ing (n.d.), who proved that the ES lacks a statistical property
known as elicitabilty. As shortly summarized by Kratz et al.
(2018), a risk measure is called elicitable, if it can be defined as
the solution of a forecasting-error minimization problem. Fur-
ther, Gneiting (n.d.) argues that the lack of this property makes
it cumbersome or maybe even impossible to backtest the ES.
This opinion is further supported by contributions like Chen
(2014) or Carver (2013). Nevertheless another opinion starts
to prevail in recent years. As an example, Acerbi and Szekely
(2014) makes the point, that elicitability has actually nothing to
do with backtesting at all. The concept of elicitability as well
as any potential implications on the ability to backtest the ES
will also be taken up in the course of this thesis.
Nevertheless and despite all doubts expressed within the liter-
ature, a variety of potential backtests for the ES has been sug-
gested in the last two decades2. This thesis tries to provide
insights into the diverse and still emerging literature by imple-
menting some of the most promising approaches. More pre-
cisely, five different approaches are selected, based on Kratz
et al. (2018), Acerbi and Szekely (2014), Bayer and Dimitri-
adis (2019), Costanzino and Curran (2015), and McNeil and
Frey (2000), which are evaluated in the course of this the-
sis. Furthermore, some adjustments to the original test ver-
sion are proposed, in order to ensure both practical applicabil-
ity as well as compliance with regulatory needs. All backtests
are implemented in Python and compared according to classi-
cal measures like empirical power and size. Additionally, they
are tested in the their judgement of actual forecasting models,
which are fitted to financial returns of the S&P 500.
The remainder of this Master thesis is structured as follows.
Chapter 2 is going to introduce the concept of risk measures, de-
fine both the VaR and the ES and outline their theoretical prop-
erties. Afterwards, chapter 3 focuses on the concept of back-
testing in general, whereas chapter 4 introduces the selected

1See for example Kupiec (1995) or Christoffersen (1998) for work on back-
testing VaR.

2See for example Acerbi and Szekely (2014), Bayer and Dimitriadis (2019),
Costanzino and Curran (2015), Du and Escanciano (2017), Kratz et al. (2018),
Wong (2008), Berkowitz (2001), Nolde and Ziegel (2017), McNeil and Frey
(2000) and many more for approaches on backtesting the ES.

approaches as well as adjustments, which will be made for the
purpose of this thesis. Consecutively, chapter 5 conducts a sim-
ulation study to evaluate and compare empirical size and power
of the applied tests, followed by an application of all backtests
to real financial data in chapter 6. Finally, some concluding re-
marks on the results obtained within this thesis are presented in
chapter 7.

2. Risk Measures and their properties

The purpose of the following section is twofold. First, it gives
an overview on the concept of risk measures and introduces
some notation used throughout this thesis. Based on Artzner et
al. (1999), Emmer et al. (2015) and Nolde and Ziegel (2017),
desirable properties of risk measures are outlined. Second, the
two most practically relevant risk measures, i.e. the Value at
Risk (VaR) and the Expected Shortfall (ES) are formally de-
fined. Furthermore, the section aims to give a theoretical foun-
dation for the decision by regulators to replace the VaR by the
ES as a primary measure for market risk. Thus, this section
might be seen as a motivation why it is even necessary to pay
attention to the backtestability of the ES.

2.1. Concept of Risk Measures
For the general definition of a risk measure, Artzner et al.
(1999) is taken as a reference. Therefore, a position, e.g. an in-
vestment strategy or a portfolio of financial assets, is considered
over a certain time horizon. The position might be described by
X , its net worth at the end of the investment horizon, which is
defined as a real-valued function on some set Ω of possible fu-
ture outcomes. Moreover, let X be the set of all real-valued
functions X ∈X , which represent the future net worth of a cer-
tain position. The formal definition of a risk measure is then
given as follows.

Definition 2.1 (Risk Measure). A risk measure ρ is a mapping
from X to R, i.e.

ρ : X → R, X 7→ ρ(X). (2.1)

Artzner et al. (1999) connects the concept of risk measurement
to the particular question how close or far a certain position is
from being accepted by either regulators or other stakeholders.
More general speaking, ρ(X), which is related to a certain end
of period net worth X ∈X , is the additional capital amount that
needs to be held such that the position is accepted by regulators.
Correspondingly, a higher value of ρ(X) is related to a riskier
investment position. For instance, a value of ρ(X) > 0 signals
that a financial institution needs to hold additional capital as a
safety buffer such that the position is accepted by regulators. On
the other hand, a position is accepted by regulators if ρ(X) ≤
0. As a natural extension, Artzner et al. (1999) thus defines
the so called acceptance set Aρ , which contains all positions
acceptable for regulators with respect to a certain risk measure.

Definition 2.2 (Acceptance Set). The acceptance set related to
a risk measure ρ is denoted byAρ and defined through

Aρ := {X ∈X |ρ(X)≤ 0} (2.2)
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Overall, the concept of risk measures facilitates the decision
making of both financial institutions and regulators as it breaks
down the risks inherited in a certain position to one single num-
ber. Furthermore, risk measure values ought to be easy to inter-
pret as the amount of additional capital that needs to be held by
an institution.
Obviously, a mapping ρ fromX into the real values should ful-
fil some desirable properties to be an adequate risk measure for
practical needs. Nevertheless, the following subsection is first
going to introduces both the VaR as well as the ES, before the
subsection thereafter discusses their theoretical properties.

2.2. Value at Risk, Expected Shortfall and Spectral Risk Mea-
sures

There are several different conventions which are used through-
out the literature for the definition of both the VaR as well as the
ES. In order to maintain consistency, the following set-up is go-
ing to be used in the remainder of this thesis.
For the previous general introduction to risk measures, the fu-
ture net worth of a position, X , was the variable of interest. Nev-
ertheless, practitioners rather consider the Profit & Loss (P&L)
distribution of a certain position. Moreover, for the case of risk
management especially the estimation of a loss distribution is
of particular interest. Consequently, I decided to rely on the
following set of notations.

Notation 2.3. The following notation is going to be used in the
course of the thesis.

• Denote the unconditional return loss L of a portfolio, as
a real valued random variable on some probability space
(Ω,F ,P). Furthermore, let F(y) := P(L ≤ y) be the cu-
mulative distribution function (CDF) of L and denote the
respective probability density function (PDF) by f (y).

• Denote the conditional return loss {Lt}t≥0 of a portfolio
as a real valued stochastic process on some probability
space (Ω,F ,P), endowed with a filtrationF := {Ft , t ≥
0}. The filtration is given by Ft := σ{Ls,s ≤ t}, for all
t ∈ N.

• For t ∈N, denote the conditional CDF of Lt based on the
set of past information Ft−1 by Ft(y) := P(Lt ≤ y|Ft−1).
Respectively, denote the corresponding conditional PDF
by ft .

• For t ∈ N, denote the conditional quantile of Lt given
the past information Ft−1 and some level α ∈ (0,1) by
qα(Lt |Ft−1) := F←t (α) = inf{y ∈ R : Ft(y)≥ α}, where
F←t denotes the generalized inverse function of Ft .

A summary of the most important variables used throughout
this thesis can be found in Appendix B attached to this thesis.

In Notation 2.3, L is defined as the random variable of return
losses, nevertheless in some publications L is prescribed to be
the distribution of return losses, which does make a difference
form a mathematical point of view. As noted by Nolde and
Ziegel (2017), defining a risk measure ρ on a space of return

loss distributions instead of a space of random variables, only
makes sense if the risk measure ρ is law invariant. This means
that two equivalent return loss distributions, i.e. F1(y) = F2(y)
for all y ∈ R and for some random variables L1 and L2, always
results in the same risk measure value, i.e. ρ(L1) = ρ(L2).
Indeed, both the VaR and the ES satisfy the criteria of law-
invariance, thus it is not crucial for the purpose of this thesis
whether L is defined as a random variable or as the related re-
turn loss distribution. Overall, I want to rely on the Notation
2.3, but I might at certain points mix up the notation, if this fits
better into the commonly applied notion of a certain topic.
Especially in the area of market risk, it is well known that the fi-
nancial environment and thus the risk inherited in a investment
portfolio changes over time. Thus, modelling the unconditional
loss L of a portfolio can be seen as a rather naive approach.
Consequently, the main focus of this thesis will be on condi-
tional, time dependent, risk forecasts based on the estimated
stochastic process of {Lt}t≥0.
From a historical perspective both variance and standard devi-
ation were the dominant risk measures in financial applications
for a long period of time. The importance of the VaR started
to raise when RiskMetrics announced to use the VaR as their
standard measure of risk in 1996, as outlined in JP Morgan
(1996). Shortly thereafter, the Basel Committee of Banking
Supervision introduced the VaR as an industry standard for the
measurement of market risk (see Basel Committee (n.d.-c)). In
order to calculate the VaR one needs to consider a time hori-
zon ∆ as well as a confidence level α ∈ (0,1).3 Given a return
loss variable Lt , the VaR describes the loss over the considered
time horizon ∆, which is only exceeded in 1−α percent of all
cases. For the remainder of this thesis, a risk horizon of ∆= 1
day is considered and thus ∆ can be dropped in the following
definition in order to simplify the notation.

Definition 2.4 (Value at Risk). The Value at Risk (VaR) at time
t ≥ 0, t ∈ N, at the confidence level α ∈ (0,1) based on some
conditional return loss Lt is defined as

VaRα(Lt |Ft−1) := qα(Lt |Ft−1) = inf{y ∈ R : Ft(y)≥ α} .(2.3)

For simplicity reasons, the short notation VaRt,α =VaRα(Lt |Ft−1)
is used.

Analogous to Definition 2.4, one can define a time independent
version VaRα based on unconditional return loss L. The Basel
Committee of Banking Supervision requires executives to cal-
culate the VaR at a confidence level of α = 0.99. Given any
realistic portfolio and the conventions applied in Definition 2.4,
it is thus reasonable to assume that the VaRt,0.99 has a positive
sign. The VaR is often criticized for two main reasons. First of
all, it is insensitive to any extreme losses beyond the α-quantile
of the loss distribution. Secondly, it is not a sub-additive risk
measure, i.e. it fails to consistently account for portfolio diver-
sification. This will be outlined in more depth in subsection 2.3.

3Note that α is selected as a confidence level and not a significance level for
the purpose of this thesis. Thus, α takes on values like 0.95 or 0.99 instead of
0.05 or 0.01.
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As already shortly mentioned in the introduction, the ES over-
comes both of these shortcomings and thus gains more and
more attention in the measurement of market risk, as for ex-
ample the Basel Committee of Banking Supervision suggests
to replace the VaR by the ES under the Basel III framework5.
Indeed, the ES appears to be a natural extension of the VaR.
Whereas the VaR states the loss which is only exceeded at a cer-
tain confidence level α , the ES goes one step further and asks
for the average loss given an exceedance of the corresponding
VaR threshold. More formally, given the notations introduced
above, the ES is defined as follows.

Definition 2.5 (Expected Shortfall). The Expected Shortfall
(ES) at time t ≥ 0, t ∈N, at the confidence level α ∈ (0,1) based
on some conditional return loss Lt with CDF Ft is defined as

ESα(Lt |Ft−1) :=
1

1−α

∫ 1

α

qp(Lt |Ft−1)d p (2.4)

=
1

1−α

∫ 1

α

VaRt,pd p .

Moreover, if the CDF Ft is continuous at the α-quantile, the
definition can be simplified, according to Acerbi and Tasche
(2002), to

ESα(Lt |Ft−1) = E[Lt |Lt ≥VaRt,α ] . (2.5)

Again the short notation ESt,α =ESα(Lt |Ft−1) will be applied.

The value of the ES again depends on the arbitrary confidence
level α ∈ (0,1). As the conditional quantile qα(Lt |Ft−1) is an
increasing function in α , it holds that ESt,α ≥VaRt,α . Kerkhof
and Melenberg (2004) argues that the overall level of capital
requirements, applying VaRt,0.99, is more or less appropriate.
Thus, in order to keep capital requirements on a similar level
one should choose a lower confidence level for the ES com-
pared to the VaR. Indeed, Basel Committee (n.d.-b) suggests
the estimation of the ES at a level of α = 0.975. If one assumes
that the return loss follows a standard normal distribution, than
both VaRt,0.99 as well as ESt,0.975 lead to similar values. Fol-
lowing Kerkhof and Melenberg (2004), one might denote the
PDF and the CDF of the standard normal distribution by φ and
Φ, respectively. Then it holds 6,

VaRt,0.99 = Φ−1(0.99) = 2.33≈ 2.34 (2.6)

=
φ(1.96)
0.025

=
φ(Φ−1(0.975))

1−0.975
= ESt,0.975.

Therefore, the overall magnitude of the capital buffer remains
comparable. Nevertheless, if the loss distribution of a portfo-
lio exhibits excess kurtosis compared to the standard normal

4Note that I defined Lt as the return loss and not as an absolute loss figure.
Consequently, the resulting VaR is also on a return space, i.e. it needs to be
multiplied with the corresponding position size to be interpreted as an absolute
value in a certain currency.

5See for example Basel Committee (n.d.-a) and Basel Committee (n.d.-b).
6See chapter 6, formulas (6.2) and (6.3) for the calculation of VaR and ES

under the assumption of normally distributed return losses.

distribution, this leads to a situation with ESt,0.975 > VaRt,0.99.
Consequently, the ESt,0.975 measure captures the additional risk
inherited in a heavy tailed loss distributions. Therefore, the ES
is more sensitive to potential extreme losses in the underlying
portfolio, which is beneficial from a risk management perspec-
tive. For the remainder of this thesis, the ES will always be
considered at the confidence level of α = 0.975, stipulated by
the Basel Committee.
For a further classification of both the VaR and the ES the term
of a spectral risk measure, which stems from Acerbi (2002),
is introduced below. As for example described in Costanzino
and Curran (2015), a spectral risk measure can be seen as a
weighting of the VaR at different confidence levels given some
spectrum ψ . According to Costanzino and Curran (2015), a
so called admissible risk spectrum needs to fulfil the following
properties.

Definition 2.6 (Admissible risk spectrum). An integrable func-
tion ψ ∈ L1([0,1]) is called an admissible risk spectrum, if

(i) ψ is non-negative on [0,1],

(ii) ψ is non-decreasing on [0,1],

(iii) ‖ψ‖1 = 1, where ‖ψ‖1 =
∫ 1

0 |ψ(p)|d p.

Based on Definition 2.6, a spectral risk measure can be defined
in the following way.

Definition 2.7 (Spectral risk measure). Let Lt be a conditional
return loss with some cumulative distribution function Ft . Sup-
pose the ψ is an admissible risk spectrum, then the spectral risk
measureMψ based on the risk spectrum ψ , at time t > 0, t ∈N,
is defined by

Mt,ψ :=
∫ 1

0
ψ(p)VaRt,pd p. (2.7)

Given Definition 2.7, one can easily recognize that the VaR has
no representation as a spectral measure, whereas the ES does
belong to that class of risk measures. This is explained in the
consecutive Lemma, following Costanzino and Curran (2015).

Lemma 2.8. As outlined in Costanzino and Curran (2015) it
holds:

(i) The VaR defined in Definition 2.4 is not a spectral risk
measure.

(ii) The ES defined in Definition 2.5 is a spectral risk mea-
sure.

Proof. (i) Define ψVaR(p) := δα,p, where δ denotes the
Kronecker-Delta, then it holds

Mt,ψVaR =
∫ 1

0
δα,pVaRt,pd p =VaRt,α . (2.8)

But ψVaR is not an admissible risk spectrum, as it violates
conditions (ii) and (iii) from Definition 2.6.
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(ii) Define ψES(p) := 1
1−α

1{α≤p≤1}, then it holds

Mt,ψES =
∫ 1

0

1
1−α

1{α≤p≤1}VaRt,pd p (2.9)

=
1

1−α

∫ 1

α

VaRt,pd p

= ESt,α .

Furthermore, ψES fulfils all three properties of an admis-
sible risk spectrum as defined in Definition 2.6.

Based on Lemma 2.8, one can rely on general results on the
class of spectral risk measures to differentiate between the prop-
erties fulfilled by both the VaR and the ES.

2.3. Basic properties of Risk Measures
This subsection aims to give an overview on basic properties of
risk measures, which are widely accepted throughout the liter-
ature. Furthermore, both the VaR and the ES are going to be
evaluated based on the introduced properties.
As previously mentioned, Artzner et al. (1999) brought up the
term of a coherent risk measure, which needs to fulfil a set of
mathematical axioms. The notation for the following definition
is based on Emmer et al. (2015)7.

Definition 2.9 (Coherent Risk Measure). A risk measure ρ is
called a coherent risk measure, if it satisfies the following prop-
erties:

(i) Homogeneity:
A risk measure ρ is homogeneous, if for any return loss
variable L and h ∈ R, h≥ 0 it holds that:

ρ(hL) = hρ(L) . (2.10)

(ii) Monotonicity:
A risk measure ρ is monotonic, if for any two return loss
variables L1 and L2 it holds that:

L1 ≤ L2⇒ ρ(L1)≤ ρ(L2) . (2.11)

(iii) Translation invariance:
A risk measure ρ is translation invariant, if for any return
loss variable L and for any m ∈ R it holds that:

ρ(L−m) = ρ(L)−m . (2.12)

(iv) Sub-additivity:
A risk measure ρ is sub-additive, if for any return loss
variables L1 and L2 it holds that:

ρ(L1 +L2)≤ ρ(L1)+ρ(L2) (2.13)

7Again different conventions are used for the definition of a coherent risk
measure. Nevertheless, the notation used by Emmer et al. (2015) fits best into
the previously introduced notation.

Indeed, all four axioms given in Definition 2.9 are reasonable
properties risk measures should satisfy. Homogeneity states
that the risk inherited in a portfolio should be scalable by the
respective size of the portfolio.8 Secondly, if a portfolio P-
almost surely generates a higher loss than another portfolio, i.e.
L2 ≥ L1, then that portfolio should also be related with a higher
riskiness, i.e. ρ(L2)≥ ρ(L1), which is fulfilled if the risk mea-
sure is monotonic. Furthermore, if the portfolio loss is reduced
by adding a risk-free capital amount m to the portfolio, then
the risk should decrease by exactly the amount of m, which is
satisfied if the respective risk measure is translation invariant.
Lastly, the risk inherited in one large portfolio consisting of
multiple positions, should be at most as large as summing up
the risks of the single positions due to diversification effects.
This is fulfilled whenever a risk measure ρ is sub-additive.
Acerbi (2002) even goes one step further and includes condi-
tions (i)-(iv) in its general definition of a risk measure. More-
over, he argues that these conditions should be fundamental for
every risk measure. For the particular case of both the VaR and
the ES, Acerbi (2002) derives an essential result, which relates
both the class of spectral and coherent risk measures.

Theorem 2.10 (Acerbi (2002)). Let Lt be some conditional re-
turn loss variable with CDF Ft . DefineMt,ψ as

Mt,ψ :=
∫ 1

0
ψ(p)VaRt,pd p,

where ψ ∈ L1([0,1]). ThenMt,ψ is a coherent risk measure if
and only if ψ is an admissible risk spectrum according to Defi-
nition 2.6.
Moreover, a risk measure is coherent if and only if it has a rep-
resentation as a spectral risk measure.

Proof. See Theorem 2.5 and Theorem 4.1 in Acerbi (2002).

As the VaR does not have a spectral representation, it is also
not a coherent risk measure following Theorem 2.10. On the
contrary, the ES does belong to the class of coherent risk mea-
sures. More precisely, the VaR fails to satisfy condition (iv) of
a coherent risk measure, i.e. it is not sub-additive. One can con-
struct counter-examples with n ∈N loss distributions L1, . . . ,Ln

such that ρ
(
∑

n
i=1 Li

)
> ∑

n
i=1 ρ(Li).9 The lack of sub-additivity

might be seen as a drawback of the VaR risk measure in prac-
tical applications. Indeed, portfolio diversification is a com-
mon method of reducing financial risks. Nevertheless, if the
achieved diversification effects are not consistently reflected in
the related VaR figures, this might yield wrong incentives for
financial institutions.
Emmer et al. (2015) also list another property which appears
to be essential for risk measures in practical applications. The
comonotonic additivity of a risk measure can be seen as a com-
plement to the sub-additivity condition stated in Definition 2.9.
The property is based on the following two definitions.

8Note that in the presents of liquidity risk for large position sizes one might
rather expect ρ(hL)≥ hρ(L) given that h� 0.

9See Hull (2015) Examples 12.5 and 12.6, for examples on the VaR where
the sub-additivity condition is violated.
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Definition 2.11 (Comonotonicity). Let X1 and X2 be two real
valued random variables on a probability space (Ω,F ,P).
Then X1 and X2 are called comonotonic, if there exists a real-
valued random variable X̃ and two non-decreasing functions
f 1 and f 2, such that

X1 = f 1(X̃) and X2 = f 2(X̃) . (2.14)

Definition 2.12 (Comonotonic Additivity). Let L1 and L2 be
two comonotonic return loss variables, then a risk measure ρ is
called comonotonic additive, if it holds that

ρ(L1 +L2) = ρ(L1)+ρ(L2) . (2.15)

Indeed, this property has also a comprehensible intuition. If
the loss distributions of two portfolios are comonotonic, then
their losses are both driven by some common risk factor. Thus,
merging both portfolios together should not lead to any diver-
sification benefits as the risk stems from the same risk factor
anyway. Actually, both the VaR as well as the ES satisfy the
property of comonotonic additivity.10

Besides the above listed properties, the aspect of robustness is
also often discussed in the context of risk measures. In a gen-
eral sense, a risk measure is said to be robust if small changes
in the underlying loss distribution are also related to small
changes in the risk measure value. More formal definitions
of robustness can for example be found in Cont, Deguest, and
Scandolo (2008) or Emmer et al. (2015). Cont et al. (2008)
evaluates how additional data points, added to the estimation
sample for a return loss variable, effect overall risk measure
values. Indeed, they conclude that robustness is not solely a
matter of the selected risk measure, but does also depend on the
type of implemented estimation model. Furthermore, they out-
line that the ES is in general less robust compared to the VaR.
Nevertheless, as for example noted by Emmer et al. (2015),
this is not overly surprising as the ES was introduced due to the
insensitivity of the VaR with respect to observations beyond
the α-quantile. Thus, it is by definition more or less a logical
implication that the ES is less robust compared to the VaR.
Furthermore, Emmer et al. (2015) argues that in the context of
risk management, extreme observations might be less related to
measurement errors but rather to actual circumstances, which
should indeed be reflected by the respective risk measure. Sum-
ming up, the ES is obviously less robust compared to the VaR,
at least in the sense of Cont et al. (2008), but it is not clear
whether this should be seen as a potential shortcoming of the
ES, given that a certain degree of sensitivity towards extreme
observations lies within the nature of a risk measure.
The properties presented in this section display just a small
selection. Overall, there is far more literature on general prop-
erties of risk measures.11 Nevertheless, as a result of this
subsection, it can be seen that the VaR is not a coherent risk
measure as it does not fulfil the axiom of sub-additivity. Fur-
thermore, the VaR is only defined as a quantile of the return

10See for example Emmer et al. (2015) for the definition of Expectiles, a
coherent risk measure which does not satisfy comonotonic additivity.

11See for example Foellmer and Schied (2002) and its definition of a convex
risk measure for another important contribution on risk measure properties.

loss distribution, consequential it completely ignores all losses
beyond the selected confidence level.
Concluding this subsection, it appears to be reasonable to
favour the ES over the VaR, given that it is a coherent risk
measure which furthermore satisfies the property of comono-
tonic additivity. In addition, also the lack of robustness should,
at least per-se, not be seen as a disadvantage of the ES, given
the previous argumentation. Nevertheless, for a long time the
majority of both academics as well as practitioners expressed
their reservations with regard to the ES, as they doubted the
ability to backtest the ES. Just in recent time, triggered by the
decision of the Basel Committee of Banking Supervision in
2013, researchers started to focus more on practical backtest-
ing solutions instead of pointing towards potential conceptual
limitations.

2.4. Elicitability
As shortly described in the introduction, the statistical property
of elicitability is always closely related to any discussion on
the backtestability of the ES. Thus, this subsection gives a brief
summary on the elicitability of risk measures or functionals in
a more general context.
Originally, the concept of elicitiability was introduced by Os-
band (1985). Overall, as for example stated by Gneiting (n.d.),
elicitability is a useful tool for the evaluation of a series of fore-
casts based on ex-ante realizations. The concept makes use of
a strictly consistent scoring function S, which needs to satisfy a
set of criteria, and takes both forecasts and realizations as input
parameters in order to assign them to a numerical score. A func-
tional, i.e. a risk measure in this case, is said to be elicitable, if a
suitable strictly consistent scoring function exists, which fulfils
the properties listed in the course of this subsection.
Acerbi and Szekely (2014) briefly explains the main advantage
of an elicitable risk measures. Let ρ be some elicitable risk
measure with strictly consistent scoring function S. Assume a
risk manager estimates some return loss variable L̂, which re-
sults in a risk forecast ρ(L̂). Furthermore, let L denote the true
distribution of return losses. Then the true value of the risk
measure, ρ(L), can be determined by

ρ(L) = argmin
ρ(L̂)
E[S(ρ(L̂),L)]. (2.16)

In practice, a risk manager generates a set of forecasts {xt =
ρ(L̂) : t = 1, . . . ,T} and observes a set of realizations {lt , t =
1, . . . ,T}, which are based on the true data generating process
L. Given both forecasts and realizations, one might try to mini-
mize the mean-score,

S̄ =
1
T

T

∑
t=1

S(xt , lt), (2.17)

in order to find a forecasting distribution L̂ such that the
achieved risk estimates are close to the true values, i.e.
ρ(L̂)≈ ρ(L).
In the following a slightly more formal definition of elicitabil-
ity is presented, based on Emmer et al. (2015) and Nolde and
Ziegel (2017). For a more comprehensive and also technical
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review on the concept of elicitability see for example Gneit-
ing (n.d.) or Fissler and Ziegel (2016). In line with common
practice, L denotes the distribution of return losses and not a
random variable for the purpose of this definition. In general,
the elicitability of a risk measure always depends on some set
of probability distributions, i.e. loss distributions in the setting
of this thesis. Denote the set of considered probability distri-
butions by P . Furthermore, similar as in Nolde and Ziegel
(2017), let Θ(L) = (ρ1(L), . . . ,ρk(L)) be a vector of k ≥ 1,
k ∈ N risk measures based on some return loss distribution
L ∈P .
The following formal definitions of a strictly consistent scoring
function an the elicitability of risk measures follow Nolde and
Ziegel (2017). Note that for the case of k = 1, i.e. Θ(L) = ρ1(L)
the elicitability of one single risk measure is evaluated, while
for the case of k > 1 the joint elicitability of a vector of risk
measures is considered.

Definition 2.13 (Consistency). A scoring function S :Rk×R→
[0,∞) is called

(i) consistent for Θ with respect to P if

E[S(Θ(L),L)]≤ E[S(x,L)] , (2.18)

for all x ∈ Rk with x = (x1, . . . ,xk) 6= Θ(L) =
(ρ1(L), . . . ,ρk(L)) and for all loss distributions L ∈P .

(ii) strictly consistent for Θ with respect to P if equation
(2.18) holds with strict inequality, i.e.

E[S(Θ(L),L)]< E[S(x,L)] , (2.19)

for all x ∈ Rk with x = (x1, . . . ,xk) 6= Θ(L) =
(ρ1(L), . . . ,ρk(L)) and for all loss distributions L ∈P .

Definition 2.14 (Elicitability). A vector Θ of risk measures is
called elicitable with respect to P , if there exists a strictly con-
sistent scoring function S : Rk×R→ [0,∞) in the sense of Def-
inition 2.13.

As outlined above, elicitability can be seen as a helpful tool for
the purpose of risk management as it yields a criterion for the
estimation of an optimal forecast. Indeed, given a strictly con-
sistent scoring function, different estimated loss distributions
and the resulting risk forecasts can be compared with respect to
the minimization problem stated in formula (2.16).
In the univariate case, i.e. for k = 1, the most prominent ex-
ample might be the mean functional, which is elicitable with
respect to all real valued probability distributions with finite
second moment. Moreover, the squared error, i.e. S(x,y) =
(x− y)2, is a strictly consistent scoring function in this case.
Thus, for example the estimation of a mean regression in a
standard OLS framework, is achieved by minimizing the mean-
squared-error, which corresponds to minimizing formula (2.17)
in this particular case.
In order to remain within the scope of this thesis, only the major
results regarding the elicitability of different risk measures are

cited below. The VaR at confidence level α is elicitable with re-
spect to the class of real-valued Borel-probability distributions,
which have a unique α-quantile. Moreover, the weighted ab-
solute error function is a strictly consistent scoring function for
the VaR, as shown in Thomson (1979) and Saerens (2000). On
the contrary, as previously mentioned, Gneiting (n.d.) proved
that the ES is not an elicitable risk measure. In more detail, the
following proposition was stated by Gneiting (n.d.).

Proposition 2.15 (Gneiting (n.d.), Theorem 11). The ES func-
tional is not elicitable relative to any class P of real-valued
probability distributions on the interval I ⊂ R that contains the
measures with finite support, or the finite mixtures of the abso-
lutely continuous distributions with compact support.

Thus, whereas the VaR is elicitbable with respect to a reason-
able set of probability distributions, the ES, at least standalone,
is not.
Nevertheless, for the case of k = 2, recent contributions derived,
that the vector Θ̃ := (VaRα ,ESα) is indeed elicitable following
Definition 2.14. In the literature, this is often referred to as the
conditional elicitability of the pair of ES and VaR.
The following result, proved by Fissler and Ziegel (2016), is
cited below as is fundamental for the backtest by Bayer and
Dimitriadis (2019), which will be introduced in the course of
this thesis.

Proposition 2.16 (Nolde and Ziegel (2017)). All scoring func-
tions of the form,

S(x1,x2,y) = 1{y>x1} (2.20)
(−G1(x1)+G1(y)−G2(x2)(x1− y))

+(1−α)(G1(x1)−G2(x2)(x2− x1)+G2(x2)) ,

where G1 is an increasing function, G ′2 = G2 and G2 is strictly
increasing and strictly concave, are strictly consistent for Θ̃ =
(VaRα ,ESα), α ∈ (0,1), with respect to the class P ′. More-
over, P ′ are all real-valued probability distributions with finite
mean, which have unique α-quantiles and G1(X) is integrable
for all random variables X with distribution in P ′

Proof. See Corollary 5.5 in Fissler and Ziegel (2016).

Concluding this subsection, elicitability can be seen as a useful
tool for the evaluation of risk measure forecasts. The ES itself
does not fulfil this statistical property, whereas the VaR does.
Nevertheless, one can find strictly consistent scoring functions
for the pair of ES and VaR, or more precisely the ES together
with the VaR is conditional elicitable. The consecutive section
is going to turn to the main topic of this thesis, the backtesting
of risk measures, especially of the ES. Thus, it will also evaluate
the concern if the lack of elicitability of the ES is indeed a seri-
ous drawback for the development of backtesting approaches.

3. Backtesting of Risk Measures

For the estimation of risk measure values, there are two, poten-
tially contrary objectives both regulators and financial institu-
tions are mainly interested in. First of all, as already outlined
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above, the estimation of risk figures is closely related to the cap-
ital buffer an institution needs to put aside. On the one hand,
the regulator needs to assure a sufficient magnitude of capital
reserves, such that banks and insurance companies stay solvent
in times of financial distress. On the other hand, financial in-
stitutions try to keep their capital buffer at the lowest possi-
ble level in order to achieve a more efficient capital allocation.
Given these two adverse targets, it is essential that risk measure
forecasts are sufficiently backtested against actual P&L realiza-
tions.
Correspondingly, this section is structured as follows. Sub-
section 3.1 introduces the general idea of backtesting. Fur-
thermore, I want to introduce a set of rather qualitative as-
pects, which I believe are of particular interest for any practi-
tioner. Moreover, these aspects are related to potential issues for
both the implementation as well as the execution of risk mea-
sure backtests in real-world scenarios. Subesection 3.2 gives a
short overview of the backtesting framework of VaR forecasts,
whereas the subsection thereafter aims to give an overview on
the discussion, whether the ES is backtestable despite its lack
of elicitability.

3.1. Definition and practical aspects
Loosely speaking, as mentioned by Kratz et al. (2018), a back-
test is a statistical procedure which compares forecasts of risk
measures to actual realizations in order to judge whether the
forcasting model is accurate or not.
First of all, in order to prevent any possible confusions, one
might further categorize the type of considered forecast. In line
with common practice, Emmer et al. (2015) differentiates be-
tween three different types, which are listed below.

(i) Point forecasts for the value of a random variable or a
probability distribution. These are often expressed by
an conditional expectation, i.e. E[Lt |Ft−1], where again
Ft−1 inherits all information up to time t−1.

(ii) Interval forecasts, resulting in an interval estimate in
which the forecast is expected to lie with some probabil-
ity level p. Both the VaR and the ES do belong to this
class of forecasts. As an example, given a loss variable
L and the estimated interval (VaRα ,∞), then the loss is
expected to be within this interval with a probability of
1−α .

(iii) Forecasts of the entire probability distribution, like for
example an estimate of the CDF or the PDF of a return
loss distribution.

Therefore, both VaR and ES forecasts are in most cases catego-
rized as interval forecasts.
For the purpose of backtesing, some notational aspects and as-
sumptions are outlined in the following, which will be applied
in the consecutive chapters.

Notation/Assumptions 3.1. The following set of notations and
assumptions in the context of backtesting is going to be used in
the course of the thesis.

• Denote the backtesting horizon, i.e. the number of P&L
observations used for the backtest, by T ∈ N. The Basel
Committee suggest a value of T = 250 days, which will
be taken as a reference.

• Denote a vector of realized return losses over the back-
testing horizon by ~l := {lt : t = 1, . . . ,T}, where losses
are assumed to be independently but not identically dis-
tributed. Correspondingly, the setting allows for time de-
pendent return loss distributions.

• For any time t ∈ {1, . . . ,T} the realized loss lt is dis-
tributed according to some unknown return loss variable
Lt , i.e lt ∼ Lt . Furthermore, the risk manager forecasts
the return loss L̂t and the related distribution Ft(L̂t) at
any point in time within the backtesting horizon. It is
assumed, that both Lt and L̂t follow a continuous and
strictly increasing distribution for any considered time
period.

• Denote a set of risk measure forecasts over the backtest-
ing horizon by {ρ̂t : t = 1, . . . ,T}. For the particular
case of the ES and the VaR, the estimated set of forecasts
is denoted by {ÊSt,α : t = 1, . . . ,T} and {V̂aRt,α : t =
1, . . . ,T}, respectively.

• Assume a risk manager requires a set of k ∈ N auxiliary
variables at any point in time t within the backtesting
horizon, either for the estimation or the backtesting of
the respective risk measure. Denote the set of auxiliary
variables at time t by, (a1

t , . . . ,a
k
t ) ∈ Rk.

See Appendix B for a summary of the most important variables
used within this thesis.
The following general definition of a backtest is motivated by
Bayer and Dimitriadis (2019), nevertheless it is less strict in the
sense that is allows for the inclusion of auxiliary variables in
the backtest of risk measure forecasts.

Definition 3.2 (Backtest). Given the notation introduced
above, a backtest of the series of forecasts {ρ̂t : t = 1, . . . ,T}
for the risk measure ρ , given a time series of k ∈ N auxiliary
variables, based on the realized return loss series~l is a function

f : RT ×RT×k×RT →{0,1} , (3.1)

which maps the series of forecasts, realized returns and poten-
tial auxiliary variables onto a test decisions.

In an optimal scenario no auxiliary variables are needed in or-
der to test risk measure forecasts on P&L realizations. As an
example, all common VaR backtests do not rely on any further
input parameters, nevertheless this is different for ES backtests,
which often require auxiliary variables like volatility or VaR es-
timates.
Bayer and Dimitriadis (2019) puts a lot of emphasis on devel-
oping a standalone ES backtest, which does not require any ad-
ditional input parameters. Indeed, this can be seen as a criteria
for the conceptual soundness of the underlying backtest, never-
theless my main focus for this thesis is on the practical appli-
cability of backtests for financial institutions. As an example,
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the estimation of both ES and VaR is tightly connected. In gen-
eral, if one estimates the ES, then one can easily also obtain the
corresponding VaR forecast without any further assumptions or
computational difficulties. On the contrary, a backtest which
requires an estimation of the entire loss distribution should be
seen critical. For any non-parametric estimation method for the
ES, serious additional assumptions would be needed to come
up with an explicit estimate for the CDF of the underlying loss
variable.
Therefore, I do generally allow for auxiliary variables in ES
backtesting approaches, nevertheless I will keep a close eye on
the type of auxiliary variable and if this is related with any ad-
ditional assumptions or effort for the risk manager.
Up to today, there is not one single ES backtest, which can be
seen as an industry standard, but, as mentioned before, there
is a variety of different approaches. In addition to Definition
3.2, I believe that any backtesting approach should fulfil some
further criteria in order to qualify as a standard approach for
the financial industry. Therefore, I derived the following set of
qualitative properties, which are relevant in real-world applica-
tions.

Proposition 3.3. Any backtest for a series of risk measure fore-
casts should take into account the following qualitative criteria
in order to be suitable for the implementation by both regula-
tors and financial institutions.

(i) Data intensity:
In the best case, a backtest should only require the ac-
tual forecasts ρ̂ and observed realizations as input pa-
rameters. Any additional, auxiliary parameters should
be easy to obtain without the need of further assumptions
on the estimation model. Furthermore, regulators might
have less auxiliary variables at hand as they need to rely
on variables reported by financial institutions.

(ii) Computational effort:
Financial institutions in general need to apply backtests
to multiple portfolios on a regular basis. Thus, a back-
test which exhibits excessive computational effort might
not be feasible for practical implementation. As an exam-
ple, backtests which are based on a bootstrap procedure
might be problematic.

(iii) Conceptual ease:
In practice, applied backtests need to be communicated
with internal management, regulators and other stake-
holders. Thus, the applied backtest should be conceptu-
ally sound and understandable. Furthermore, a backtest
should be flexible, such that it can be aligned with chang-
ing internal or regulatory requirements.

(iv) Clear decision making:
A backtest should yield a clear decision (reject/do not re-
ject) of a risk measure forecast at a given significance
level. Optimally, one- and two-sided versions are avail-
able. Regulators care more about one-sided tests, which
evaluate if the actual risk is underestimated, while from a

modelling perspective two-sided tests might be more rel-
evant.

As a consequence, all implemented backtests are not just eval-
uated according to classical measures like empirical size or
power, but also with respect to the qualitative criteria presented
in Proposition 3.3. For the remainder of this thesis, the main
focus will be on one-sided risk measure tests. In practice, this
is by far the more relevant case, as regulators want to assure
that financial institutions do not underestimate their actual risk
and thus hold to low capital buffers. Furthermore, regulators
do not care about overly conservative risk forecasts by financial
institutions.
The consecutive subsection is shortly going to summarize the
current backtesting framework for the VaR risk measure, which
was brought up by Basel Committee (n.d.-d). Indeed, the back-
testing methodology for the VaR can be seen as a starting point
for the development of most relevant ES backtests. Thus, the
VaR backtest introduced below will also be taken up again in
the chapter thereafter, where all selected ES backtesting ap-
proaches are presented.

3.2. Backtesting Value at Risk
This subsection aims to outline the current industry standard
for the backtesting of the VaR, the traffic light test, which was
introduced Basel Committee (n.d.-d). Furthermore, this subsec-
tion presents how this practical approach can be related to more
theoretical contributions like Christoffersen (1998). Indeed, the
current applied traffic light test is also a one-sided test, which is
tailored to regulator’s requirements.
Assuming a continuous loss distribution Lt , for some t > 0,
t ∈ N, it holds that

P(Lt ≥VaRα,t) = 1−α , (3.2)

such that the probability of a violation of the VaR is given by
1−α . As for example proposed by Christoffersen (1998), one
can define the violation indicator of the VaR at time t as fol-
lows.

Definition 3.4 (Violation indicator). For some t ∈ {1, . . . ,T}
and some realized return loss lt ∼ Lt , the violation indicator of
a VaR estimate depending on the confidence level α ∈ (0,1), is
defined as,

It : (0,1)→{0,1} It(α) := 1{lt≥V̂aRα,t} = (3.3){
0 if lt < V̂aRα,t

1 if lt ≥ V̂aRα,t
.

Given both the identity in (3.2) and the violation indicator in
Definition 3.4, Christoffersen (1998) derived the following two
conditions, which need to be satisfied by any series of correct
VaR forecasts.

Proposition 3.5 (VaR - Conditional Coverage). Consider a se-
ries of T ∈ N VaR forecasts and the violation indicator as de-
fined in (3.3), then the VaR forecasts are accurate if and only if
the following two conditions are fulfilled.
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(i) Unconditional coverage:
E[It(α)] = 1−α for all t = 1, . . . ,T .

(ii) Independence condition:
It(α) and Is(α) are independent for all t 6= s, with t,s ∈
{1, . . . ,T}

If both conditions (i) and (ii) are fulfilled, then the VaR forecasts
have correct conditional coverage. In this case it holds

It(α)
i.i.d∼ Bernoulli(1−α) for all t ∈ {1, . . . ,T}. (3.4)

Moreover, summing up the violation indicator for all t leads to

T

∑
t=1

It(α)∼ Binomial(T,1−α). (3.5)

The Basel Committee prescribes a confidence level of α = 0.99
as well as a backtesting period of T = 250, which roughly corre-
sponds to one year if daily returns are considered. Thus, the ex-
pected number of VaR breaches is given by E

[
∑

250
t=1 It(0.99)

]
=

250 ·0.01 = 2.5.
For the one-sided Basel traffic light test, three colour zones are
defined, which correspond to a green, a yellow and a red traffic
light. Furthermore, the following set of hypothesis is evaluated
in the VaR traffic light test,

H0 :
T

∑
t=1

It(α)≤ 1−α (3.6)

H1 :
T

∑
t=1

It(α)> 1−α (3.7)

Given that the forecasting model is correctly specified, the total
number of violations follows a binomial distribution as outlined
in (3.5). Respectively, a series of VaR estimates over a backtest-
ing period of T observation is rejected at a significance level of
κ , whenever Fbinom(∑T

t=1 It(α),T,1−α) > 1−κ . One should
note that Fbinom(X ,T, p) denotes the cumulative probability of
a value X, related to a binomial distribution with T trials and a
success probability of p.
For the yellow traffic light a backtesting significance level of
κ = 0.05 is applied, whereas a value of κ = 0.0001 is con-
sidered for the red traffic light. Thus, the green zone contains
the number of violations, such that the cumulative probability
of obtaining at most that many violations is below 95 %. The
yellow zone contains the number of violations, in case the re-
spective cumulative probability is between 95% and 99.99%.
In case the cumulative probability of a certain number of vio-
lations is above 99.99%, the forecasting model is ranked in the
red zone. If the backtest for a VaR estimation model exhibits a
yellow or red traffic light, a multiplication factor is added upon
the estimated VaR in order to increase the respective capital re-
quirements and thus punish the financial institution, which un-
derstates the actual risk.12

Given the parameters suggested by Basel Committee (n.d.-d),
i.e. T = 250 and α = 0.99, the resulting traffic light zones for
different numbers of violations are depicted in Table 1.

12See Basel Committee (n.d.-d) for more details on the procedure.

The traffic light test is a straightforward backtest, which detects
financial institutions that underestimate their market risk fig-
ures and thus exhibit too many VaR violations. Nevertheless,
the traffic light test has one shortcoming, as it only tests for
the unconditional coverage of the VaR. Under the null hypothe-
sis, it assumes that the occurrence of violations is independent.
More precisely, it only accounts for the number of violations
but not on their timing. In practice, if an estimation model is
badly specified, violations might be clustered around certain
events, which will not be detected by the traffic light test. As
an example, Christoffersen (1998) suggests a backtest for con-
ditional coverage of the VaR, which does also account for the
independence condition stated in Proposition 3.5. Nevertheless,
in practical applications the independence assumption is often
checked separately in addition to the proposed traffic light test.
Often, this is done by manual inspection of the occurrence of
violations over time, as for example stated by Moldenhauer and
Pitera (2018). Furthermore, the traffic light test does not need
any auxiliary input variables in addition to VaR forecasts and
realizations. The methodology is easy to understand and does
not require any bootstrap procedure, such that it is also compu-
tationally efficient. Lastly, test decisions can easily be obtained
at multiple significance levels of the binomial test.
Although the traffic light test exhibits theoretical shortcomings,
as it is only an unconditional coverage test for the VaR, it is
still the benchmark approach used within the financial industry.
Moreover, the backtest satisfies all qualitative criteria outlined
in Proposition 3.3. On the contrary, no comparable benchmark
approach to backtest the ES, which is widely excepted amongst
practitioners, has yet been agreed on.

3.3. Backtesting Expected Shortfall and the need for elicitabil-
ity

The decision to introduce the ES as a primary measure of mar-
ket risk was mainly based on the arguments outlined in chap-
ter 2. Nevertheless, this inevitably calls for the need of some
kind of standard backtesting procedure for the ES. Currently,
the Basel Committee suggests to base capital requirements on
the ES at level α = 0.975, while still backtesting the related
VaR figures at confidence levels of α = 0.99 and α = 0.975
by using the traffic light test outlined in the previous subsec-
tion (see Basel Committee (n.d.-b)). As for example argued by
Costanzino and Curran (2018), this appears to be fairly insuffi-
cient. Furthermore, it reveals the difficulties of finding a suit-
able methodology, despite the multiple theoretical contributions
on that topic within the last years. This subsection aims to give
a short overview on the publications related to the backtesting
of ES. Therefore, it also enters into the discussion, whether and
how backtestability and elicitability should be related to each
other.
The decision by the Basel Committee in 2013 to introduce the
ES as a primary measure of market risk was often criticized, as
Gneiting (n.d.), two years before, derived that the ES is not an
elicitable functional. Publications like Chen (2014), thus con-
clude that the superior theoretical properties of the ES go hand
in hand with the inability to derive suitable backtesting alter-
natives. Nevertheless, in the meantime contributions like Em-
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Basel Traffic Light Test - VaR
Traffic Light Number of Violations Cumulative Probability

Green

0 8.11%
1 28.58%
2 54.32%
3 75.81%
4 89.22%

Yellow

5 95.88%
6 98.63%
7 99.60%
8 99.89%
9 99.97%

Red > 10 > 99.99%

Table 1: Traffic light zones for the VaR backtest suggested by Basel Committee (n.d.-d) given a backtesting horizon of T = 250
observations and a VaR confidence level of α = 0.99.

Source: Basel Committee (n.d.-d)

mer et al. (2015) or Acerbi and Szekely (2014) start to prevail,
which argue that elicitability should not be connected with the
ability to backtest a risk measure. Furthermore, also in earlier
years contributions like Kerkhof and Melenberg (2004) argue
that backtesting the ES is indeed not any more difficult than
backtesting the VaR.
One might take the VaR as an example. As pointed out in sub-
section 2.4, the VaR is a elicitable risk measure, thus one can
compare different forecasting models with respect to the min-
imization problem stated in formula (2.16). Nevertheless, a
backtesting procedure does not compare multiple models, but
needs to judge the accuracy of one single approach. Conse-
quently, most VaR backtests are based on the violation indicator
defined in Definition 3.4 rather than anything that has to do with
elicitability. This is in line with Acerbi and Szekely (2014),
which states that the property of elicitability might be useful
for model selection, but not for the case of backtesting. Similar
as for the VaR, also most suggested approaches to backtest the
ES are not based on the concept of elicitability.13 Therefore, the
existence of a variety of potential ES backtests is another indi-
cator that elicitability is not a necessary condition to be able to
backtest a risk measure.
Furthermore, I want to add another perspective to that discus-
sion. As for example argued in Cont et al. (2008), the risk esti-
mation procedure might be divided into two single steps. First
of all, every estimation model requires either an explicit, via a
parametric approach, or an implicit, via a non-parametric ap-
proach, estimation of the return loss distribution of the under-
lying portfolio. Secondly, both the VaR or the ES are only a
deterministic mapping from the estimated model into the real-
values. If a risk manager does a proper job in modelling the
underlying loss distribution, then both ES and VaR figures will

13The ES backtests proposed by Fissler and Ziegel (2016) and Bayer and
Dimitriadis (2019) can be seen as an exception as they are both based on the
concept of conditional elicitability, previously introduced. Indeed, the later one
will be implemented in the following chapter for the purpose of this thesis.

be accurate. It might be more difficult to derive an untainted
framework for the backtesting of the ES as it is possible for the
VaR. Nevertheless, the ES is just a functional of the α-tail of
return losses. Thus, any methodology to evaluate the appro-
priateness of the estimated tail distribution can be a reasonable
backtesting tool, although it might not be a conceptually ideal
backtest for the ES. My point is that just because it might be
difficult to backtest the ES directly does not mean one can not
judge whether a risk manager does a decent job in estimating
ES forecasts. One can take the approach by Kratz et al. (2018),
which will also be implemented for the purpose of this thesis,
as an example. Kratz et al. (2018) approximates the ES given in
Definition 2.5 by a Riemann-sum using VaR forecasts at differ-
ent confidence levels between α and one. Therefore, Kratz et
al. (2018) can rely on existing techniques to backtest the mul-
tiple VaR values in order to implicitly evaluate the ES forecast.
This displays an indirect approach of backtesting the ES, nev-
ertheless it might still be appropriate to evaluate ES forecasts
irrespective the lack of elicitability. Overall, I belief that the
lack of elicitiability of the ES should not be seen as an argu-
ment against the regulatory decision made by Basel Committee
(n.d.-a).
In the following, there are three more comments I want to make
on the general classifications of existing ES backtests. First
of all, as already argued at the beginning of this chapter, most
proposed ES backtests require additional input variables. Thus,
existing approaches might be categorized according to the type
of auxiliary input variables they require. As an example mul-
tiple tests rely on the VaR (Acerbi and Szekely (2014), Kratz
et al. (2018)), the volatility (McNeil and Frey (2000), Nolde
and Ziegel (2017)), the cumulative violation process

∫ 1
α

It(p)d p
(Costanzino and Curran (2015), Du and Escanciano (2017))
or even the whole return loss distribution (Berkowitz (2001),
Kerkhof and Melenberg (2004), Wong (2008)) as an input pa-
rameter in addition to the ES. As argued above, from a practical
perspective this might be seen more or less problematic depend-
ing on the type of auxiliary variable.
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Secondly, there is one strand in the ES backtesting literature,
which does not focus on point or interval forecast of risk mea-
sures, but rather on the backtesting of the entire estimated re-
turn loss distribution. Most of these approaches are based on
realized p-values, which estimate the probability of observing
ex-post losses based on the predicted return loss distribution.
Diebold, Gunther, and Tay (1998) firstly introduced the idea
of evaluating density forecasts based on realized p-values. Af-
terwards, both Berkowitz (2001) as well as Kerkhof and Me-
lenberg (2004) derived ES backtests based on the concept of
realized p-values. In the light of my previous argumentation,
both approaches also avoid any difficulties of directly backtest-
ing the ES. Nevertheless, both tests require an explicit estimate
for the entire loss distribution, such that they are not feasible
in many real-world applications. Thus, these backtests are not
going to be considered in the course of this thesis.
As a third aspect, one can again differentiate between uncon-
ditional and conditional coverage tests for the ES. Given the
usual parameter value of α = 0.975, there are in general three
aspects which need to be considered for a ES backtest. First of
all, the number of violations exceeding the VaR0.975 threshold,
secondly the magnitude of any violation and lastly again the
independence of violations beyond the VaR0.975 value. A con-
ditional coverage test needs to satisfy all three criteria, while an
unconditional coverage test of the ES only takes into account
the first two criteria. Du and Escanciano (2017) is, up to my
knowledge, the only conditional coverage test for the ES that
has been suggested up to now, all other approaches do not take
into account the independence of VaR violations.
The following chapter is going to turn to the concrete ES back-
testing approaches, which are considered within this thesis.

4. Evaluated backtests for the Expected Shortfall

This chapter presents all five backtests which are implemented
in Python for the purpose of this thesis, as well as any ad-
justments which I made compared to the original approaches.
As outlined in the previous chapter, there is a variety of back-
tests for the ES, which have been suggested within the last
two decades. Although any choice of five different backtests
is somehow arbitrary up to a certain extend, I tried to select five
approaches with respect to the following objective.
The main objective of this thesis is to find an one-sided, uncon-
ditional coverage, backtest for the Expected Shortfall (ES) at
the confidence level of α = 0.975, which should be practically
applicable with respect to the criteria stated in Proposition 3.3.

• First of all, I selected the multinomial backtest from Kratz
et al. (2018), as it appears to be a natural extension to the
binomial test for the VaR.

• Secondly, I chose the so called “Test 2” from Acerbi and
Szekely (2014), which is probably the most prominent
ES backtest and often used as a benchmark in other recent
contributions.

• The third approach I selected is the intercept ES regres-
sion (ESR) backtest from Bayer and Dimitriadis (2019),

as it takes a novel view on the ES backtesting by introduc-
ing a regression framework. Furthermore, it is the only
approach presented within this thesis which is somehow
related to the concept of elicitability.

• As a fourth approach the Z-test from Costanzino and Cur-
ran (2015) is implemented, which exploits nice distribu-
tional properties and can easily be generalized to backtest
any spectral risk measure.

• The last approach I selected, is up to my knowledge the
first ES backtest that has been suggested amongst re-
searchers. Nevertheless, the residuals bootstrap test from
McNeil and Frey (2000) is still widely used given its very
intuitive concept.

4.1. Multinomial backtest from Kratz et al. (2018)
This section is first going to introduce the multinomial backtest
brought up by Kratz et al. (2018). Whereas the original version
is formulated as a two-sided test, I will propose some slight
adjustments to the test decision in order to make it a ’de-facto’
one-sided test, in line with the objective stated above.

4.1.1. Original approach - Kratz et al. (2018)
The idea of the multinomial backtest by Kratz et al. (2018) is
relatively straightforward. As shortly mentioned in the previous
chapter, one might approximate the ES by a Riemann-sum like
for example in the following way,

ESt,α(Lt)≈ 1
4 [VaRt,α +VaRt,0.75α+0.25 (4.1)
+VaRt,0.5α+0.5 +VaRt,0.25α+0.75] .

Kratz et al. (2018) suggests, to implicitly backtest the ES by
deriving a multinomial test for the N = 4 VaR figures. In order
to increase the approximation accuracy, one might for example
also choose N = 8 or N = 16 VaR values, i.e. quantiles of the
distribution of Lt .
In the following, some notational aspects are fixed. Given N ∈
N VaR levels which are considered for the approximation of the
ES in (4.1), the respective VaR confidence levels are defined as,

α j := α +
j−1
N

(1−α), j = 1, . . . ,N , (4.2)

where α is some reference confidence level, like for example
0.975. Due to technical reasons, Kratz et al. (2018) sets α0 := 0
and αN+1 := 1.
For any backtesting horizon T ∈ N, if the respective series of
VaR estimates at confidence level α j for j ∈ {1, . . . ,N} has cor-
rect unconditional coverage, then according to Proposition 3.5
it holds

T

∑
t=1

It(α j)∼ Binomial(T,1−α j). (4.3)

Therefore, one can simultaneously test VaR estimates at all
N considered confidence levels by employing a multino-
mial distribution. The multinomial distribution is denoted
by MN(n,(p0, . . . , pN)), where each of the n trials results in
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N + 1 outcomes distributed according to the vector of success
probabilities (p0, . . . , pN).
Therefore, Kratz et al. (2018) defines the series {Xt}t=1,...,T , by

Xt :=
N

∑
j=1

It(α j). (4.4)

Moreover, Xt counts the number of breached VaR levels at time
t. Furthermore, Kratz et al. (2018) uses a slight adjustment in
order to consider all observations t within the backtesting hori-
zon simultaneously. They define the so called cell counts by,

O j =
T

∑
t=1

1{Xt= j} for all j = 0, . . . ,N . (4.5)

One should note, that any violation of VaRt,α j is automati-
cally also a violation of VaRt,α j−1 , as by definition VaRt,α j ≥
VaRt,α j−1 . Thus, O j counts the number of observations over the
backtesting horizon which breach the first j VaR thresholds up
to the confidence level α j, but do not breach the threshold at
confidence level α j+1. Given correct unconditional coverage of
the VaR at all considered confidence levels α j, the random vec-
tor (O0, . . . ,ON) is thus distributed according to the following
multinomial distribution,

(O0, . . . ,ON)∼MN(T,(α1−α0, . . . ,αN+1−αN)) . (4.6)

Consider the general case, where (O0, . . . ,ON)∼MN(T,(θ1−
θ0, . . . ,θN+1 − θN)), for some arbitrary parameters 0 = θ0 <
θ1 < .. . < θN < θN+1 = 1. The formal null and alternative
hypothesis according to Kratz et al. (2018) are then given by

H0 : θ j = α j for all j ∈ {1, . . . ,N} (4.7)
H1 : θ j 6= α j for at least one j ∈ {1, . . . ,N} .

Indeed, Kratz et al. (2018) evaluates three different multinomial
tests for multiple amounts of VaR thresholds N. Following their
conclusion, a χ2 test based on Nass (1959) and a value of N = 8
VaR approximation levels yields the best results and will be pre-
sented below.
Moreover, the Nass test test proposed by Nass (1959) is an ad-
justment of the standard Pearson χ2 test introduced by Pearson
(1900). As noted by Kratz et al. (2018), the Nass test is supe-
rior if cell probabilities are low, which is also the case in the
considered scenario.
The test is based on the test statistic of a standard Pearson χ2

test, depending on the choice of considered VaR levels N and
the observed cell counts O j,

ZN :=
N

∑
j=0

(O j−T (α j+1−α j))
2

T (α j+1−α j)

d∼
H0

χ
2
N . (4.8)

The Nass test consecutively uses an adjustment factor c in the
following way,

c ·ZN
d∼

H0
χ

2
ν , with c :=

2E[ZN ]

Var(ZN)
and ν := cE[ZN ] ,(4.9)

whereE[ZN ] =N and Var(ZN)= 2N− N2+4N+1
T + 1

T ∑
N
j=0

1
α j+1−α j

.
14 Given a significance level of κ for the backtest, the null hy-
pothesis of the two-sided test version by Kratz et al. (2018),
given in (4.7), is rejected whenever c ·ZN > χ2

ν (1−κ).
Given the two-sided hypothesis stated in (4.7), the multinomial
ES backtest proposed by Kratz et al. (2018) does not only re-
ject estimation models where the true risk is underestimated,
but also overly conservative forecasting models. This is prob-
lematic with respect to the objective of this thesis stated above.
Indeed, regulators only want to punish the underestimation of
the actual risk, but not any conservative estimation approach.
For a potential example of a conservative ES estimation model,
which would be rejected in the two-sided multinomial ES back-
test, one might consider the following rather extreme scenario.
Given a backtesting period of T = 250 observations, the multi-
nomial ES backtest would reject an estimation model where
non of the realized return losses lt breaches any of the esti-
mated N VaR thresholds, i.e.

lt < V̂aRt,α j for all t = 1, . . . ,T (4.10)
and for all j = 1, . . . ,N.

Correspondingly, one obtains cell counts of O0 = 250 and
O j = 0 for all j = 1, . . . ,N, which leads to a rejection in the
two-sided multinomial backtest.
Nevertheless, by design the two-sided version proposed by
Kratz et al. (2018) only has few room to reject conservative ES
estimation models. Thus, on the conservative side, the multi-
nomial ES backtest only detects cases where a risk manager
extremely overestimated the underlying risk. Especially, for
rather short backtesting periods like T = 250, the multinomial
backtest will only reject extreme examples, like the one de-
picted above. Nevertheless, I want to add a slight adjustment to
the test decision in order to make it indeed a de-facto one-sided
test for any reasonable number of backtesting observations T .

4.1.2. Adjusted approach - De-facto one-sided test
In order to be able to compare different backtests with respect
to the objective stated above, I want to propose a de-facto one
sided test, with the following null and alternative hypothesis,

H0 : θ j ≥ α j for all j ∈ {1, . . . ,N} (4.11)
H1 : θ j < α j for at least one j ∈ {1, . . . ,N} .

For the de-facto one sided test I add an additional criteria in
the form of a conservatism indicator to the test decision. The
conservatism indicator is defined as

1conservatism := (4.12){
0 if ∃ j ∈ {1, . . . ,N} : ∑

T
t=1 It(α j)> 1−α j

1 if ∀ j ∈ {1, . . . ,N} : ∑
T
t=1 It(α j)≤ 1−α j

,

where It(α) is again the violation indicator as defined in (3.2).
Moreover, the conservatism indicator is equal to one, if for all
considered N VaR levels the number of observed violations is

14See Nass (1959) for more details on the methodology of the proposed test.
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smaller or equal than the expected number of violations, given
the model is correctly specified. In this case the ES estima-
tion model is definitely on the conservative side and should
therefore not be rejected in a one-sided test. Accordingly, the
null hypothesis in (4.11) is rejected if c · ZN > χ2

ν (1− κ) and
1conservatism = 0.
As previously outlined, only extremely conservative ES esti-
mation models are rejected by the two-sided approach and this
only in case a rather long backtesting period is considered. The
proposed adjustment of the test decision additionally also rules
out the rejection of those, obviously too conservative, models.
Therefore, it turns the two-sided test proposed by Kratz et al.
(2018) into a de-facto one-sided version at least for any reason-
able backtesting horizon and all relevant significance levels of
the backtest, like κ = 0.05 or κ = 0.0001.
Definitely, the proposed version might not be a conceptual ideal
backtest, in the sense that the stipulated significance level κ

might not perfectly coincide with the actual significance level
of the one-sided test. Nevertheless, given the argumentation
above, the impact of the proposed adjustment is expected to be
rather marginal. More importantly, the adjusted multinomial
backtest can also be compared to the other one-sided ES back-
tests, which are presented in the following subsections. With
respect to the criteria stated in Proposition 3.2, the backtest re-
quires the vector of VaR estimates, (V̂aRt,α1 , . . . ,V̂aRt,αN ), and
P&L realizations as input variables. Although it does not back-
test the ES directly, the related VaR figures in general can be
easily obtained. Furthermore, given the multinomial distribu-
tion of the test statistic, no bootstrap procedure is required and
the methodology is an intuitive generalization of the binomial
test used for the VaR. Although, there is no straightforward
one-sided version of the original test methodology proposed
by Kratz et al. (2018), the backtest might still be highly rele-
vant for practical applications given its easy concept and the re-
quirement of both few input parameters and few computational
effort.

4.2. “Test 2” from Acerbi and Szekely (2014)
The second test evaluated within this thesis stems from Acerbi
and Szekely (2014) and is often referred to as “Test 2” within
related contributions. Indeed, it is the second out of three back-
tests proposed by Acerbi and Szekely (2014). This subsection
aims to introduce the test methodology and shortly discuss the
need of a bootstrap algorithm.
The backtest suggested by Acerbi and Szekely (2014) is based
on the following unconditional expectation

ESt,α(Lt) = E
[

Lt It(α)

1−α

]
, (4.13)

which is a correct specification of the ES, as the loss distribution
Lt is assumed to be continuous. Depending on the vector of
observed losses,~l, Acerbi and Szekely (2014)15 defines the test

15Note that the notation is slightly different in this thesis compared to Acerbi
and Szekely (2014) given the different sign conventions used for the definition
of the ES.

statistic,

Z :=

(
T

∑
t=1

lt It(α)

T (1−α)ÊSt,α

)
−1 . (4.14)

Indeed, Acerbi and Szekely (2014) proposes a one-sided test,
which ought to detect whether the estimated risk, ÊSt,α , under-
states the actual risk given by ESt,α . With respect to the test
statistic Z defined in (4.14), the following expectations can be
derived, under the assumptions that the ES estimation model is
firstly correctly specified or secondly underestimates the actual
risk.

Proposition 4.1 (Acerbi and Szekely (2014), Proposition A.3).
Given the test statistic Z defined in equation (4.14) it holds,

(i) E[Z] = 0, given that the ES estimation model is correctly
specified, and

(ii) E[Z] > 0, given that the ES estimation model underesti-
mates the actual underlying risk.

Proof. (i) Under the assumption that the estimate ÊSt,α is
correctly specified for all t within the backtesting hori-
zon, the identity (4.13) yields,

ÊSt,α = E
[

lt It(α)

1−α

]
⇔ E

[
lt It(α)

1−α

1

ÊSt,α

]
= 1

⇔ E

[
lt It(α)

1−α

1

ÊSt,α

]
−1 = 0 , (4.15)

for all t ∈ {1, . . . ,T}. Furthermore, for the test statistic Z
it holds,

E[Z] = E

[(
T

∑
t=1

lt It(α)

T (1−α)ÊSt,α

)
−1

]

=
1
T

T

∑
t=1
E

[
lt It(α)

1−α

1

ÊSt,α

]
−1

(4.15)
= 0 . (4.16)

(ii) Given that the estimated ES model underestimates the
true risk, the actual ES values ESt,α are larger or equal
to the estimated risk figures ÊSt,α . Furthermore, there
exists some t within the backtesting horizon, such that
ESt,α > ÊSt,α . Therefore under the assumption of risk
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underestimation it holds,

E[Z] = E

[(
T

∑
t=1

lt It(α)

T (1−α)ÊSt,α

)
−1

]

=
1
T

T

∑
t=1
E
[

lt It(α)

1−α

]
︸ ︷︷ ︸

=ESt,α

1

ÊSt,α
−1

=
1
T

T

∑
t=0

ESt,α

ÊSt,α︸ ︷︷ ︸
≥1

−1

> 0 , (4.17)

whereas the last inequality holds under the assumption
that the ES model underestimates the actual risk.

Given the expectations derived in Proposition 4.1, one can de-
rive the following null and alternative hypothesis for the Test 2
inspired by Acerbi and Szekely (2014)

H0 : Z ≤ 0 (4.18)
H1 : Z > 0 .

Indeed, the true distribution of the test statistic under the null
hypothesis is unknown, thus one can not exploit any distri-
butional properties to decide whether a realization of the test
statistic is indeed significantly larger than zero. Acerbi and
Szekely (2014) suggests the use of a simulation to determine
the the p-value of the backtest related to some vector of realiza-
tions~l. Therefore, one needs to store all estimated return loss
variables L̂t in order to simulate the distribution of Z under the
null hypothesis in the following way.

• Calculate the value of the test statistic related to the ob-
served losses, i.e. Z(~l).

• Simulate M independent bootstrap trials for every point
in time within the backtesting horizon from the estimated
loss distributions, i.e simulate li

t ∼ L̂t for i = 1, . . . ,M and
t = 1, . . . ,T .

• Calculate the value of the test statistic related to any boot-
strap trial, i.e. Zi = Z(~li), where ~li = {li

1, . . . , l
i
T} for

i = 1, . . . ,M.

• Estimate the p-value related to the vector of observed
losses~l given by,

p =
1
M

M

∑
j=1

1{Zi>Z(~l)} . (4.19)

Given the estimated p-value and a significance level κ for the
backtest, the null hypothesis is rejected whenever p < κ .
The simulation procedure suggested by Acerbi and Szekely
(2014) is necessary as the distribution of the test statistic un-
der the null hypothesis is unknown. Moreover, the distribution

in general also depends on the fitted model for the underlying
portfolio, i.e. on the estimation of L̂t and ÊSt,α , respectively.
This might be seen as a drawback of the outlined backtest, with
respect to the criteria stated in Proposition 3.3, for two partic-
ular reasons. First of all, the bootstrap procedure is related to
an increased computational effort. Secondly, the simulation re-
quires the risk manager to store the estimated return loss L̂t for
all observations within the backtesting horizon.
One reason why the test outlined above is still widely applied,
is that Acerbi and Szekely (2014) recognizes that critical val-
ues for the test decision are indeed stable for different applied
estimation models. Acerbi and Szekely (2014) analyses the dis-
tribution of the test statistic given that the estimated loss L̂t
follows a standard normal distribution as well as multiple t-
distributions with varying degrees of freedom. Given the back-
test significance levels of κ = 0.05 and κ = 0.0001, stipulated
by the Basel Committee, Acerbi and Szekely (2014) reports the
following critical values based on their simulation study, as out-
lined in Table 2.
Indeed, critical values are comparable for estimated loss distri-
butions which follow a standard normal or a t-distributions with
at least ν = 5 degrees of freedom. Acerbi and Szekely (2014)
argues that a t-distribution with ν = 3 degrees of freedom cor-
responds to a extremely heavy tailed loss distribution which is
rather uncommon for actual portfolio losses. Furthermore, they
argue that the backtest would be more penalizing in that case
and thus still reject any model which underestimates the actual
risk. Overall, they conclude that critical values for the backtest-
ing significance levels of κ = 0.05 and κ = 0.0001 are fairly
stable at values of 0.7 and 1.8, respectively. Following their
argumentation, it is therefore not necessary to save estimated
return losses L̂t and apply a bootstrap, as realized test statistic
values can immediately be compared to the proposed critical
values.
In order to complement the analysis by Acerbi and Szekely
(2014) on the robustness of critical values, I fitted two differ-
ent ES estimation models on log-return losses of the S&P 500
and simulated the respective distributions of the test statistic
under the null hypothesis. The simulation is based on the boot-
strap procedure outlined above and M = 10000 simulation tri-
als. The respective analysis is deferred to appendix A attached
to this thesis.
Based on the simulated critical values depicted in Table 2 as
well as on my analysis results outlined in appendix A, I believe
that critical values are reasonably stable at a backtesting confi-
dence level of κ = 0.05. Nevertheless, for more extreme quan-
tiles of the test statistic distribution, like example κ = 0.0001,
the usage of fixed critical values might lead to inaccurate test
decisions.
Concluding, depending on the underlying portfolio and the type
of estimation model a risk manager who wants to apply the Test
2 from Acerbi and Szekely (2014) faces the following trade-off.
On the one hand, using fixed critical values leads to a supe-
rior computational performance and fewer input variables on
the other hand the abandonment of a bootstrap procedure might
lead to imprecise decisions in certain situations. Taking into
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Critical values
for different backtest significance levels

Estimated return loss distribution 5 % 0.01 %
t3 0.82 4.4
t5 0.74 2.0
t10 0.71 1.9
t100 0.70 1.8

standard Normal 0.70 1.8

Table 2: Simulation based critical values of the test statistic Z at both backtest significance levels required by the Basel Committee,
for estimation models based on the standard normal distribution and multiple standard t-distributions with varying degrees of
freedom, tν .

Source: Acerbi and Szekely (2014)

account this potential trade-off, I decide to apply Test 2 pro-
posed by Acerbi and Szekely (2014) with a fixed critical value
of Z∗ = 0.70 given a backtesting significance level of κ = 0.05.
In scenarios with a backtesting significance level of κ = 0.0001,
which corresponds to the red zone in the VaR traffic light test, I
decide to rely on a bootstrap procedure, as critical values show
a high divergence for this rather extreme quantile of simulated
test statistic distributions. Moreover, any bootstrap test decision
of the Test 2 will be based on M = 1000 simulation trials in the
consecutive chapters.

4.3. Intercept ES regression backtest from Bayer and Dimitri-
adis (2019)

This subsection presents an adjusted version of the ES back-
test derived in Bayer and Dimitriadis (2019). Their approach is
based on a regression framework, which takes a novel view on
the backtesting issue of the ES. Indeed, the approach is based
on the results regarding the conditional elicitability of ES, de-
rived by Fissler and Ziegel (2016) and outlined in Proposition
2.16 within this thesis. Similar to the idea of fitting a quantile
regression for the VaR, Bayer and Dimitriadis (2019) proposes
a framework to estimate a regression for the ES of return losses
distributed by Lt on estimated ES figures ÊSt,α as explanatory
variables. Moreover, taking into account the different sign con-
ventions within this thesis, they propose to estimate the follow-
ing regression,

−ESt,α =−ESα(Lt |Ft−1) = γ0− γ1ÊSt,α . (4.20)

Bayer and Dimitriadis (2019) outlines two different test speci-
fications a two-sided version, which is labelled as the ESR (ES
regression) backtetst and a one-sided intercept ESR backtest.
In the following, an adjusted version of the one-sided intercept
ESR backtest will be presented. Therefore, Bayer and Dimitri-
adis (2019) sets the slope parameter in (4.20) equal to one and
obtains

−ESt,α =−ESα(Lt |Ft−1) = γ0− ÊSt,α . (4.21)

Given the ES forecasting model is perfectly accurate, i.e.
ESt,α = ÊSt,α the estimated intercept parameter γ0 will equal to
0. In case of an overly conservative forecasting model, one will

obtain γ0 > 0. On the contrary, an estimation model which un-
derstates the actual risk leads to a situation where ÊSt,α <ESt,α
for a reasonable number of observations within the backtesting
period, such that an estimated intercept of γ0 < 0 is to be ex-
pected. Therefore, formally the following one-sided null and
alternative hypotheses are going to be evaluated

H0 : γ0 ≥ 0 (4.22)
H1 : γ0 < 0 .

4.3.1. Regression estimation based on conditional elicitability
As outlined by Bayer and Dimitriadis (2019), one of the main
difficulties is to consistently estimate a regression for the ES
of a series of return losses lt ∼ Lt on ES forecasts ÊSt,α . As
mentioned in Proposition 2.15 within this thesis, the ES itself
is not an elicitable functional, thus there exists no strictly con-
sistent scoring function in the sense of Definition 2.13. There-
fore, there is no potential objective function for any Maximum-
Likelihood (ML) estimation procedure, in order to directly esti-
mate γ0 in regression (4.21).
The solution proposed by Bayer and Dimitriadis (2019) is to
exploit the conditional elicitability of the vector (VaRt,α ,ESt,α)
in order to simultaniously estimate two regression equations for
the quantile and for the ES of the return losses lt ∼ Lt . Formally,
the regression system is given by,

−lt = β0−V̂aRt,α + ε
q
t , (4.23)

−lt = γ0− ÊSt,α + ε
e
t ,

where qα(ε
q
t |Ft−1) = 0 and ESα(ε

e
t |Ft−1) = 0 almost surely.

As conditional VaR and ES forecasts are considered at any time
t based on the σ -Algebra Ft−1, the conditions proposed to the
error terms are equivalent to,

−VaRα(Lt |Ft−1) = β0−V̂aRt,α , (4.24)

−ESα(Lt |Ft−1) = γ0− ÊSt,α .

Consequently, one can use realized return losses lt as well as
V̂aRt,α and ÊSt,α estimates over the backtesting horizon in or-
der to fit the regression system (4.23) by making use of a suit-
able strictly consistent scoring function as outlined in Proposi-
tion 2.16.
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Indeed, Bayer and Dimitriadis (2019) puts a major focus on de-
veloping a standalone backtest for the ES. Therefore, they re-
place V̂aRt,α in the regression system (4.23) by forecasts of the
ES, ÊSt,α . As a consequence, they only require ES forecasts
and realized losses as an input, but end up with a certain degree
of model misspecification.16Nevertheless, the main objective of
this thesis is to develop a practically applicable backtest. As
previously argued, adding VaR forecasts as additional input pa-
rameters for the backtest is not considered as a major drawback
in this regard. Thus, in order to simplify the methodology of
the applied backtest I propose to estimate the regression system
as outlined in (4.23) and therefore deviate from the approach
suggested by Bayer and Dimitriadis (2019). For the regression
estimation, the following strictly consistent scoring function for
the pair of (VaRt,α ,ESt,α) is considered in line with Bayer and
Dimitriadis (2019).17

Proposition 4.2. Let t be any observation within the backtest-
ing horizon, i.e. t ∈ {1, . . . ,T}. Denote the VaR and ES forecast
at time t by V̂aRt,α and ÊSt,α , respectively. Furthermore, denote
the realized return loss by lt and define the vector of regression
parameters by θ := (β0,γ0). Then the scoring function S at time
t defined through,

S(V̂aRt,α , ÊSt,α , lt ,θ) :=
1

γ0− ÊSt,α
·
(
(γ0− ÊSt,α)− (β0−V̂aRt,α)

+
1{lt>β0−V̂aRt,α} · (β0−V̂aRt,α − lt)

1−α


− log(−(γ0− ÊSt,α)) , (4.25)

is strictly consistent for the pair of (VaRt,α ,ESt,α) in the sense
of Definition 2.13.

Proof. Using the notation of Proposition 2.16, define

x1,t := (γ0− ÊSt,α) ,

x2,t := (β0−V̂aRt,α) ,

yt := lt ,

G1(x) := 0 ,

G2(x) := − log(−x) ,

for t within the backtesting horizon. Furthermore, it holds
G2(x) = G ′2(x) = −1/x, such that G1 is an increasing func-
tion and G2 is both strictly concave and strictly increasing.
Moreover, according to the result of Proposition 2.16, the fol-
lowing scoring function is strictly consistent for the pair of

16See Bayer and Dimitriadis (2019) chapter 2.4 for asymptotic theory on the
estimation procedure under model misspecification.

17Again, note that the scoring function slightly differs compared to Bayer
and Dimitriadis (2019) given the divergent sign conventions.

(VaRt,α ,ESt,α).

S(x1,t ,x2,t ,yt) =

1{yt>x1,t}(−G1(x1,t)+G1(yt)−G2(x2,t)(x1,t − yt))

+(1−α)(G1(x1,t)−G2(x2,t)(x2,t − x1,t))+G2(x2,t)

= 1{yt>x1,t}

(
− 1
−x2,t

· (x1,t − yt)

)
+(1−α)

(
− 1
−x2,t

(x2,t − x1,t)

)
− log(−(x2,t))

=
1

x2,t

(
(x2,t − x1,t)+

1{yt>x1,t}(x1,t − yt)

1−α

)
− log(−x2,t) (4.26)

Inserting x1,t , x2,t and yt into (4.26) yields the desired scoring
function outlined in (4.25).

Following the estimation procedure described by Bayer and
Dimitriadis (2019), the ML-estimator of the regression param-
eter θ = (β0,γ0) related to the regression system (4.23) is given
by,

θ̂T = argmin
θ∈Θ

1
T

T

∑
t=1
−S(V̂aRt,α , ÊSt,α , lt ,θ) , (4.27)

where the strictly consistent scoring function S defined in for-
mula (4.25) is used.18 Following the regression estimation, one
can test the resulting parameter value γ0 with respect to the hy-
potheses stated in (4.22).

4.3.2. Bootstrap test decision
Bayer and Dimitriadis (2019) suggests to apply a Wald-type test
statistic based on some consistent covariance estimator Ω̂. Both
Bayer and Dimitriadis (2019) and Dimitriadis and Bayer (2019)
can be taken as a reference for the methodology and the imple-
mentation of a consistent asymptotic covariance estimator Ω̂,
which is applied for their proposed test decision. Nevertheless,
both the theory behind the estimator itself as well as the im-
plementation procedure is highly advanced and might thus be
burdensome for the practical implementation by financial insti-
tutions.
Therefore, I propose to rely on a bootstrap procedure. Although
this does increase the computational effort, it greatly simplifies
the methodology behind the applied backtest.
The idea is to estimate γ0 related to a set of T VaR and ES
forecasts and a set of actual return loss realizations~l. In order
to obtain the distribution of γ0 under the assumption that the
model is correctly specified, M bootstrap simulation trials are
applied. The overall procedure is as follows.

• Estimate the values of γ0 and β0 related to the observed
losses and the given risk estimates, i.e. estimate γ0(~l) and
β0(~l).

18Dimitriadis and Bayer (2019) derives both consistency and asymptotic nor-
mality of the ML-estimator outlined above in case the parametric model given
in (4.23) is correctly specified.
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• In order to be able to simulate under the assumption of
a correct estimation model, adjust the risk estimates by

V̂aR
adj
t,α := V̂aRt,α −β0(~l) and ÊS

adj
t,α := ÊSt,α − γ0(~l).

• For any bootstrap trial i ∈ {1, . . . ,M}, draw T triples

(V̂aR
adj
t,α , ÊS

adj
t,α , lt) with replacement from the actual sam-

ple. Estimate the regression parameter γ i
0 based on the

respective bootstrap sample for i = 1, . . . ,M.

• Estimate the p-value related to the vector of observed
losses~l given by,

p =
1
M

M

∑
i=1

1{γ i
0<γ0(~l)}

. (4.28)

Again, given some significance level for the backtest κ , the null
hypothesis stated in (4.22) is rejected whenever p < κ . More-
over, in the following chapters, I will conduct the intercept ESR
backtest based on M = 100 bootstrap simulations.19

Concluding, the intercept ESR backtest proposed within this
thesis differs from the original version derived by Bayer and
Dimitriadis (2019) with respect to the following two aspects.
First of all it uses both VaR and ES forecasts as input vari-
ables and thus avoids model misspecification. Secondly, the
test decision is based on a bootstrap procedure. Therefore,
no cumbersome derivation and no further assumptions are re-
quired in order to come up with a consistent asymptotic covari-
ance estimator. With respect to the criteria stated in Proposition
3.3, especially the bootstrap decision might be seen as a draw-
back of the outlined backtest, as it is related to high computa-
tion times. Furthermore, the overall test methodology is rather
complex and requires a decent understanding of the concept of
conditional elicitability. Nevertheless, the testing framework is
highly interesting, as it provides a new and fundamentally dif-
ferent view on the issue of backtesting the ES compared to all
previously introduced approaches.

4.4. Z-Test from Costanzino and Curran (2015)
This section is going to present the ES backtest proposed by
Costanzino and Curran (2015). Moreover, the approach can be
applied for any risk measure which belongs to the class of spec-
tral risk measures according to definition Definition 2.7. The
following subsection is first going to introduce the methodology
of the backtest outlined by Costanzino and Curran (2015) and
Costanzino and Curran (2018), whereas the sub-section there-
after is going to present a slightly adjusted, approximative ver-
sion which requires less input variables.

19Note that a value of only M = 100 simulation trials is applied, as a ML
estimation needs to be conducted in every simulation trial, which leads to a fast
increase of computational time depending on the choice of M. Nevertheless,
this choice of M still leads to satisfying results as outlined in the following
chapters.

4.4.1. Original approach - Costanzino and Curran (2015)
As an extension of the violation indicator It(α) defined for the
VaR, Costanzino and Curran (2015) suggests to define the so
called spectral risk measure violation rate as follows.

Definition 4.3 (Spectral risk measure violation rate). Let ψ be
an admissible risk spectrum in the sense of Definition 2.6, then
for any t within the backtesting horizon, X t

ψ ∈ [0,1] is defined
as,

X t
ψ :=

∫ 1

0
ψ(p)It(p)d p . (4.29)

Moreover, for any backtesting horizon T , define the spectral
risk measure violation rate, XT

ψ ∈ [0,1] for an admissible risk
spectrum ψ as,

XT
ψ :=

1
T

T

∑
t=1

X t
ψ =

1
T

T

∑
t=1

∫ 1

0
ψ(p)It(p)d p . (4.30)

Compared to the violation indicator It(α) for the VaR, the spec-
tral risk measure violation rate measures the exceedance of any
VaR level, where the respective confidence level lies within the
support of ψ . Therefore, in case of the ES, the spectral risk
measure violation rate takes into account both the amount and
the magnitude of losses beyond the VaR threshold with con-
fidence level α . Whereas It(α) can only take on the binary
values 0 or 1, the spectral risk measure violation rate takes on
continuous values in the interval [0,1]. Given that the under-
lying spectral risk measure is correctly specified, {X t

ψ}T
t=1 are

i.i.d. distributed and furthermore, P[Lt ≥VaRt,p] = 1− p for all
p ∈ supp ψ and t ∈ {1, . . . ,T}. Given the model is accurately
estimated, Costanzino and Curran (2015) derives the following
distributional properties of the spectral risk measure violation
rate.

Proposition 4.4 (Costanzino and Curran (2015)). Given a cor-
rectly specified spectral risk measure based on some admissible
risk spectrum ψ , then the mean and variance of the spectral risk
measure violation rate XT

ψ are given by,

µψ := E[XT
ψ ] =

∫ 1

0
ψ(p)(1− p)d p , (4.31)

σ
2
ψ :=Var[XT

ψ ] =

1
T

(
2
∫ 1

0

∫ p

0
ψ(p)ψ(q)(1−q)dqd p−µ

2
ψ

)
. (4.32)

Moreover, under the assumption that the spectral risk measure
is correctly specified, the spectral risk measure violation rate is
asymptotically normally distributed with,

ZT
ψ :=

XT
ψ −µψ

σψ

d−−−→
T→∞

N(0,1) . (4.33)

Proof. (i) The derivation of both moments of the spectral
risk measure violation rate µψ and σψ follows according
to Proposition 3.4 in Costanzino and Curran (2015) tak-
ing into account the different conventions within this the-
sis. Note for example, that P[Lt ≥ VaRt,p] = 1− p given
the notation used within this thesis, which explains the
difference in (4.31) and (4.32) compared to Costanzino
and Curran (2015).
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(ii) As derived in Lemma 3.5 within Costanzino and Curran
(2015), the asymptotic distribution of XT

ψ follows by the
Lindeberg-Levy central limit theorem as both µψ given in
(4.31) and σψ given in (4.32) are bounded.

For the particular case of backtesting the ES, one can con-
struct a one-sided Z-test by exploiting the distributional prop-
erties of ZT

ψES
. As pointed out in Lemma 2.8 within this the-

sis, the admissible risk spectrum related to the ES is given
by ψES(p) = 1

1−a1{α≤p≤1}. Applying ψES to the previous
derivations leads to the consecutively listed results, following
both Costanzino and Curran (2015) and Costanzino and Curran
(2018).20

• According to Costanzino and Curran (2018), the spectral
risk measure violation rate for the ES can be calculated
by,

X t
ESα

=
∫ 1

0
ψES(p)It(p)d p =

1
1−α

∫ 1

α

It(p)d p

=

(
1− Ft(−Lt)

1−α

)
It(α) , (4.34)

XT
ESα

=
1
T

T

∑
t=1

X t
ESα

=
1

T · (1−α)

T

∑
t=1

∫ 1

α

It(p)d p

=
1
T

T

∑
t=1

(
1− Ft(−Lt)

1−α

)
It(α) . (4.35)

Note that in equation (4.34) and (4.35), the term 1−
Ft(−Lt)/(1 − α) accounts for the severity of a VaR
breach beyond the confidence level of α .

• Given that the ES is correctly specified, the follow-
ing moments of the ES violation rate are derived in
Costanzino and Curran (2015),

µESα
:= E[XT

ESα
] =

1−α

2
, (4.36)

σ
2
ESα

:= Var[XT
ESα

] =

1−α

T

(
4−3(1−α)

12

)
. (4.37)

• Given the two previous listings and Proposition 4.4, the
following distribution of the ES violation rate can be de-
fined,

lim
T→∞

ZT
ESα

:=
XT

ESα
−µESα

σESα

(4.38)

=
√

3T

(
2XT

ESα
−α√

α(4−3α)

)
∼ N(0,1) .

20Again note that some minor adjustments need to be made compared to
Costanzino and Curran (2015) and Costanzino and Curran (2018) given slightly
different conventions within this thesis.

Based on (4.35) and (4.38), one can calculate the realized value
of both XT

ESα
(~l) and ZEST

α
(~l), related to some set of return loss

observations ~l. Obviously, a high value of ZT
ESα

(~l) also indi-
cates a high value of the ES violation rate and thus a potential
underestimation of the actual risk. In order to test the one-sided
hypothesis that the modelled risk ÊSt,α underestimates the ac-
tual risk given by ESt,α , Costanzino and Curran (2018) suggests
a similar procedure as for the VaR traffic light. More precisely,
Costanzino and Curran (2018) argues that the realized ES vi-
olation rate, i.e. XT

ESα
(~l), can be seen as the equivalent to the

number of observed violations in the VaR traffic light test. The
higher the realized ES violation rate, the higher is the degree of
risk underestimation.21

Denote the realized ES violation rate by XT
ESα

(~l) = x. Then the
underlying estimation model is rejected in the one-sided test, at
a significance level of κ , if the cumulative probability of XT

ESα

being lower or equal to x is larger than 1−κ . This is indeed a
similar test decision as outlined for the VaR traffic light test in
chapter 3.2 within this thesis. Formally the estimation model is
rejected whenever,

P[XT
ESα
≤ x]> 1−κ . (4.39)

In order to achieve a concrete test decision, on can standardize
XT

ESα
by µESα

and σESα
and exploit the distributional properties

outlined in (4.38). Applying the approximate distribution of
ZT

ESα
under the assumption that the model is correctly specified,

the estimation model in the one-sided test, related to some set
of realized losses~l, is rejected whenever,

ZT
ESα

(~l) =
x−µESα

σESα

> Φ−1(1−κ) , (4.40)

where Φ denotes the CDF of the standard normal distribution.
It should be noted that for a finite backtesting horizon, ZT

ESα

is only approximately standard normally distributed under the
assumption of a correctly specified risk measure forecast. This
is in contrast to the VaR traffic light test, where observed viola-
tions follow a binomial distribution under a correctly specified
model. Thus, for the VaR there is no need to employ an approx-
imate normal distribution induced by the central limit theorem.
Costanzino and Curran (2018) puts some further attention to
the finite sample distribution of ZT

ESα
, but this goes beyond

the scope of this thesis. Therefore, I rely on the assumption
that critical values obtained by the standard normal distribu-
tion are reasonable approximations for a backtesting horizon
like T = 250. In more detail, this means that critical values
of ZT,∗

ESα
= 1.64 and ZT,∗

ESα
= 3.72 are going to be used within

this thesis for the backtest significance levels of κ = 0.05 and
κ = 0.0001 stipulated by the Basel Committee.
With respect to the criteria stated in Proposition 3.3, there
is one major drawback of the ES backtest as it is proposed

21Note that Costanzino and Curran (2018) uses a different scaling for the
ES violation rate compared to the original version by Costanzino and Curran
(2015), which is also used within this thesis. This has no impact of the overall
test methodology, but the achieved ES violation rates differ in their magnitude
compared to Costanzino and Curran (2018).
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by Costanzino and Curran (2015) and Costanzino and Curran
(2018). Namely, for the calculation of the ES violation rate
given in (4.35), which functions as a basis for the test decision,
the risk manager needs to estimate the cumulative distribu-
tion function of returns −Lt for any date within the backtesting
horizon. This is especially problematic in case the risk manager
applies a non-parametric ES forecasting model like a histori-
cal simulation. In such a situation, the backtest might not be
feasible for the risk manager, as estimating the CDF of returns
would be related to imposing further restrictions to the ES
estimation model. Therefore, I will propose an approximate
alternative to the backtest proposed by Costanzino and Curran
(2015), which does not require the explicit derivation of any
CDF function.

4.4.2. Adjusted approach - Approximate Z-test
Similar to the multinomial backtest proposed by Kratz et al.
(2018), I suggest to approximate the integral

∫ 1
α

It(p)d p by a
Riemann-sum using N ∈ N VaR figures with confidence lev-
els between α and one. First of all, recall notation (4.2), i.e.
α j = α + j−1

N (1−α) for j = 1, . . . ,N, for some reference con-
fidence level α . Moreover, I propose to use the following ap-
proximation,∫ 1

α

It(p)d p≈ 1−α

N

(
N

∑
j=1

It(α j)

)
. (4.41)

This leads to an approximation of the ES violation ratio given
in (4.35), which does not require any explicit estimation of a
CDF function,

XT,approx
ESα

:=
1

T (1−α)

T

∑
t=1

(1−α)

N

(
N

∑
j=1

It(α j)

)
, (4.42)

for some N ∈ N which determines the approximation accu-
racy. It should be noted, that for the estimation of an real-
ization XT,approx

ESα
(~l), one needs to estimate a vector of VaR fig-

ures, (V̂aRt,α1 , . . . ,V̂aRt,αN ). Nevertheless, in general this can
be obtained from both parametric and non-parametric estima-
tions models for the ES without any further difficulties. Fur-
thermore, I define the approximative test statistic equivalent to
(4.38) as,

ZT,approx
ESα

:=
XT,approx

ESα
−µESα

σESα

. (4.43)

Additionally, the approximative approach also relies on the
same one-sided test decision. The estimation model for the ES
is rejected based on some return loss realizations~l, whenever

ZT,approx
ESα

(~l)> Φ−1(1−κ) , (4.44)

where κ is again the significance level of the backtest. In order
to limit the degree of misspecification due to an imprecise ap-
proximation, I propose a value of N = 8 for the calculation of
XT,approx

ESα
and ZT,approx

ESα
.

Overall, both versions presented within this section are indi-
rect backtests for the ES. Whereas the original version from

Costanzino and Curran (2015) requires the entire tail distribu-
tion of returns as an input parameter, the approximative version
needs a vector of VaR estimates as an input variable. Similar
as the multinomial approach by Kratz et al. (2018), both ver-
sions do not need actual ES forecasts as an input parameter.
In case of a parametric ES estimation model, the original ver-
sion brought up by Costanzino and Curran (2015) can easily be
applied, given that the risk manager anyway has an explicit es-
timation of the return loss CDF at hand. On the other hand, for
any non-parametric approach the approximative version sug-
gested in the last subsection can be conducted, which although
might be related to a higher degree of misspecification in the ES
backtest. In the light of the further criteria stated in Proposition
3.3, both versions are computationally efficient and can easily
be modified to a two-sided version. Moreover, I believe the un-
derlying concept of generalizing the violation indicator for the
VaR to the class of spectral risk measures is relatively intuitive.
Furthermore, this allows for a high degree of flexibility as the
approach can also be transferred to other spectral risk measures.

4.5. Residuals Bootstrap Test from McNeil and Frey (2000)
The residuals bootstrap test derived by McNeil and Frey (2000)
is up to my knowledge the first backtest for the ES suggested
within the literature. Nevertheless, it is still widely used as for
example pointed out in Bayer and Dimitriadis (2019). Fur-
thermore, it functions as a basis for different backtesting ap-
proaches suggested within the literature later on.22 This sub-
section is first going to introduce the original version by Mc-
Neil and Frey (2000). Consecutively, a slight addition to the
test decision will be made for the purpose of this thesis.
The test by McNeil and Frey (2000) is based on the so called
exceedance residuals. In addition to VaR and ES forecasts, as-
sume the risk manager also has a set of estimates for the con-
ditional volatility of return losses at hand, denoted by {σ̂t : t =
1, . . . ,T}. For a set of realized return losses~l, the exceedance
residual for any time t within the backtesting horizon is then
given by,

rt :=
lt − ÊSt,α

σ̂t
It(α) . (4.45)

If one assumes that the applied risk estimation model is cor-
rectly specified, it holds

E[rt ] = E
[

Lt −ESt,α

σt

∣∣∣∣Lt ≥VaRt,α

]
= 0 , (4.46)

as the distribution of Lt is assumed to be continuous and strictly
increasing, such that ESt,α = E[Lt |Lt ≥ VaRt,α ]. On the con-
trary, if the applied estimation model underestimates the actual
risk, i.e. ESt,α > ÊSt,α , then the expectation will be larger than
zero. In order to estimate the expected value of exceedance
residuals over the backtesting horizon, McNeil and Frey (2000)

22As an example the Test 1 in Acerbi and Szekely (2014) can be seen as an
adjusted version of the residuals bootstrap test proposed by McNeil and Frey
(2000).
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suggests to consider their mean value over the backtesting pe-
riod given by,

r̄ :=
1

∑
T
t=1 It(α)

T

∑
t=1

rt . (4.47)

Thus, for the one-sided test version the following null and al-
ternative hypothesis are going to be considered,

H0 : r̄ ≤ 0 (4.48)
H1 : r̄ > 0 .

The actual test decision proposed by McNeil and Frey (2000)
follows a bootstrap procedure, which is described in detail in
Efron and Tibshirani (1994) on page 224. In short, the bootstrap
based on a set of forecasts for VaR, ES and σ as well as realized
return losses~l is outlined below.

• Calculate the value of r̄ related to the vector of observed
losses and the risk estimates, i.e. calculate r̄(~l).

• In order to simulate r̄ under the H0 proceed in the
following way. For any violation of V̂aRt,α , calcu-
late the adjusted exceedance residual given by radj

t =
(rt − r̄(~l))1{rt 6=0}.

• Set up the sample of adjusted residuals as S := {radj
t : rt 6=

0}. If x observations of ~l breach the respective V̂aRt,α
level, then |S|= x, where |S| denotes the cardinality of S.
For each of the M bootstrap trials, draw |S| observations
with replacement from S, and calculate r̄i for each trial
i ∈ {1, . . . ,M}.

• Estimate the p-value related to the vector of observed loss
~l given by,

p =
1
M

M

∑
i=1

1{r̄i>r̄(~l)}. (4.49)

Again the null hypothesis of the one-sided bootstrap test sug-
gested by McNeil and Frey (2000) is rejected, whenever p < κ

for some predefined significance level κ for the backtest. For
the purpose of this thesis, the respective bootstrap test decisions
are going to be based on M = 1000 simulation trials in the sub-
sequent chapters.
There are two aspects which are often criticized about the test
proposed by McNeil and Frey (2000). First of all, the back-
test requires an estimation of the volatility of return losses,
which might not be feasible in certain scenarios. Indeed, as
argued by Acerbi and Szekely (2014) and Bayer and Dimitri-
adis (2019) one can simply drop the volatility of return losses
in definition (4.45) and use exceedance residuals which are not
standardized by the volatility. Indeed, this can easily be im-
plemented as it does not require any further adjustments of the
overall test methodology. The second conceptional shortcom-
ing of the backtest proposed by McNeil and Frey (2000), is
that it only accounts for the magnitude of violations beyond the
VaRt,α threshold, but not for the overall amount of violations.

As outlined in section 3.3 within this thesis, both would be nec-
essary to account for a correct unconditional coverage of the
ES. In other words, Acerbi and Szekely (2014) argues that the
outlined test backtests the ES conditional on correctly specified
VaR estimates. In order to handle this issue, I propose to apply
the residual backtest from McNeil and Frey (2000) in combi-
nation with the VaR traffic light test introduced in section 3.2.
Therefore, I propose the following adjusted one-sided null and
alternative hypothesis.

H0 : r̄ ≤ 0 and
T

∑
t=1

It(α)≤ 1−α (4.50)

H1 : r̄ > 0 or
T

∑
t=1

It(α)> 1−α

Correspondingly, the H0 in the combined backtest is rejected
if either p < κ , where p is derived according to (4.49) or if
Fbinom

(
∑

T
t=1 It(α),T,1−α

)
> 1−κ . Therefore, I will use the

combined ES residuals backtest based on the set of hypothe-
ses (4.50) as it validates correct unconditional coverage of ES
forecasts. Moreover, the test decision displays some kind of
“worst-of-logic”, as the null hypothesis is rejected, if either the
original ES residuals backtest or the VaR traffic light test is re-
jected at a certain significance level κ .
With respect to the desirable properties of a backtest outlined
in Proposition 3.3, the backtest described above is very intu-
itive from a conceptional point of view. Furthermore, it only
requires realized P&L realizations as well as VaR and ES fore-
casts as input variables, given that the input of volatility fore-
casts is optional. The alleged shortcoming, that the backtest
from McNeil and Frey (2000) only accounts for the magnitude
but not the amount of VaR violations can easily be mitigated by
linking the backtest to the VaR traffic light test. The only ap-
parent disadvantage of the outlined test is, that the test decision
again involves a simulation procedure.

Summing up this chapter, all five proposed ES backtest yield
a one-sided test versions, in order to detect estimation mod-
els which underestimate the actual risk of an underlying port-
folio. Furthermore, all introduced backtests are applicable for
commonly used parametric and non-parametric ES estimation
models, in a sense that all required data inputs can be obtained
without inducing further assumptions. Overall, two of the five
proposed tests are based on a simulation decision. Furthermore,
for rather extreme backtest significance levels like κ = 0.0001,
one should additionally also rely on the bootstrap version of
Test 2 from Acerbi and Szekely (2014).
With respect to the practical aspects listed in Proposition 3.3, I
propose the following qualitative judgement of all five overall
testing methodologies based on the arguments outlined within
this chapter. More precisely, I assign grades to all backtests in
scope, with respect to the fulfilment of the four aspects listed
in Proposition 3.3, namely data intensity, computational ef-
fort, conceptual ease and clear decision making. The grades
are given by (++), (+) for excellent or good results, (o) for an
average result, and (-) or even (- -) if a certain aspect might
be problematic for practical implementations. The proposed



K. Spring / Junior Management Science 6(3) (2021) 590-636 611

judgement is outlined in Tables 3-7 below, together with a short
explanation for any ES backtesting methodology.

• Multinomial backtest - Original and de-facto one-
sided version:

All input variables for the multinomial backtesting method-
ology can easily be obtained for every parametric and non-
parametric ES estimation approach. The backtest is computa-
tionally efficient as it does not rely on a bootstrap procedure and
the methodology is a straightforward extension of the VaR traf-
fic light test. Some adjustments to the test decision are needed
in order to develop a one-sided test version, nevertheless this is
not expected to have a major impact on the overall test perfor-
mance.

• Test 2:

If the Test 2 is carried out with fixed critical values, it only re-
quires VaR and ES forecasts in addition to P&L realizations,
furthermore in this case no bootstrap is required. The over-
all methodology is rather intuitive and can also be adjusted to
reflect a two-sided hypothesis. Especially for rather extreme
backtesting confidence levels κ , an applicant faces the trade
off between potentially inaccurate test decisions and a compu-
tationally costly bootstrap test version. Furthermore, in case
a bootstrap is applied, additional input variables need to be
stored.

• Intercept ESR backtest:

Input parameters for the intercept ESR backtest can be easily
obtained for any ES estimation model, furthermore a standalone
ES backtest version is proposed within Bayer and Dimitriadis
(2019). On the contrary, the test methodology, especially the
regression estimation based on the concept of conditional elic-
itabilty is rather complex. Test decisions can either be based
on a Wald-test, which requires the cumbersome estimation of a
consistent asymptotic covariance estimator as outlined in Bayer
and Dimitriadis (2019), or on a bootstrap procedure, which is
applied in the context of this thesis. Nevertheless, the bootstrap
procedure is related to a rather extreme computational effort as
a ML estimation needs to be conducted in every simulation trial.
Both one and two-sided versions of the intercept ESR backtest
can easily be conducted.

• Z-Test - Original and approximative version:

The original version requires the explicit estimation of the CDF
of returns, which is not feasible for non-parametric ES fore-
casting models. This drawback can be avoided by applying the
approximate version, which I suggested for the purpose of this
thesis. Asymptotic distributional properties of the test statistic
can be employed. Thus, no simulation procedure is required.
Furthermore, the overall concept is rather intuitive. Both one-
sided and two-sided test decisions can easily be obtained, nev-
ertheless critical values for finite backtesting horizons are based
on asymptotic distributional properties.

• Combined ES residual backtest:

The test methodology is very intuitive, furthermore only ES
and VaR forecasts are required as mandatory input parameters
in addition to P&L realizations. The test can be carried carried
out as a one-sided or a two-sided version. Nevertheless, the test
decisions is based on a simulation approach, which requires
computational effort.
Overall, the concerns regarding the backtestability of the ES,
which are for example stated in Carver (2013) and quoted
within earlier stages of this thesis, appear to be exaggerated.
Indeed, there are multiple promising backtest for the ES, some
of which are listed above and are further evaluated in the con-
secutive chapters. With respect to practical applicability, espe-
cially the multinomial backtesting methodology as well as the
combined ES residuals backtest need to be highlighted, as they
exhibit the highest compliance with the criteria stated in Propo-
sition 3.3. Nevertheless, all outlined ES backtesting versions
qualify for a practical implementation.

5. Simulation study - Comparison of empirical size and
power

This chapter aims to compare all five considered backtests as
well as any adjusted version according to their empirical size
and power. Within the literature both measures are commonly
taken as a reference for the performance of statistical tests. For
instance, analyses on both of these measures can be found in
Acerbi and Szekely (2014), Bayer and Dimitriadis (2019) and
Kratz et al. (2018), for the ES backtest presented within the re-
spective article. On the other hand, up to the best of my knowl-
edge, non of these two measures has been analysed yet for the
Z-test introduced by Costanzino and Curran (2015). I will pro-
pose one single methodology for comparing simulated size and
power of all ES backtests, which are in scope of this thesis.
Thus, I will complement already existing analyses, in order to
make a more founded judgement on the conceptual soundness
of each of the evaluated approaches.
For the conducted simulation study, both versions of the multi-
nomial backtest based on Kratz et al. (2018) as well as both ver-
sion of the Z-test introduced by Costanzino and Curran (2015)
are evaluated, in order to examine how the proposed adjust-
ments impact both size and power of the original backtests.
Furthermore, both test components of the combined ES residu-
als backtest are evaluated separately, to analyse how they con-
tribute to the overall test decision. All other backtests are con-
ducted as outlined in the preceding chapter.
The simulation study is structured as follows. Subsection 5.1
formally defines both size and power and introduces the set up
of the analysis thereafter. Subsection 5.2 compares the size of
all ES backtests, whereas subsection 5.3 compares their sim-
ulated power for different degrees of model misspecification.
The chapter is concluded by a short judgement of the obtained
size and power values for all backtests in scope.

5.1. Theory on empirical size and power
As for example outlined by Kratz et al. (2018), both size and
power of an ES backtest are defined in the following way.
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Data
intensity

Computational
effort

Conceptual
ease

Clear
decision making

( + ) ( + + ) ( + + ) ( o )

Table 3: Assessment of multinomial ES backtest with respect to the criteria states in Proposition 3.3.

Data
intensity

Computational
effort

Conceptual
ease

Clear
decision making

( o ) ( + ) ( + ) ( + )

Table 4: Assessment of the Test 2 with respect to the criteria states in Proposition 3.3.

Data
intensity

Computational
effort

Conceptual
ease

Clear
decision making

( + + ) ( - ) ( - ) ( + + )

Table 5: Assessment of the intercept ESR backtest with respect to the criteria states in Proposition 3.3.

Data
intensity

Computational
effort

Conceptual
ease

Clear
decision making

( o ) ( + + ) ( + ) ( + )

Table 6: Assessment of the Z-test with respect to the criteria states in Proposition 3.3.

Data
intensity

Computational
effort

Conceptual
ease

Clear
decision making

( + ) ( o ) ( + + ) ( + + )

Table 7: Assessment of the combined ES residuals backtest with respect to the criteria states in Proposition 3.3.

Definition 5.1 (Size/Power of ES backtest). Consider a back-
test for the ES, then

• the size of the backtest is defined as γ :=P(reject H0|H0 true).
Moreover, the size of the backtest corresponds to the re-
spective type I error γ .

• the power of the backtest is defined as 1− β := 1−
P(accept H0|H0 false). Moreover, the power of the back-
test corresponds to one minus the respective type II error
β .

On the one hand, any reasonable backtest for the ES should
have a small size, which ought to be around the significance
level κ applied in the backtesting procedure. As argued by
Kratz et al. (2018), size values below κ are per se not problem-
atic as they yield an even lower type I error. On the other hand,
for a well functioning ES backtest, high power values, possibly
close to one, are to be expected. Put in different words, a suit-
able ES backtest should yield a low probability of rejecting a
correctly specified ES estimation model, while still being able
to detect misspecified models with a high probability. Thus, in
order to qualify for any practical implementation, an ES back-
test should be as powerful as possible given a reasonably low

size.
Within the literature, it is common practice to determine both
size and power empirically by determining rejection rates in
a simulation study. As mentioned above, respective simula-
tion analyses can for example be found in Acerbi and Szekely
(2014), Kratz et al. (2018) and Bayer and Dimitriadis (2019).
The approach which will be applied within thesis is closest to
the one outlined by Kratz et al. (2018). Sticking with the previ-
ously applied notation, a risk manager calculates an ES forecast
based on some conditional return loss estimation L̂t , whereas
the true return loss is distributed according to Lt . Again both L̂t
and Lt are based on the information available up to t−1, which
is given by the σ -AlgebraFt−1. The difference of the proposed
setting compared to Kratz et al. (2018) is that time dependent
risk forecasts are considered. This is necessary, as the method-
ology of the intercept ESR backtest from Bayer and Dimitriadis
(2019) is based on the assumption of conditional, time depen-
dent, risk forecasts. Thus, applying the intercept ESR back-
test to a series of time-independent risk forecasts, ESα for all
t ∈ {1, . . . ,T}, would not lead to any meaningful test decision.
For both size and power simulations different location-scale
distributions, like the normal or the t-distribution, are applied
for both L̂t and Lt , for observations t within the backtesting
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horizon. Bayer and Dimitriadis (2019) uses a more sophisti-
cated approach and fits ES estimation models to real financial
data, nevertheless for both size and power simulations it is not
essential that the assumed return loss distributions perfectly fit
some underlying return series. Therefore, relying on commonly
used location-scale distributions simplifies the set up of the ap-
plied analysis. In order to determine the size of the ES back-
tests, rejection rates over MC = 1000 test decisions are simu-
lated in a scenario where L̂t = Lt , i.e. the risk manager perfectly
estimates the underlying risk. On the other hand, for the power
calculations, rejection rates are based on MC = 1000 simulated
test decisions in situations where L̂t 6= Lt . More precisely, dif-
ferent scenarios are evaluated where the risk manager underes-
timates the actual risk of the underlying portfolio.
For the analysis conducted within this chapter, backtesting hori-
zons of T = 250, 500 and 1000 observations are considered.
Indeed, many authors argue that the backtesting period of 250
observations stipulated by the Basel Committee is not sufficient
to backtest the ES. As an example, Kratz et al. (2018) consid-
ers a maximum backtesting period of T = 2000 observations,
while Bayer and Dimitriadis (2019) even takes into account up
to T = 5000 observations. Nevertheless, it should be noted that
backtesting periods with T > 1000 are often not feasible in ac-
tual applications. Considering daily returns, 1000 observations
correspond to a time series of roughly four years. Even in this
case, it might be challenging for the risk manager to collect
risk forecasts and return losses over such a long time frame.
Furthermore, the conducted analysis takes into account a con-
fidence level of α = 0.975 for the ES and a significance level
of κ = 0.05 for the backtests, which corresponds to the yellow
traffic light zone in the methodology of the Basel Committee.

5.2. Empirical size of backtests
In order to determine the size of the backtest, I simulate MC =
1000 test decisions under the assumption that the risk man-
ager correctly estimates the underlying risk, i.e. L̂t = Lt for
all t ∈ {1, . . . ,T}. Moreover, for every observation t within the
backtesting horizon I set L̂t ∼ N(µt ,σt) and Lt ∼ N(µt ,σt), re-
spectively. For the procedure, at first 250 return loss observa-
tions l−249, . . . , l0 are drawn from the standard normal distribu-
tion. Consecutively, both µ1 and σ1 are calculated as the sam-
ple mean and sample standard deviation of the preceding 250
observations. Furthermore, ÊS1,α is calculated according to the
theoretical value based on the distribution N(µ1,σ1). More pre-
cisely, the ES forecast based on the normal distribution is given
by,

ÊS1,α =
1

1−α
σ1φ(Φ−1(α))+µ1 , (5.1)

where again φ and Φ denote the PDF and the CDF of the
standard normal distribution, respectively. Furthermore, also
all auxiliary variables, needed for any of the outlined back-
tests, are calculated based on N(µ1,σ1). In the following, the
actual observed loss is drawn from the same distribution, i.e
l1 ∼N(µ1,σ1). This procedure is afterwards carried out for any
observation within the backtesting period, whereas both µt and
σt are always calculated on the rolling sample of the previous

250 observations, i.e. lt−250, . . . , lt−1. In the end, the decision
of all evaluated backtests is based on the obtained vectors of
{ÊSt,α : t = 1, . . . ,T} and {lt : t = 1, . . .T} as well as on po-
tentially required auxiliary forecasts. Overall, MC = 1000 test
decisions are simulated based on the outlined procedure and the
respective rejection rate is calculated.
The resulting rejection rates for all considered backtests are
depicted in Table 8. As previously mentioned, the ES is esti-
mated at a confidence level of α = 0.975. Moreover, a back-
testing significance level of κ = 0.05 and backtesting horizons
of T = 250, 500 and 1000 observations are considered. For vi-
sualisation purposes, the colouring scheme is taken from Kratz
et al. (2018). Rejection rates in the size simulation below 6%
yield good results and are thus coloured in green. Poor empiri-
cal size values are highlighted in orange if the simulated rejec-
tion rate exceeds 9% and in red given an even higher rejection
rate above 12 %.
Overall, most of the evaluated backtests do show decent rejec-
tion rates in the size analysis over the considered backtesting
horizons. Both multinomial backtests exhibit a rejection rate
close to the significance level of 5% for all three backtesting
time frames. As to be expected, the difference in rejection rates
between both test versions is rather marginal. Furthermore, it is
reasonable that rejection rates of the de-facto one-sided version
are slightly below those of the original approach, as the adjusted
backtest additionally rules out the rejection of simulation tri-
als which display a conservative risk estimation. Overall, both
multinomial backtests possess excellent size properties. The
Test 2 from Acerbi and Szekely (2014) achieves low rejection
rates, which are even below the significance level applied in the
simulation study. Interestingly, it appears that rejection rates
even converge to zero given an increase in the backtesting hori-
zon. As argued before, this should per se not be seen as a draw-
back of the test from Acerbi and Szekely (2014). Nevertheless,
if the Test 2 reveals a low power in the consecutive subsection,
this might be an indicator for a poor balancing of both size and
power in the respective test framework. The simulation results
for the intercept ESR backtest are in line with expectations, with
rejection rates below 7% in all three simulations. Furthermore,
the empirical size of the intercept ESR backtest appears to be
rather stable across different backtesting horizons, close to the
applied significance level κ . On the contrary, the empirical size
of both, the original Z-test from Costanzino and Curran (2015)
as well as the proposed approximative version, exceeds a value
of 10% for all evaluated scenarios. It is even more problem-
atic that the simulated rejection rates further increase given an
increase in the backtesting period. For a value of T = 1000
the original Z-test rejects the correctly specified ES estimation
model in almost every fourth test decision. Surprisingly, the
empirical size of the approximative Z-test seems to be slightly
superior compared to the original version. Nevertheless, both
test versions exhibit unsatisfactory high rejection rates in the
size analysis, which hints towards a potential misspecification
in the underlying framework of the ES backtest. On possible
reason might be, that critical values based on the asymptotic
distribution of the test statistic might not lead to accurate test
decisions for finite backtesting horizons like T = 250, as shortly
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Empirical size - Rejection rates of evaluated ES backtests
Backtesting period - T

ES backtesting approach 250 500 1000

Multinomial backtest - Original version 0.040 0.040 0.051
Multinomial backtest - One-sided version 0.037 0.040 0.050

Test 2 0.042 0.012 0.000
Intercept ESR backtest 0.063 0.043 0.063

Z-test - Original version 0.117 0.171 0.240
Z-test - Approximative version 0.101 0.117 0.171

Combined ES residuals backtest 0.098 0.110 0.085
(ES residuals backtest) (0.056) (0.030) (0.024)

(VaR traffic light test) (0.044) (0.083) (0.062)

Table 8: Empirical size - rejection rates of evaluated ES backtests. ES confidence level set at α = 0.975, significance level of the
backtests at κ = 0.05. Rejection rates are based on MC = 1000 simulations given that L̂t = Lt ∼ N(µt ,σt) for all t ∈ {1, . . . ,T}.

outlined in chapter 4.4. The combined ES residuals backtest
also shows slightly too high rejection rates ranging between
8% and 11%. It should be noted, that the test decision of the
combined test is composed of both the VaR traffic light test
as well as the original ES residuals backtest proposed by Mc-
Neil and Frey (2000). Both of these two single test decisions
show reasonable size values in all three simulation scenarios.
As outlined in chapter 4.5, the combined ES residual backtest
is rejected if any of the two applied test components is rejected.
Therefore, given the worst-of-logic applied for the combined
test decision, it is not surprising that the combined ES residuals
backtest is slightly oversized. One might decrease the signifi-
cance levels for each of the two single test components in order
to calibrate the combined ES residuals backtests to a size value
closer to 5%. Given that the size values of the combined test are
still within an acceptable range, no rescaling is applied and the
backtest will be carried out as described in the previous chap-
ter.
Concluding, both multinomial backtests based on Kratz et al.
(2018) and the intercept ESR backtest from Bayer and Dimi-
triadis (2019) show decent size properties in line with expecta-
tions. Size values close to zero, observed for the Test 2 from
Acerbi and Szekely (2014), might be seen as a bonus of the test
framework, if the test still reveals decent power values. Never-
theless, this needs to be evaluated in the following subsection,
as overly low size figures might also go hand in hand with a
low power in detecting misspecified ES estimation models. The
combined ES residuals backtest is slightly oversized. Neverthe-
less, this can be explained given the underlying test methodol-
ogy and furthermore one might mitigate too high rejection rates
by calibrating the single components of the test decision. Only
the size values of the Z-test proposed by Costanzino and Cur-
ran (2015) deviate from expectations. It might be difficult for
regulators to rely on an ES backtest which rejects a correctly
specified ES estimation model in up to every fourth scenario
depending on the selected testing parameters.

Furthermore, also no clear pattern can be observed across all
backtests regarding the relation of empirical size values and the
choice of the backtesting horizon. Thus, it is not obvious that an
increased backtesting period automatically leads to improved
size properties based on the conducted simulations.

5.3. Empirical power of backtests
This subsection aims to evaluate the empirical power of all con-
sidered ES backtests, i.e. their ability to detect certain levels
of model misspecification. As I decided to base my analysis
on one-sided test decisions, only scenarios are analysed where
the risk manager underestimates the true underlying risk given
by Lt . For all single power scenarios, again 250 initial loss
observations are drawn from the standard normal distribution.
Again both µt and σt are estimated over the previous 250 ob-
servations for every observation t within the backtesting hori-
zon. Furthermore, the risk manager again estimates the under-
lying risk ÊSt,α based on the respective normal distribution, i.e.
L̂t ∼ N(µt ,σt). The difference compared to the previous size
analysis is that the true distribution Lt deviates from the nor-
mal distribution. More precisely, observed return losses lt , for
t ∈ {1, . . . ,T}, are drawn from different location-scale distribu-
tions, whereas location and scale parameters again depend on
both µt and σt . Moreover, four different scenarios are anal-
ysed, which can be grouped into the following two categories
of model misspecification.

(i) Misspecified tail behaviour and conditional variance
For the first category, I assume that the true return loss
follows a t-distribution with location parameter µt and
scale parameter σt . Moreover, I consider two scenarios
with ν = 3 and ν = 5 degrees of freedom. Thus, the
observed return losses lt are drawn from Lt ∼ tν(µt ,σt).
As the t-distribution possesses fatter tails compared to
the normal distribution, this leads to a scenario where
the risk manager underestimates the underlying risk, due
to a misspecification of the distribution tail. The tail
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behaviour of the t-distribution converges to that of the
normal distribution for increasing values of ν . There-
fore, the degree of risk underestimation is larger for the
case of ν = 3 compared to ν = 5.
Secondly, the variance of Lt ∼ tν(µt ,σt) is given by
Var(Lt) = σ2

t
ν

ν−2 , whenever ν > 2. Taking into account
that the risk manager assumes return losses to be nor-
mally distributed, this leads to

Var(Lt) = σ
2
t

ν

ν−2
> σ

2
t =Var(L̂t), for ν > 2.(5.2)

Therefore, the risk manager additionally also underes-
timates the true conditional variance of return losses.
Again, the degree of risk underestimation due to a mis-
specified variance is larger for the case of ν = 3 com-
pared to ν = 5.
As previously argued, both the number of violations be-
yond the respective VaR threshold as well as their mag-
nitude with respect to the estimated ES value, need to be
considered for correct unconditional coverage of the ES.
The misspecified tail behaviour will become apparent
in the outer tail of the return loss distribution and thus
primarily impact the magnitude of observed VaR viola-
tions. Additionally, due to the misspecified conditional
variance, the overall level of riskiness is underestimated,
which will result in a rather high number of violations
beyond the forecasted VaR threshold. Therefore, for sce-
narios from the first category, not just ES estimates, but
also the related VaR forecasts, are inaccurate.
For illustration purposes, Figure 1 depicts the PDF of the
forecasted return loss distribution L̂t as well as the PDFs
of both considered t-distributions with parameter values
of µt = 0 and σt = 1.

In order to complement the two selected scenarios, I addition-
ally analyse how rejection rates evolve given that the number of
considered degrees of freedom further increases beyond a value
of ν = 5.

(ii) Misspecified tail behaviour
For the second category, I analyse two scenarios where
the risk manager only fails to correctly account for the
distribution tail of return losses. Nevertheless, compared
to the first category I evaluate scenarios where the risk
manager correctly models both the conditional mean and
variance of the underlying distributions. Thus, the level
of risk underestimation in the second category is lower
compared to the first category. More precisely, the under-
estimation of the actual risk will primarily become appar-
ent in the magnitude of violations beyond the estimated
VaR but not in their overall number. Thus, the foreasted
VaR, for scenarios from the second category, might be
roughly accurate, whereas the related ES figure still un-
derestimates the actual underlying risk. Therefore, this
makes it also more challenging for any ES backtest to
detect a misspecified model, which stems from this sec-
ond category.

For the first scenario in this category, I simulate observed
return losses from a t-distribution with ν = 3 degrees
of freedom, which is standardized to have a conditional
mean of E[Lt ] = µt and more importantly a conditional
variance of Var(Lt) = σ2

t . This is achieved by simulating
observed return losses from Lt ∼ t3(µt ,σt/

√
3). Corre-

spondingly, the risk manager takes into account the cor-
rect conditional variance, but does not account for the fat
tails of the t-distribution.
For the second scenario in this category, I simulate re-
turn losses from a skewed normal distribution, which is
again standardized such that both conditional mean and
variance are correctly specified. In addition to location
and scale parameters, the skewed normal distribution re-
quires an additional shape input parameter λ to determine
the skewness of the distribution. The properties of the
skewed normal distribution are for example outlined in
Azzalini and Valle (1996). Given location and scale pa-
rameters of µ and σ and a shape parameter of λ , the PDF
of the skewed normal distribution is given by,

φ
skewed(x) :=

2
σ

φ

(
x−µ

σ

)
Φ

(
λ

x−µ

σ

)
, (5.3)

where again φ and Φ denote the PDF and the CDF of
the standard normal distribution. Moreover, I select a
shape parameter of λ = 2 and standardize both the lo-
cation and the scale parameter such that E[Lt ] = µt and
Var(Lt) = σ2

t .23 The resulting return loss distribution of
Lt is right-skewed, which is a realistic property of a finan-
cial time series of return losses. Furthermore, the distri-
bution possesses over-kurtosis compared to the standard
normal distribution. Thus, the risk manager underesti-
mates the underlying risk, as he fails to correctly estimate
both skewness and kurtosis of the return loss distribution.
Figure 2 depicts the PDF of the estimated return loss L̂t
as well as the PDFs of both assumed data generating pro-
cesses within this category. Again for illustration pur-
poses, location and scale parameters of µt = 0 and σt = 1
are considered.

At first, the more severe cases of risk underestimation are eval-
uated, where both tail behaviour and conditional variance are
wrongly estimated. In the first power analysis, observed losses
are drawn from Lt ∼ t3(µt ,σt), while the risk manager bases
his ES forecasts on the estimate L̂t ∼ N(µt ,σt). The respective
simulated rejection rates are depicted in Table 9. The colour
scheme for the power analysis is again motivated by Kratz et
al. (2018). Nevertheless, the respective thresholds are taken at
stricter values compared to their suggestion. Power values are
marked in green given a high rejection rate above 80 %. On
the other hand, poor power values are marked in orange given a

23For λ = 2 this is achieved by setting the scale parameter of the skewed
normal distribution equal to σt√

1−1.6/π
and the location parameter equal to µt −

σt√
1−1.6/π

2√
5

√
2
π

.



K. Spring / Junior Management Science 6(3) (2021) 590-636616

Figure 1: Power analysis - Comparison of PDFs corresponding to multiple loss distributions Lt to misspecified distribution L̂t with
different variance and tail behaviour.

Figure 2: Power analysis - Comparison of PDFs corresponding to multiple loss distributions Lt to misspecified distribution L̂t with
different tail behaviour but same variance.

rejection rate below 40 % and in red if the simulated rejection
rate even lies below 20 %. For the power analysis, rejection
rates are again based on MC = 1000 simulated test decisions.
Furthermore, an ES confidence level of α = 0.975 and a back-
test significance level of κ = 0.05 are applied for backtesting
periods of T = 250, 500 and 1000 observations.
First of all, it can be noticed that all ES backtests in scope yield
excellent power values in Table 9, as all simulated rejection
rates are above 78 %. There is only one rejection rate that is

not labelled in green, however only with a value slightly be-
low 80 %. Moreover, this rejection rate belongs to the intercept
ESR backtest in case of T = 1000 backtesting observations. It is
also worth mentioning that rejection rates of the intercept ESR
backtest decrease given an increase in the backtesting horizon
T , which is rather counter-intuitive. Nevertheless, the intercept
ESR backtest still exhibits decent power values in all evaluated
cases. On the contrary, rejection rates for all other considered
ES backtests increase in T . Furthermore, for both T = 500 and
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Empirical power Lt ∼ t3(µt ,σt) - Rejection rates of evaluated ES backtests
Backtesting period - T

ES backtesting approach 250 500 1000

Multinomial backtest - Original version 0.988 1.000 1.000
Multinomial backtest - One-sided version 0.988 1.000 1.000

Test 2 0.992 1.000 1.000
Intercept ESR backtest 0.914 0.888 0.789

Z-test - Original version 0.950 0.975 0.990
Z-test - Approximative version 0.995 1.000 1.000

Combined ES residuals backtest 0.987 1.000 1.000
(ES residuals backtest) (0.881) (0.975) (0.997)

(VaR traffic light test) (0.971) (1.000) (1.000)

Table 9: Empirical power, i.e. rejection rates of evaluated ES backtests. Rejection rates are based on MC = 1000 simulations given
that L̂t ∼ N(µt ,σt) and Lt ∼ t3(µt ,σt) for all t ∈ {1, . . . ,T}. ES confidence level set at α = 0.975, significance level of the backtests
at κ = 0.05. Backtesting horizons of T = 250, 500 and 1000 observations are considered.

T = 1000 observations, a majority of the backtests in scope re-
ject the wrongly specified risk forecast at a perfect rate of 100%.
It is in line with expectations, that power values increase given
an increase in T , as a larger backtesting period also involves
more misspecified risk forecasts into the respective test deci-
sion.
For the multinomial backtest there is no difference in rejec-
tion rates between the original and the de-facto one-sided ver-
sion. As outlined in the previous chapter, the only difference
between both multinomial tests is, that the adjusted approach
additionally rules out the rejection of any conservative estima-
tion model. Nevertheless, for the power analysis, only sce-
narios where the actual risk is underestimated are considered.
Therefore, it is reasonable that rejection rates of both multi-
nomial test versions coincide for any power scenario. For the
Z-test proposed by Costanzino and Curran (2015) it can be
noted that the approximative version, proposed within this the-
sis, yields slightly higher rejection rates compared to the orig-
inal approach. Overall, all evaluated backtests show decent re-
sults in detecting the risk underestimation in a scenario where
L̂t ∼ N(µt ,σt) and Lt ∼ t3(µt ,σt).
In order to stepwise increase the challenge, I secondly consider
a scenario where Lt ∼ t5(µt ,σt). As outlined above, increas-
ing the degrees of freedom decreases the degree of misspecifi-
cation of both the distribution tail and the conditional variance.
Thus, it is more difficult to detect, that the risk manager still un-
derestimates the actual risk. The respective rejection rates for
this scenario are depicted in Table 10 below. Both the colour
scheme and the selected backtesting parameters are equivalent
to the previous table.
Similar as in the previous scenario, all considered ES backtests
exhibit excellent rejection rates, most of them again above 80
%. Nevertheless, the overall level of rejection rates is slightly
lower compared to the previous simulation, which is in line
with expectations given the decreased level of model misspec-

ification. As an example, for the simulation of Lt ∼ t3(µt ,σt),
multiple backtests achieved a perfect rejection rate already at a
backtesting horizon of T = 500 observations, whereas for this
second scenario, using Lt ∼ t5(µt ,σt), perfect rejection rates of
100 % are only achieved for the maximum considered backtest-
ing time frame of T = 1000 observation. Thus, a risk manager
needs to consider a longer time series of both risk forecasts
and P&L realizations, to achieve the same backtesting accu-
racy as in the previous scenario. Furthermore, all ES backtests
analysed in Table 10 generally, show increasing rejection rates
given an increase in the backtesting horizon T . One can also no-
tice, that the original Z-test proposed by Costanzino and Curran
(2015) is again slightly out-performed by its approximative ver-
sion, which was suggested within this thesis.
Although there are some minor differences between the ES
backtests in scope, all of them show excellent empirical power
values in both considered scenarios, where the risk manager
misspecifies both the tail behaviour and the conditional vari-
ance. This is also in line with previous power analyses con-
ducted for example by Acerbi and Szekely (2014). In order to
evaluate how rejection rates further develop if the true return
loss distribution approaches the normal distribution, I outline
some additional analysis in the following. Moreover, I simu-
late MC = 100 test decisions for each scenario Lt ∼ tν(µt ,σt),
whereas ν takes on values in {3, . . . ,25}, and the estimated re-
turn loss L̂t is again assumed to be normally distributed. Fur-
thermore, I choose the same backtesting parameters as in the
previous scenarios, but fix a backtesting horizon of T = 500
observations. Thus, rejection rates are simulated for the same
type of model misspecification as outlined in the previous two
scenarios, but with a decreasing level of estimation inaccuracy.
The resulting plot of rejection rates, depending on the consid-
ered degrees of freedom, for all considered backtests, is de-
picted in Figure 324 .

24Note that both the original two-sided and the de-facto one sided multino-
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Empirical power Lt ∼ t5(µt ,σt) - Rejection rates of evaluated ES backtests
Backtesting period - T

ES backtesting approach 250 500 1000

Multinomial backtest - Original version 0.836 0.956 1.000
Multinomial backtest - One-sided version 0.836 0.956 1.000

Test 2 0.900 0.957 0.995
Intercept ESR backtest 0.847 0.963 0.995

Z-test - Original version 0.817 0.862 0.884
Z-test - Approximative version 0.950 0.995 1.000

Combined ES residuals backtest 0.895 0.992 1.000
(ES residuals backtest) (0.655) (0.895) (0.994)

(VaR traffic light test) (0.801) (0.971) (1.000)

Table 10: Empirical power, i.e. rejection rates of evaluated ES backtests. Rejection rates are based on MC = 1000 simulations
given that L̂t ∼ N(µt ,σt) and Lt ∼ t5(µt ,σt) for all t ∈ {1, . . . ,T}. ES confidence level set at α = 0.975, significance level of the
backtests at κ = 0.05. Backtesting horizons of T = 250, 500 and 1000 observations are considered.

Figure 3: Rejection rates for all considered ES backtests depending on degree of model misspecification. Moreover, MC = 100
test decisions are simulated for each scenario L̂t ∼ N(µt ,σt) and Lt ∼ tν(µt ,σt), whereas ν takes on values in {3, . . . ,25}. ES
confidence level set at α = 0.975, significance level of the backtest set at κ = 0.05, based on a backtesting horizon of T = 500
observations.

Overall, the results depicted in Figure 3 are in line with expec-
tation, as rejection rates decrease given an increase in degrees
of freedom. Furthermore, up to a value of ν = 10 all considered
ES backtests reject the underestimated ES forecast in more than
every second test decisions. For larger values of ν around 20,
both applied Z-tests, the combined ES residuals backtest as well
as the intercept ESR backtest display slightly higher rejection

mial backtest achieve exactly the same rejection rates in the conducted analysis.
Thus, only the one-sided version is included in Figure 3.

rates compared to both, the multinomial backtest as well as the
Test 2. Nevertheless, for high values of ν , minor differences
between the single backtests should not be exaggerated, given
the rather low degree of model inaccuracy. Overall, the power
of all ES backtests in scope is deemed appropriate for scenarios
from the first category of model misspecification.
In the following the two selected scenarios from the second cat-
egory are analysed, where only the risk in the distribution tail is
underestimated, but the conditional first two moments are cor-
rectly specified, i.e. E[L̂t ] = E[Lt ] and Var(L̂t) = Var(Lt) for
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all observations t within the backtesting period. Thus, the un-
derestimation of the actual risk only becomes perceivable in the
outer tail of the return loss distribution. As previously argued,
this primarily affects the magnitude of violations beyond the
respective VaR threshold, but not there overall number. There-
fore, it is more challenging for any ES backtest to detect a mis-
specified model from this second considered category.
Table 11 depicts the simulated rejection rates for the scenario
where the true return loss variable follows a standardized t-
distribution with ν = 3 degrees of freedom.
Again rejection rates are based on MC = 1000 simulated test
decisions given an ES confidence level of α = 0.975 and a
significance level of κ = 0.05 for the considered backtests. The
colouring scheme is equivalent to the previous tables.
Overall, it can be recognized that power values are by far
worse given that Lt follows a standardized t-distribution com-
pared to the previous simulations, where the variance of the
t-distribution was not adjusted. For the backtesting period of
T = 250 days, stipulated by the Basel Committee, non of the
evaluated backtests manages to reject the misspecified ES es-
timation model in at least half of all simulated decisions. For
most backtests in scope, rejection rates tend to increase given
an increase in the considered backtesting horizon.
Nevertheless, at least for two out of the five overall testing
methodologies, the power results are not even satisfying for
the maximum backtesting period of T = 1000 days. Both, the
original Z-test proposed by Costanzino and Curran (2015) as
well as the related approximative version, reject the underes-
timated ES estimate in less than one third of all test decisions
for any considered backtesting period. Although rejection rates
for both Z-tests slightly increase in T , both tests are not able to
consistently detect this type of model misspecification. Further-
more, results obtained for the Test 2 from Acerbi and Szekely
(2014) are even more problematic, as all simulated rejection
rates for this test are labelled in red, with values even below 20
%. The rejection rates even further decrease given an increase
in the backtesting time frame. Thus, the Test 2 does not appear
to have any power to detect this kind of risk underestimation.
Taking into account the size simulations in the previous subsec-
tion, the Test 2 exhibits a potential imbalanced relation between
both size and power. Indeed, extremely low size values might
come at the cost of a low power in detecting certain types of
model misspecification.
On the contrary, at least for the maximum considered back-
testing period, both multinomial backtest versions as well as
the intercept ESR backtest achieve rejection rates above 50
%. Moreover, the rejection rate for the combined ES residuals
backtest is even labelled in green with an excellent value of
83.7 %, given T = 1000 backtesting observations are taken into
account. As the risk manager correctly estimates the condi-
tional variance of return losses, it is not surprising that the VaR
traffic light test produces rejection rates close to zero, as the
misspecification only gets perceivable in the outer distribution
tail. Still, in combination with the original ES residuals back-
test proposed by McNeil and Frey (2000), the combined test
shows the best empirical power values amongst all evaluated
approaches in this simulation scenario.

For the last considered power simulation, true return losses are
simulated from a skewed normal distribution, which is stan-
dardized such that both conditional mean and variance coincide
with the respective figures of the estimated return loss variable
L̂t . Whereas L̂t models a symmetric return loss distribution, Lt
is right-skewed and also possesses a slightly higher kurtosis.
The simulated rejection rates are depicted in Table 12 below.
All backtesting parameters are set equivalent to the previous
table.
First of all, it can be noticed that power figures are on a slightly
higher level compared to the previous scenario. This is in line
with expectations, as the true return loss distribution Lt is both
skewed and fat tailed, which induces a slightly higher degree of
misspecification in the distribution tails compared to the previ-
ous simulation. For this last simulated power scenario, it be-
comes most apparent, that an increasing backtesting horizon is
related to higher empirical power values. While most simulated
rejection rates do not exceed 50 % for T = 250 backtesting ob-
servation, the majority of the backtesting approaches in scope
does a decent job in detecting the misspecified model in case a
backtesting horizon of T = 1000 is considered. Especially, the
intercept ESR backtest, the approximative Z-test as well as the
combined ES residuals backtest need to be highlighted with ex-
cellent rejection rates above 90 %, given the maximum consid-
ered backtesting period. As an exception, again the Test 2 from
Acerbi and Szekely (2014) is not able to consistently detect this
kind of risk underestimation. Indeed, for any of the considered
backtesting time frames, the Test 2 detects the wrongly speci-
fied estimation model only in about 40 % of all simulated test
decisions.
Concluding this subsection, all considered backtests in scope
achieve excellent empirical power values in scenarios where the
risk manager underestimates both the conditional variance as
well as the distribution tail of return losses. On the contrary, it is
far more difficult for any ES backtest to detect scenarios where
the first two moments of return losses are correctly estimated
but only the distribution tail is underestimated. Nevertheless,
for these last two scenarios from the second category, differ-
ences between the considered ES backtests regarding their em-
pirical power become most apparent. The Test 2 from Acerbi
and Szekely (2014) performs worst in these two simulations,
as it only exhibits few power in detecting the respective mis-
specified estimation models. As previously argued, this might
be related to an imbalanced relation of both empirical size and
power observed for the Test 2. The most consistent power val-
ues across both scenarios form the second category are achieved
by, both multinomial backtests, the intercept ESR backtest as
well as the combined ES residuals backtest, with decent re-
jection rates, at least for the maximum backtesting horizon of
T = 1000 observations. Overall, it should also be noted that the
approximative Z-test slightly outperforms the original test ver-
sion proposed by Costanzino and Curran (2015). Although this
appears to be surprising, this trend can be observed through-
out all four conducted power simulations. Furthermore, in line
with expectations, rejection rates of both multinomial test ver-
sion coincide in all conducted power analyses.
Compared to the size analysis in the previous subsection, one
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Empirical power Lt ∼ t3(µt ,σt/
√

3)
- Rejection rates of evaluated ES backtests

Backtesting period - T
ES backtesting approach 250 500 1000

Multinomial backtest - Original version 0.149 0.287 0.616

Multinomial backtest - One-sided version 0.149 0.287 0.616

Test 2 0.152 0.080 0.028
Intercept ESR backtest 0.207 0.273 0.509

Z-test - Original version 0.176 0.231 0.293
Z-test - Approximative version 0.204 0.233 0.324

Combined ES residuals backtest 0.414 0.547 0.837
(ES residuals backtest) (0.408) (0.543) (0.837)

(VaR traffic light test) (0.018) (0.028) (0.015)

Table 11: Empirical power, true dist. t3 standardized - rejection rates of evaluated ES backtests. ES confidence level set at α =
0.975, significance level of the backtests at κ = 0.05. Rejection rates are based on MC = 1000 simulations given that L̂t ∼N(µt ,σt)
and Lt ∼ t3(µt ,σt/

√
3) for all t ∈ {1, . . . ,T}.

Empirical power Lt ∼ skewed normal -
Rejection rates of evaluated ES backtests

Backtesting period - T
ES backtesting approach 250 500 1000

Multinomial backtest - Original version 0.308 0.488 0.755

Multinomial backtest - One-sided version 0.308 0.488 0.755

Test 2 0.396 0.388 0.410

Intercept ESR backtest 0.467 0.701 0.906
Z-test - Original version 0.442 0.594 0.603

Z-test - Approximative version 0.594 0.833 0.968
Combined ES residuals backtest 0.457 0.747 0.927

(ES residuals backtest) (0.179) (0.358) (0.625)

(VaR traffic light test) (0.349) (0.633) (0.821)

Table 12: Empirical power, true distribution skewed normal - rejection rates of evaluated ES backtests. ES confidence level set
at α = 0.975, significance level of the backtests at κ = 0.05. Rejection rates are based on MC = 1000 simulations given that
L̂t ∼ N(µt ,σt) and Lt follows a skewed normal distribution, which is standardized such that first two moments of L̂t and Lt coincide
for all t ∈ {1, . . . ,T}.

can also observe an obvious impact of the backtesting time
frame on power values. Especially, for both scenarios from
the second category ES backtests are generally more powerful
given a larger backtesting horizon. Moreover, for the last two
scenarios, the backtesting period of T = 250 observations, sug-
gested by the Basel Committee, does not appear to be sufficient
in order to consistently detect misspecified ES estimation mod-
els.
Summing up this chapter, I propose the following qualitative
judgement of all ES backtesting methodologies in scope ac-
cording to their results in all conducted size and power simu-
lations. All backtests are graded according to both their empiri-

cal size and power values. In each category (++) corresponds to
an excellent performance, followed by (+), which still charac-
terises an above average results. Average power or size results
are labelled by (o), whereas poor performance is marked with a
(-) or even with a (- -) if it displays a serious issue for any prac-
tical implementation. The judgement of the backtests in scope
as well as a short explanation is outlined below.

• Multinomial backtest - Original and de-facto one-
sided version :
Size: (++) Excellent empirical size for both the original
and the de-facto one-sided version. Furthermore, the
de-facto one-sided version avoids the rejection of any
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conservative ES estimation model.
Power: (+) Excellent empirical power for scenarios from
first category. Still decent power for scenarios from sec-
ond category, given a sufficient backtesting horizon. As
to be expected, there are no differences in power values
between both multinomial test versions.

• Test 2:
Size: (+) Very low empirical size, which is slightly below
backtesting significance level and further decreases given
an increase in T .
Power: (-) Excellent empirical power for scenarios from
first category. On the contrary, low power in detecting
misspecified models from the second category. Overall,
the obtained results hint towards a slight misalignment of
both size and power.

• Intercept ESR backtest:
Size: (+) Decent empirical size, which is nevertheless
slightly above backtesting significance level.
Power: (+) Excellent empirical power for scenarios from
first category. Still decent power for scenarios from sec-
ond category, given a sufficient backtesting horizon.

• Z-test - Original and approximative version:
Size: (- -) Both the original as well as the approximate
version are oversized. Furthermore, empirical size fur-
ther increases with increasing values of T . High size
values indicate a potential misspecification in the under-
lying test framework.
Power: (+) Excellent power for scenarios from first
category, but both versions can not consistently detect
misspecified models from second category. Overall, ap-
proximative version yields slightly superior power results
compared to the original approach.

• Combined ES residuals backtest:
Size: (o) Backtest is slightly oversized, but might be ad-
justed by calibration of single test components.
Power: (++) Excellent empirical power for scenarios
from first category and also for the scenarios from the
second category, given a sufficient backtesting horizon
T .

Therefore, according to both empirical size and power, the de-
facto one-sided version of the multinomial backtest yields the
best results followed by both the intercept ESR backtest and the
combined ES residuals backtest.
In the consecutive chapter, all backtests in scope are tested on
reasonable ES estimation models, which are fitted to log-return
losses of the S&P 500.

6. Application of backtests to real data

The object of this chapter is to apply the relevant ES backtests
outlined in the fourth chapter of this thesis to actual financial
time series. Thus, this chapter aims to evaluate whether the ES
backtests in scope yield reasonable results in practical scenarios

and therefore qualify for the use by both financial institutions
and regulators. For this purpose, univariate price data of the
S&P 500 index is considered over two distinct time periods,
which function as the respective backtesting horizons in this
context. The consideration of two different time periods of S&P
500 data allows for an evaluation of the introduced ES back-
tests in different market environments. The evaluated data set
is further described in the consecutive subsection. Afterwards,
five ES estimation models, with different degrees of complex-
ity and forecasting accuracy, are estimated for every day within
each of the two considered time frames of S&P 500 data. The
respective risk models are further outlined in subsection 6.2. In
the subsection thereafter, the estimated ES forecasts are evalu-
ated based on all ES backtesting methodologies introduced in
the course of this thesis. Similar as for the VaR traffic light
approach, backtesting significance levels of both κ = 0.05 and
κ = 0.0001 are considered in order to rank the ES estimation
models with respect to the traffic light system prescribed by the
Basel Committee.

6.1. Financial data - S&P 500 index
For the analysis conducted within this chapter, daily clos-
ing prices of the S&P 500 index are taken from the Thom-
son Reuters Datastream database for the time period from
01.01.2006 to 01.10.2019. In order to remain consistent with
the previous notation, the S&P 500 price data is transformed
to a time series of log return losses. More precisely, if Pt and
Pt−1 denote the prices of the S&P 500 at times t and t− 1, the
respective log return loss is defined as,

lt :=−(ln(Pt)− ln(Pt−1)). (6.1)

Public holidays without any trading activities, i.e. with a related
log return loss of exactly zero, are removed from the overall
sample, as they would potentially bias the obtained backtesting
results.
As shortly mentioned above, the overall sample is divided into
two distinct time periods. The first one is labelled as the crisis
period and contains a backtesting horizon of exactly 500 trad-
ing days, which spans from 27.12.2007 to 21.12.2009. All ES
estimates, ÊSt,0.975, are forecasted based on the rolling window
of the previous 250 log return losses.25 The crisis period in-
cludes the peak of the financial crisis in autumn 2008. Thus,
this highly volatile market regime induces a major challenge
for any of the applied risk estimation models.
The second considered backtesting period within this chapter
contains the most recent S&P 500 data available at the start of
the processing period for this thesis. Respectively, the period is
labelled as recent period for the remainder of this thesis and in-
cludes 500 observations from 27.09.2017 to 23.09.2019. Again,
all ES forecasts are estimated based on the rolling window of
the previous 250 log return losses. 26 Compared to the crisis

25Given the rolling estimation window of 250 trading days, S&P 500 market
data is considered starting from 28.12.2006, prior to the beginning of the crisis
period, for estimation purposes.

26For the recent period, S&P 500 market data used for estimation purposes
dates back until 28.09.2016.
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period, the recent period displays a time frame with rather calm
market conditions.
The differences in the volatility of the S&P 500 between the
two considered backtesting periods can be observed in Figure
4, which depicts the log return losses over the respective time
frames. Additionally, Figure 4 reveals that log return losses of
the S&P 500 exhibit heteroskedasticity, which is a well known
pattern of financial time series. Moreover, volatility clusters can
be observed within both considered periods.
Another feature of log-return series is that they are often lep-
tokurtic, i.e. they possess over-kurtosis compared to the stan-
dard normal distribution. In order to assess if log-return losses
of the S&P 500 display leptokurtic patterns, Figure 5 depicts
the QQ-plots of log return losses of the S&P 500 in percent
against the standard normal distribution for both considered
time periods. Especially in the crisis period, it is obvious that
the considered log return losses posses fatter tails compared to
the standard normal distribution, which can be observed on the
left subplot of Figure 5. Even in the recent period, in a rather
calm market environment, log return losses are still slightly lep-
tokurtic. Nevertheless, distribution tails are by far thinner in the
recent period compared to the crisis period.
Additionally, the differences in the distribution tails for both
time windows of log return losses can be observed in Figure
6, which shows the respective histograms of log return losses.
There are two further aspects which can be gathered from Fig-
ure 6. First of all, log return losses in both subplots of Fig-
ure 6 are centred around zero, which will be relevant for the
subsection thereafter. Indeed, several of the applied ES esti-
mation models are based on the assumption that average daily
log return losses do not differ from zero. Secondly, log return
losses over both considered backtesting time frames are slightly
skewed to the right. As mentioned before, this is also a typical
pattern of return loss series.
As outlined within this subsection, log return losses of the S&P
500 over both considered time frames exhibit typical patterns
of financial time series. Overall, I decided to evaluate the ES
backtests in scope on two distinct backtesting periods, as they
display different market environments. On the one hand, in the
recent period most ES estimation models are expected to work
properly. Correspondingly, most ES estimation models should
also pass any ES backtest over the recent period. On the other
hand, it is far more challenging to make accurate ES forecasts in
times of financial distress. Therefore, a majority of the ES esti-
mation models might fail on the introduced backtests within the
crisis period. Overall, regulators need to assure sufficient cap-
ital buffers irrespective of the underlying market environment.
In a crisis period, a reasonable ES backtest needs to be penal-
izing and reject risk estimation models which do not quickly
adopt to financial distress. On the contrary, in calm financial
markets ES backtests should reward a sufficient risk coverage
and not force a financial institution to hold unnecessarily high
safety buffers.
Furthermore, the length of both considered backtesting hori-
zons, i.e. exactly 500 observations, is motivated by the simu-
lation results obtained within the previous chapter. As previ-
ously noticed, a backtesting horizon of 250 observations might

be too short in order to consistently detect the risk underestima-
tion inherited in an ES estimation model. On the other hand,
excessively large backtesting windows might be problematic
in practical application as they require the storage and more-
over the availability of risk forecasts and return data over a long
time frame. Thus, I believe the chosen backtesting horizon of
T = 500 days gives a good trade off between backtesting power
and data requirements, such that the conducted analysis dis-
plays a realistic set-up for an application by financial institu-
tions or regulators.
The following subsection is first going to shortly summarize all
five considered ES estimation models before the actual back-
testing results can be discussed.

6.2. ES estimation models
This subsection presents all five applied ES estimation mod-
els, which are fitted to the S&P 500 log return loss data. All
implemented ES estimation models differ with respect to their
complexity and thus also yield different accuracies in modelling
the underlying risk. Therefore, it is also interesting to observe,
whether the applied ES backtests are able to discriminate be-
tween the different types of estimation models, in the following
subsection.
The first, rather naive, approach corresponds to the ES estima-
tion procedure applied within the size and power simulation
studies. Thus, ES forecasts are based on a normal distribution
which is fitted to the previous 250 observations. The second,
third and fourth approach are also parametric ES estimation
models, which apply econometric techniques in order to ac-
count for time varying conditional volatility of log return losses.
Moreover, the respective econometric models all belong to the
class of Generalized Autoregressive Conditional Heteroskedas-
ticity (GARCH) processes, which were introduced by Boller-
slev (1986). The three respective estimation models differ in
their ability to capture the fat tails and the right-skewness of
log return losses. The fifth ES estimation model is a Filtered
Historical Simulation (FHS) with volatility updating, whereas
conditional volatility is modelled with the RiskMetrics method-
ology suggested by JP Morgan (1996). Compared to all other
considered models, the applied FHS it the only non-parametric
approach and therefore requires no distributional assumption.
As a consequence, comparable FHS methodologies are often
applied by practitioners. In the following, the estimation proce-
dure for all five approaches is shortly outlined.

(I) ES-norm
This first ES estimation model is labelled as ES-norm.
Similar to the previous chapter, a normal distribution is
fitted to the rolling window of the previous 250 S&P 500
log-return losses, such that L̂t ∼ N(µ̂t , σ̂t) for any obser-
vation t within the respective backtesting horizon. More-
over, the corresponding VaR and ES estimates can easily
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Figure 4: Plot of S&P 500 log return losses. Left subplot depicts the crisis period between 27.12.2007 and 21.12.2009, whereas
the right subplot depicts the recent period between 27.09.2017 and 23.09.2019.

Figure 5: QQ-Plot of S&P 500 log return losses in percent against the standard normal distribution. Left subplot depicts the crisis
period between 27.12.2007 and 21.12.2009, whereas the right subplot depicts the recent period between 27.09.2017 and 23.09.2019.

be calculated as,27

V̂aRt,α = µ̂t + σ̂tΦ
−1(α), (6.2)

ÊSt,α = µ̂t + σ̂t
φ(Φ−1(α))

1−α
, (6.3)

where again φ and Φ denote the PDF and the CDF of the
standard normal distribution, respectively. The ES-norm
estimation model is a popular approach because of its
simplicity. Nevertheless, risk estimates in the ES-norm
model only slowly adopt to any changes in the volatil-
ity environment. Furthermore, especially in the evaluated

27See McNeil, Frey, and Embrechts (2015) pages 65 and 70 for a derivation
of both formulas.

crisis period, the distribution tails of S&P 500 log return
losses heavily deviate from those of a standard normal
distribution, which questions the assumption of normally
distributed log return losses used in ES-norm. The result-
ing ES estimates and the respective S&P 500 log return
losses, for both the crisis and the recent period, are de-
picted in Figure 7.

(II) ES-GARCH-norm
The second ES estimation model is labelled as ES-
GARCH-norm. Compared to the first approach, con-
ditional volatility is fitted to a GARCH(1,1) model in
order to better capture the dynamics of volatility. For
the second, as well as the third and fourth approach I as-
sume that the daily conditional mean of log return losses
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Figure 6: Histogram of S&P 500 log return losses. Left subplot depicts the crisis period between 27.12.2007 and 21.12.2009,
whereas the right subplot depicts the recent period between 27.09.2017 and 23.09.2019.

Figure 7: ES estimations based on fitted normal and t-distribution. Left subplot depicts the crisis period between 01.01.2007 and
01.01.2009, whereas the right subplot depicts the recent period between 01.10.2017 and 01.10.2019.

is zero, which is a reasonable assumption given the ar-
gumentation in the previous subsection. Moreover, log
return losses at time t are specified by,

lt = σtεt , (6.4)

where σt again denotes the conditional volatility of log-
return losses and εt is an innovation term. For the con-
sidered GARCH(1,1) model, innovations are assumed to
be i.i.d. normally distributed, i.e. εt

i.i.d∼ N(0,1). Further-
more, the volatility process is given by,

σ
2
t = ω +αl2

t−1 +βσ
2
t−1. (6.5)

Thus, the volatility at any time t within the backtesting
horizon depends on both the squared log return loss and

the squared volatility from the previous time step.28

For every observation t within the backtesting horizon,
the parameter vector (ω,α,β ) is fitted to the rolling win-
dow of the previous 250 log return losses, which is done
in Python by applying a Maximum Likelihood (ML) esti-
mation. Consecutively, one step ahead volatility forecasts
σ̂t are calculated from the obtained parameters based on
the volatility specification in (6.5). As outlined in Mc-
Neil et al. (2015) page 133, the respective VaR and ES

28As outlined above, the theory on a GARCH(1,1) model with normally dis-
tributed innovations εt was originally derived by Bollerslev (1986).
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forecasts can be calculated as,

V̂aRt,α = σ̂tqα(εt) = σ̂tVaRt,α(εt), (6.6)

ÊSt,α = σ̂ESt,α(εt). (6.7)

Given the standard normal distribution of innovations,
VaRt,α(εt) and ESt,α(εt) can be calculated according to
formulas (6.2) and (6.3).
Overall, ES estimations obtained by the ES-GARCH-
norm model are far more flexible to incorporate the cur-
rent market environment compared to the previous rather
static ES-norm approach. The resulting ES forecasts are
depicted in Figure 8 for both the crisis and the recent pe-
riod, together with the forecasts of all applied GARCH-
type estimation models.

(III) ES-GARCH-t
The third ES estimation model, which is labelled as ES-
GARCH-t, is closely related to the previous estimation
approach. Again, log return losses are modelled by equa-
tion (6.4) and the conditional volatility is specified as in
equation (6.5). In comparison to the previous ES esti-
mation model, innovations εt are assumed to follow an
i.i.d. standard t-distribution with ν degrees of freedom,
i.e. εt

i.i.d.∼ tν .
In this case not only the GARCH(1,1) parameters need to
be estimated, but additionally also the degrees of freedom
of the innovation term. Thus, for every t in the backtest-
ing horizon the vector (ν ,ω,α,β ) is estimated in a ML
procedure based on the rolling window of the previous
250 log return loss observations. Again, one step ahead
volatility forecasts σ̂t are calculated based on the speci-
fied volatility process and the obtained GARCH(1,1) pa-
rameters. In the following, the VaR and ES forecasts can
again be calculated according to formulas (6.6) and (6.7).
In this case, it needs to be noted that innovations follow
a standard t-distribution with ν degrees of freedom, such
that the overall ES and VaR estimates in the ES-GARCH-
t model are given by,

V̂aRt,α = σ̂tVaRt,α(εt) = σ̂tt−1
ν (α), (6.8)

ÊSt,α = σ̂tESt,α(εt) = (6.9)

σ̂t
gν(t−1

ν (α))

1−α

(
ν +(t−1

ν (α))2

ν−1

)
,

where gν and tν denote the PDF and the CDF of the stan-
dard t-distribution, respectively.29

The resulting ES forecasts for the ES-GARCH-t model
are also depicted in Figure 8, for both the crisis and the
recent period. From a theoretical point of view, the ES-
GARCH-t approach is superior in accounting for the fat
tails of the S&P 500 log return losses compared to the

29See McNeil et al. (2015) pages 66 and 71 for a detailed description of the

calculation of VaRt,α (εt) and ESt,α (εt) given that εt
i.i.d∼ tν .

ES-GARCH-norm model. More generally speaking, An-
gelidis, Benos, and Degiannakis (2004) for example con-
cludes, that GARCH models with heavy tailed innovation
distributions should be preferred as they better capture
the leptokurtic behaviour of financial data.

(IV) ES-EGARCH-t
The fourth considered ES estimation model is labelled
as ES-EGARCH-t. Compared to the previous two mod-
els, the ES-EGARCH-t uses an extension of the clas-
sical GARCH framework in order to model conditional
volatility. Moreover an exponential GARCH (EGARCH)
is applied, which was originally introduced by Nelson
(1991). For the selected EGARCH(1,1) model specifi-
cation, log return losses are again specified as in formula
(6.4), whereas innovations are assumed to follow an i.i.d.
standard t-distribution with ν degrees of freedom, i.e.
εt

i.i.d∼ tν . In comparison to the previous two models, the
conditional volatility process is defined through,

ht = ω +α
lt−1√
σ2

t−1

+ (6.10)

γ

∣∣∣∣∣∣ lt−1√
σ2

t−1

∣∣∣∣∣∣−E
∣∣∣∣∣∣ lt−1√

σ2
t−1

∣∣∣∣∣∣
+βht−1,

where ht = ln(σ2
t ). Similar as for the previous models,

all relevant parameters of the EGARCH specification are
fitted for every t within the backtesting horizon on the
rolling window of the preceding 250 log return losses. In
this case the parameter vector (ν ,ω,α,γ,β ) is fitted in
every ML estimation. Afterwards, one step ahead volatil-
ity forecasts σ̂t based on equation (6.10) and the obtained
parameter values are calculated. Moreover, the respec-
tive VaR and ES forecasts for the ES-EGARCH-t model
are obtained analogous to equations (6.8) and (6.9), as
innovations are assumed to follow an i.i.d standard t-
distribution with ν degrees of freedom.
From a theoretical perspective, the EGARCH model is
able to capture the so called leverage effect, which is
often observed in financial time series and which is the
main cause for right-skewed log returns loss series. In
practice, volatility often increases more following a high
return loss compared to a gain of the same magnitude.
In the GARCH methodology the past log return losses
have a symmetric impact on conditional volatility, which
can be recognized from equation (6.5). The EGARCH
methodology on the contrary, allows to model an asym-
metric impact depending on the sign of observed log
return losses. Amongst researchers, the EGARCH(1,1)
specifications is widely used in various applications to
capture the behaviour of conditional volatility.
The ES estimates of the ES-EGARCH-t model, for both
the crisis and the recent period, are also depicted in Fig-
ure 8.
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Figure 8: ES estimations based on GARCH-type specifications of conditional volatility. Left subplot depicts the crisis period
between 01.01.2007 and 01.01.2009, whereas the right subplot depicts the recent period between 01.10.2017 and 01.10.2019.

Overall, all three GARCH-type ES forecasts show simi-
lar patterns over time. Indeed, both approaches based on
t-distributed innovations show slightly more conservative
risk forecasts compared to the ES-GARCH-norm model,
which might be due to a superior ability to capture the fat
tails of log return losses. This becomes perceptible as risk
estimates of the ES-GARCH-norm model are in general
on a lower level compared to the other two approaches.
Furthermore, there are barely any differences in the fore-
casts of both the ES-GARCH-t and the ES-EGARCH-t
model, which might be caused by the rather low skew-
ness of the underlying S&P 500 data. Indeed, during the
peak of the crisis period, the ES-GARCH-t model might
even yield a slightly superior coverage of the underlying
risk.

(V) ES-FHS-RiskMetrics
The fifth ES estimation model is labelled as ES-FHS-
RiskMetrics. Compared to the previous four models, it
yields a non-parametric approach and is thus especially
popular amongst practitioners. It makes use of a Filtered
Historical Simulation (FHS) based on volatility forecasts
given by the RiskMetrics approach outlined in JP Mor-
gan (1996). Moreover, in the RiskMetrics methodol-
ogy volatility is estimated by the use of an exponentially
weighted moving average (EWMA) scheme. For every
observation t within the backtesting horizon, the respec-
tive volatility is given by,

σ
2
t = λσ

2
t−1 +(1−λ )l2

t−1, (6.11)

where λ is the decay factor, which calibrates the weights
in the EWMA scheme. In line with the recommendation
given by JP Morgan (1996), I set the decay factor to a
value of λ = 0.94. For every observation t within the
backtesting horizon, again the previous 250 return loss

observations are used for estimation purposes. In detail,
one can calculated the volatility of all 250 preceding ob-
servations, i.e. (σt−250, . . . ,σt−1), as well as a forecast for
the volatility at time t, i.e. σ̂t , based on equation (6.11).
For every time t within the backtesting horizon, the sam-
ple SFHS,t functions as a basis for the FHS and is defined
as,

SFHS,t :=
{

ls σ̂t
σs
, for s = t−250, . . . , t−1

}
:= {lscaled

s , for s = t−250, . . . , t−1}. (6.12)

Thus, SFHS,t contains all log return losses over the pre-
ceding estimation period, which are scaled according
to changes in the conditional volatility over time. If
volatility was lower at time s < t compared to the value
forecasted for time t, the respective log return loss is
up-scaled in order to capture the increased riskiness in-
herited in the financial market. The same also holds
true vice-versa if volatility decreases over time. In order
to calculate both VaR and ES forecasts in the ES-FHS-
RiskMetrics approach, empirical quantiles of SFHS,t are
exploited in the following way,

V̂aRt,α = q̃α(SFHS,t), (6.13)

ÊSt,α =
1

∑
250
s=11{lscaled

t−s >q̃α (SFHS,t )}
(6.14)

250

∑
t=1

lscaled
t−s 1{lscaled

t−s >q̃α (SFHS,t )},

where q̃α(SFHS,t) denotes the empirical α-quantile of
SFHS,t .30 The resulting ES estimates of the ES-FHS-
RiskMetrics approach for both considered periods of

30More details on the methodology of a FHS can for example be found in
Hull (2015), chapter 13, or in McNeil et al. (2015), chapter 9.2.
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S&P 500 log return losses are depicted in Figure 9 below.
Compared to the previously stated GARCH methodolo-
gies, the ES-FHS-RiskMetrics approach yields slightly
less volatile risk estimates. Nevertheless, the magnitude
of obtained ES forecasts still appears to be sufficient at a
first glance, to cover the underlying risk in both consid-
ered periods.

As outlined within this subsection, all five introduced forecast-
ing models differ with respect to their complexity and method-
ology and thus also yield a different quality of obtained ES es-
timates for the underlying series of S&P 500 market data. Nev-
ertheless, apart from the rather naive ES-norm model, all other
estimation approaches might potentially also be implemented
within financial institutions in a similar manner. Therefore, the
judgement on the obtained ES forecasts displays a realistic ex-
ample of use for the ES backtests in scope.

6.3. Backtesting results
This subsection is going to evaluate all estimated ES figures
for both considered time periods of S&P 500 log return losses
based on all outlined ES backtests. Furthermore, in line with
the main objective of this thesis, a one-sided test design will be
applied in order to detect estimation models which underesti-
mate the true risk inherited in the S&P 500 index.
For the purpose of this subsection, only the de-facto one-sided
version of the multinomial testing framework will be applied
given the selected one-sided backtesting design. This can be
justified, as both multinomial versions displayed almost identi-
cal size and power figures in the previous chapter, while the
one-sided version additionally rules out the rejection of any
conservative ES estimation model. Furthermore, the approxi-
mate Z-test proposed within this thesis will be applied instead
of the original approach outlined by Costanzino and Curran
(2015), as the approximative version exhibited slightly supe-
rior power and size values in the preceding simulation chapter.
In addition, the approximative version can also be applied to
any of the outlined ES estimation models given that it does not
require explicit parametric estimates of the distribution of re-
turn losses, as the original version does. All other backtesting
approaches, i.e. the Test 2 from Acerbi and Szekely (2014),
the intercept ESR backtest motivated by Bayer and Dimitriadis
(2019) and the combined ES residuals backtest based on Mc-
Neil and Frey (2000), are implemented as described in chapter
4 of this thesis.
For both backtesting periods of the S&P 500 index, all five
estimated ES models are backtested at significance levels of
κ = 0.05 and κ = 0.0001. Both significance levels determine
the traffic light system prescribed by the Basel Committee for
the VaR traffic light test, as outlined in section 3.2. In the same
fashion, I also want to group each of the five ES estimation
models into the same colour scheme with respect to a certain
ES backtest. Thus, if an estimation model is rejected at both
considered significance levels it is assigned a red traffic light.
An ES estimation model is labelled in yellow if it is rejected at
κ = 0.05, but passes the respective ES backtest at a significance
level of κ = 0.0001. An ES estimation model which passes the

respective ES backtest at both considered significance levels is
labelled in green.
In the following, subsection 6.3.1 presents the backtesting re-
sults over the crisis period, while subsection 6.3.2 thereafter
summarizes the respective results over the recent period.

6.3.1. Crisis period
As outlined before, the crisis period contains the peak of the
financial crisis in 2008, and thus exhibits an environment of
financial distress which imposes a major challenge to any ES
estimation model. An overview, of the performance of all five
ES estimation models is depicted in Figure 10, which shows
scatter plots of S&P 500 log return losses together with both
estimated ES and VaR figures for each of the considered ES
estimation models. Moreover, a log return loss lt is marked in
orange if it exceeds the respective V̂aRt,0.975 threshold and it
is marked in red if it additionally also violates the respective
ÊSt,0.975 estimate.
For all five estimation models, the majority of violations of both
the VaR and the ES can be observed between June 2008 and
January 2009. Indeed, the S&P 500 suffered the largest losses
in the crisis period within this timespan, driven by the default of
the Lehman Brothers at the 15.09.2008. The date when Lehman
Brothers declared bankruptcy is market with dotted black lines
in Figure 10. At a first glance, the ES-norm estimation model
shows the worst results in this timespan with respect to both
the number and the magnitude of observed outliers. This is
not surprising, as both VaR and ES forecasts in the ES-norm
model only slowly react to changes in the market environment.
Around this peak of the financial crisis, all three GARCH-typ
models exhibit similar patterns, whereas the ES-EGARCH-t
model apparently displays slightly more severe violations com-
pared to the other two approaches. From a first impression, the
non-parametric ES-FHS-RiskMetrics approach yields the low-
est degree of risk underestimation during the crisis period, with
few violations, which additionally also appear to be of rather
small magnitude.
In order to achieve a better understanding of the quality of the
obtained risk estimates, I want to analyse some further statistics
before turning to the actual ES backtesting results. As outlined
within chapter 3, two aspects of ES estimates need to be taken
into account in order to verify the correct unconditional cov-
erage of an ES estimation model. First of all, the number of
violations beyond V̂aRt,0.975 over the backtesting horizon and
secondly their magnitude with respect to the estimated ÊSt,0.975.
As outlined in Proposition 3.5, the first aspect is equivalent to
the condition E[It(α)] = 1−α for every observation t within
the backtesting horizon. Therefore, over the crisis period the
expected number of VaR violation of an accurate estimation
model is given by,

E[# of VaR violations] =
500

∑
t=1
E[It(α)]

= 500 ·0.025 = 12.5. (6.15)

With respect to the second aspect listed above, the magnitude of
outliers beyond the respective VaR threshold needs to be taken
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Figure 9: ES estimations - Filtered Historical Simulation with volatility updating based on RiskMetrics. Left subplot depicts the
crisis period between 01.01.2007 and 01.01.2009, whereas the right subplot depicts the recent period between 01.10.2017 and
01.10.2019.

Crisis period - Violations of V̂aRt,0.975 and ÊSt,0.975

ES estimation model # of VaR
violations

# of ES
violations

Average exceedance
of ES in %

ES-norm 28 21 +24.44
ES-GARCH-norm 47 30 +18.19
ES-GARCH-t 32 6 +8.57
ES-EGARCH-t 34 14 +13.52
ES-FHS-RiskMetrics 10 6 +7.14

Table 13: Observed number of violations beyond V̂aRt,0.975 and beyond ÊSt,0.975, for all considered estimation models within the
crisis period of the S&P 500. Furthermore, the average exceedance of VaR violations beyond the ES in percent is depicted.

into account. For an accurate ES estimation model, the aver-
age value of all VaR violations should be fairly close to the
estimated ES figure. If on average VaR violations exceed the
respective ES forecast, this hints towards a potential risk under-
estimation. For a first assessment of this second aspect, I define
the average exceedance of the ES as,

1

∑
500
t=1 It(α)

500

∑
t=1

lt − ÊSt,α

ÊSt,α
It(α) (6.16)

In the following, both the observed number of VaR and ES vio-
lations as well as the average exceedance of the ES are listed in
Table 13, for all ES estimation models within the crisis period.
As depicted in Table 13, only the ES-FHS-RiskMetrics model
exhibits less VaR violations than expected over the crisis pe-
riod. All other applied estimation approaches fail to correctly
model the conditional 0.975-quantile of log return losses dur-
ing the period of high financial distress. Indeed, all four other
estimation models display more than twice as many VaR out-
liers as expected. As previously noted, the magnitude of viola-
tions is the largest for the ES-norm model where 21 out of 28
VaR violations also lie beyond the estimated ES forecast, which
leads to an average exceedance of the ES of 24.44 %. With re-

spect to the magnitude of outliers, also all other ES estimation
models underestimate the underlying risk during the crisis pe-
riod. The least degree of risk underestimation in the distribu-
tion tail beyond the conditional 0.975-quantile can be observed
for both the ES-FHS-RiskMetrics and the ES-GARCH-t model,
with average exceedance values of the ES below 10 %. Based
on this first assessment, I expect that the ES-FHS-RiskMetrics
model achieves the best backtesting results in the crisis period.
All other ES estimation approaches display weak results, espe-
cially in forecasting the conditional 0.975-quantile of log return
losses given by V̂aRt,0.975.
The actual backtesting results for all considered ES backtests
over the crisis period of S&P 500 log return losses are listed
in Table 14. Overall, the achieved backtesting results are in
line with expectations given the preceding argumentation. Fur-
thermore, there are no major differences regarding the traffic
light classification of ES estimation models between the applied
backtests. The ES-FHS-RiskMetrics approach passes all con-
ducted backtests at both considered significance levels and is
thus universally labelled in green over the crisis period. Never-
theless, achieved p-values for the ES-FHS-RiskMetrics model
show a high variation between roughly 9% and 80%. Although
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Figure 10: Scatter plots with observed log return losses from crisis period of the S&P 500. Violations beyond V̂aRt,0.975 are marked
in orange and violations beyond ÊSt,0.975 in red for all five considered ES estimation models.
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Recent period - Violations beyond V̂aRt,0.975 and ÊSt,0.975

ES estimation model
# of violations
of V̂aRt,0.975

# of violations
of ÊSt,0.975

Average exceedance
of ES in %

ES-norm 28 19 +39.57
ES-GARCH-norm 19 11 +24.21
ES-GARCH-t 15 1 -4.98
ES-EGARCH-t 19 6 +11.26
ES-FHS-RiskMetrics 16 6 +7.20

Table 15: Observed number of violations beyond V̂aRt,0.975 and beyond ÊSt,0.975 as well as average exceedance of VaR violations
beyond the ES in percent, for all considered estimation models within the recent period.

this has no impact on the assigned traffic light, test decisions
might diverge if further backtesting significance levels are taken
into account.
On the contrary, all other implemented ES estimation models
are rejected at all applied backtests at a significance level of
κ = 0.05, and at almost all applied backtest at the more ex-
treme significance level of κ = 0.0001. Indeed, only the inter-
cept ESR backtest does not reject the ES-GARCH-t estimation
model at the more extreme significance level. Therefore, the
ES-GARCH-t estimation model achieves four red and one yel-
low traffic light, while the three remaining ES estimation mod-
els are assigned a red label throughout all backtests in the crisis
period. This minor difference in assigned traffic lights might be
justified with the results listed in Table 13, as the ES-GARCH-t
estimation model apparently displays a lower degree of risk un-
derestimation compared to the ES-norm, the ES-GARCH-norm
and the ES-EGARCH-t approache. From a theoretical perspec-
tive, it is also reasonable that the ES-GARCH-t approach out-
performs both estimation models based on normality assump-
tions, due to its superior ability to capture the highly leptokurtic
patter of S&P 500 log return losses in the crisis period.
It should be noted that for the rather extreme value of κ =
0.0001 results of all applied bootstrap test decisions might po-
tentially change depending on the respective simulation output.
For the more extreme significance threshold, the Test 231, the
combined ES residuals backtest as well as the intercept ESR
backtest are based on a simulation procedure. Given the ex-
treme significance threshold, the output of single simulations
trials might decide over the achieved test decision unless a very
large amount of simulation trials M is considered. As results
depicted in Table 14 are overall plausible, I stick with values
of M = 1000 for both the Test 2 and the combined ES residu-
als backtest as well as M = 100 for the intercept ESR backtest
following the argumentation given chapter 4. Furthermore, the
selected number of simulation trials assures that computational
times stay within an acceptable range for practical applications.
Nevertheless, one should be aware of this issue, whenever a
bootstrap decision is applied at rather extreme significance lev-
els.

31As outlined within chapter 4.2 the Test 2 from Acerbi and Szekely (2014) is
conducted with fixed critical values for a significance level of κ = 0.05, whereas
a bootstrap decision is applied for a value of κ = 0.0001.

6.3.2. Recent period
This subsection presents the backtesting results over the most
recent period of S&P 500 log return losses available at the start
of the processing period for this thesis. As previously outlined
the recent period depicts a rather calm market environment
compared to the previously analysed crisis period. Thus, also
the implemented ES estimation models are expected to show
superior results over this second backtesting period.
A first impression of the accuracy of ES estimates can be gath-
ered from Figure 11, which depicts the scatter plots of S&P
500 log return losses together with the respective VaR and ES
estimates. Again all observed violations are marked in the
same fashion as in Figure 10. Similar as in the crisis period,
the ES-norm model is not able to capture the rather moder-
ate peaks in log-return losses, due to its limited reactivity to
changing market conditions. Again the patterns for all applied
GARCH models look similar at a first glance. Nevertheless, ap-
parently the ES-GARCH-t model yields the lowest amount of
outliers amongst these three models. The non-parametric ES-
FHS-RiskMetrics model again produces slightly less volatile
ES estimates compared. Still, both the number and the magni-
tude of violations appears to be comparable to the implemented
GARCH methodologies.
In order to get an even better idea of the performance of all
implemented estimation models, Table 15 again lists some ad-
ditional statistics regarding the number and the magnitude of
observed violations. In the recent period, all estimation mod-
els exceed the expected number of VaR violations of 12.5 de-
rived in formula (6.15). Nevertheless, four out of five estima-
tion models range within a value of 15 to 19 observed VaR vi-
olations, which is still reasonably low. The ES-norm model on
the contrary again realizes more than twice as many outliers
as expected. Regarding the magnitude of VaR violations, both
the ES-norm and the ES-GARCH-norm model stand out with
an average exceedance of the ES of +39.57 % and +24.21 %.
Both values indicate towards a rather high degree of risk un-
derestimation. On the other hand, the ES-EGARCH-t and the
ES-FHS-RiskMetrics approach only show a moderate degree
of risk underestimation in the distribution tail with an average
exceedance of the ES of +11.26 % and +7.20% respectively,
whereas the ES-GARCH-t model is even slightly on the con-
servative side with a value of -4.98%.
Based on this first assessment, it is to be expected that the ES-
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Figure 11: Scatter plots with observed log return losses from recent time period of the S&P 500. Violations beyond V̂aRt,0.975 are
marked in orange and violations beyond ÊSt,0.975 in red for all five considered ES estimation models.
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GARCH-t model performs best in the conducted backtests over
the recent period followed by both the ES-FHS-RiskMetrics
and the ES-EGARCH-t model. It is interesting to observe, that
the ES-GARCH-t model apparently yields slightly superior ES
estimates compared to the more sophisticated ES-EGARCH-t
approach. This might be explained as in the recent period of
S&P 500 data, only a weak form of the leverage effect can be
observed, as log return losses are only slightly right-skewed.
Thus, the increased estimation uncertainty in the ES-EGARCH-
t model, due to a higher number of estimation parameters, might
outweigh the theoretical advantage to capture a potential lever-
age effect. The two remaining estimation approaches, i.e. the
ES-norm and the ES-GARCH-norm model, again fail to con-
sistently forecast the underlying risk in the S&P 500 index.
Whereas the former one is not able to react to changing mar-
ket conditions, the later one mainly fails due to its inability to
account for the fat tails of the S&P 500 market data.
The results of the five implemented models with respect to the
ES backtests in scope over the recent period of S&P 500 log re-
turn losses are listed in Table 16 below. Overall, the backtesting
results over the recent period are again in line with expectations.
Both the ES-norm as well as the ES-GARCH-norm model are
rejected in the majority of all applied ES backtests. Whereas
the former receives five red traffic lights, the latter ends up with
three red and two yellow classifications. This is in line with
expectations, as the ES-GARCH-norm model performs slightly
better compared to the ES-norm approach, based on the results
depicted in Table 15.
On the contrary, all three remaining estimation models are la-
belled in green for most of the considered backtesting method-
ologies. In line with previous argumentation, the ES-GARCH-
t approach yields the best backtesting results over the recent
period and achieves the optimum of five green traffic lights.
Moreover, all p-values related to the ES-GARCH-t model are
very high with values above 64 %. Furthermore, the decent
backtesting results of both the ES-EGARCH-t and the ES-FHS-
RiskMetrics are also reasonable, given the rather moderate de-
gree of risk underestimation depicted in Table 15. The only
slightly surprising result is that the intercept ESR backtests re-
jects the ES-EGARCH-t approach over the recent period not
just at a significance level of κ = 0.05 but also at the more ex-
treme threshold of κ = 0.0001. Nevertheless, the majority of
all test decisions in the recent period coincides with the consid-
erations based on the number and magnitude of violations.
Concluding this chapter, the outlined backtesting set-up dis-
plays a realistic example for a real-world application. The
applied backtesting period of T = 500 observations is a rea-
sonable choice, with respect to the length of the required in-
put time series. Furthermore, ES backtest versions are applied
which yield a one-sided test decision compliant with regula-
tory needs and which are applicable for all common ES estima-
tion models. Overall, all five implemented ES backtests reveal
reasonable results over both considered time periods of S&P
500 data. Moreover, the achieved backtesting results are in line
with expectations taking into account previous considerations
regarding the underlying market conditions. Besides the naive
ES-norm estimation model, all other backtested forecasts stem

from realistic estimation models, which are indeed relevant for
practical applications. Furthermore, all applied backtests are
able to differentiate between varying degrees of modelling ac-
curacy induced by the different estimation models fitted to the
S&P 500 data. Overall, it is also straightforward to implement
a traffic light system, stipulated by the Basel Committee, for
all evaluated ES backtests. Furthermore, in the majority of all
cases the traffic light assigned to a certain estimation model
coincides across all conducted backtests. Although it should
be noted, that p-values might substantially differ depending on
the applied backtest, which might be relevant if a more pre-
cise classification of estimation models needs to be conducted
compared to the traffic light approach. Furthermore, any boot-
strap decisions, especially at extreme significance levels like
κ = 0.0001, up to a certain extend depends on a random factor
based on the nature of the simulation procedure. Thus, at rather
extreme significance levels bootstrap decisions are subject to
potential changes depending on the simulation output. Apart
from the last two mentioned aspects, there are indeed no major
issues which might hinder the implementation of the outlined
ES backtesting versions in real world scenarios.

7. Conclusion

This thesis revealed that backtesting the ES is indeed not much
more complicated than backtesting the VaR, despite all doubts
and reservations expressed within the literature. Definitely,
backtesting the ES somehow requires a higher degree of cre-
ativity and there will probably never be any conceptual fully
untainted backtest for the ES compared to available approaches
to backtest the VaR. Nevertheless, there are several promis-
ing backtesting approaches, which have been proposed within
the last two decades. Overall, five of them are presented in
the course of this thesis, which originally stem from Kratz et
al. (2018), Acerbi and Szekely (2014), Bayer and Dimitriadis
(2019), Costanzino and Curran (2015) and McNeil and Frey
(2000). The main objective of this thesis was to outline and
analyse one-sided, unconditional ES backtests, which take into
account the practical aspects listed in Proposition 3.3. There-
fore, some adjusted versions of the original backtesting ap-
proaches are proposed within chapter 4 of this thesis, which
facilitate the application of the related methodologies in real-
world scenarios. The conducted analysis is up to the best of my
knowledge one of the most comprehensive evaluations of mul-
tiple ES backtests under one single framework.
In the empirical size and power simulations in chapter 5 of this
thesis, the Z-test from Costanzino and Curran (2015) as well as
the Test 2 from Acerbi and Szekely (2014) disclosed some po-
tential miss-alignments in their underlying framework. Further-
more, the intercept ESR backtest motivated by Bayer and Dim-
itriadis (2019) might be the most challenging approach for any
practical implementation due to a rather high degree of com-
plexity and computational effort. Nevertheless, all ES backtests
in scope proofed to be suitable in realistic backtesting scenarios,
as outlined in chapter 6 of this thesis. With respect to the traf-
fic light system required by the Basel Committee, all conducted
ES backtests displayed reasonable results. Overall, especially
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the de-facto one sided multinomial backtest based on Kratz et
al. (2018) and the combined ES residual backtest motivated by
McNeil and Frey (2000) need to be highlighted, due to their
high practical relevance and the excellent results they exhibit
throughout the course of this thesis.
Nevertheless, this thesis also revealed some open issues which
are still subject to further research. As an example, substantial
differences in the achieved p-values can be observed across the
applied backtesting methodologies in certain scenarios within
the preceding chapter. Whereas, this has no major impact on
the assigned traffic lights, it might become more relevant if esti-
mation models ought to be categorized on a finer grid. Further-
more, the choice of the respective backtest might also become
relevant when rather extreme backtesting significance levels
like κ = 0.0001 are evaluated, as bootstrap decisions might
be subject to potential changes in the test outcome, due to the
stochastic nature of the applied simulation decision. Thus, al-
though all considered ES backtests exhibit overall reasonable
results, it is still not clear which approach is the most appropri-
ate one, as minor differences in the test outcomes might occur
depending on the underlying setting. In line with other con-
tributions, the power analysis within this thesis revealed that a
backtesting horizon of T = 250 observations, which is currently
stipulated by the Basel Committee, is not sufficient in order to
consistently detect certain levels of risk underestimation in ES
forecasting models. Within the preceding chapter, a backtest-
ing horizon of T = 500 observations was applied, which ap-
pears to yield a good trade-off between backtesting power and
data intensity. Nevertheless, some further considerations might
be taken into account to determine an optimal backtesting time
frame for the application of ES backtests. As one further as-
pect, there are still few contributions, like Du and Escanciano
(2017), which focus on the development of a conditional ES
backtest. Although this might not be of particular interest for
practical applications, this is still a relevant aspect from a theo-
retical point of view.
Concluding this thesis, there is definitely further research that
needs to be done in order to agree on an industry standard to
backtest the ES. Nevertheless, I believe that difficulties in back-
testing the ES should not any more be seen as a legit argument
to favour the VaR as a primary risk measure for market risk,
based on the results outlined within this thesis.
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