
Junior Management Science 6(1) (2021) 149-189

Junior Management Science

journal homepage: www.jums.academy

Advisory Editorial Board:
DOMINIK VAN AAKEN
FREDERIK AHLEMANN

BASTIAN AMBERG
THOMAS BAHLINGER

CHRISTOPH BODE
ROLF BRÜHL

JOACHIM BÜSCHKEN
CATHERINE CLEOPHAS

RALF ELSAS
MATTHIAS FINK

DAVID FLORYSIAK
GUNTHER FRIEDL

FRANZ FUERST
WOLFGANG GÜTTEL

CHRISTIAN HOFMANN
KATJA HUTTER

LUTZ JOHANNING
STEPHAN KAISER

NADINE KAMMERLANDER
ALFRED KIESER

NATALIA KLIEWER
DODO ZU KNYPHAUSEN-AUFSEß

SABINE T. KÖSZEGI
ARJAN KOZICA

CHRISTIAN KOZIOL
TOBIAS KRETSCHMER

HANS-ULRICH KÜPPER
ANTON MEYER

MICHAEL MEYER
GORDON MÜLLER-SEITZ

J. PETER MURMANN
ANDREAS OSTERMAIER

BURKHARD PEDELL
MARCEL PROKOPCZUK

TANJA RABL
SASCHA RAITHEL

NICOLE RATZINGER-SAKEL
ASTRID REICHEL

KATJA ROST
THOMAS RUSSACK
MARKO SARSTEDT

ANDREAS G. SCHERER
STEFAN SCHMID

UTE SCHMIEL
CHRISTIAN SCHMITZ

PHILIPP SCHRECK
GEORG SCHREYÖGG

LARS SCHWEIZER
DAVID SEIDL

THORSTEN SELLHORN
ANDREAS SUCHANEK

ORESTIS TERZIDIS
ANJA TUSCHKE

STEPHAN WAGNER
BARBARA E. WEIßENBERGER

ISABELL M. WELPE
HANNES WINNER
THOMAS WRONA

THOMAS ZWICK

Volume 6, Issue 1, March 2021

JUNIOR
MANAGEMENT
SCIENCE
Olivia Hohlwegler, The Value of CSR in Times of Increased

Policy Uncertainty: Evidence from the Brexit
Referendum

Maximilian Kühn, Are Firms Paying for the Minimum
Wage? Evidence from Germany

Julia Vetter, The Glass Cliff – Women’s Thrive to Save
Poor Performance and how to Approach it in the
Workplace

Kimberly Klebolte, Employment Protection Legislation,
Youth Unemployment and the Role of the
Educational System

Michael Amroudi, The Impact of Management, Family
and Employee Ownership Concentration on Firm
Performance

Daniel Dyck, Der Einfluss der Besteuerung auf
Managementanreize und die Nutzung von
Bonusbanken

Philipp Schiele, Modern Approaches to Dynamic Portfolio
Optimization

Christina Winder, Analyse globaler Steuerstandards der
OECD zu digitalen Geschäftsmodellen

1

25

39

60

81

100

149

190

Published by Junior Management Science e.V.

Modern Approaches to Dynamic Portfolio Optimization

Philipp Schiele

Ludwig-Maximilians-Universität München

Abstract

Although appealing from a theoretical point of view, empirical assessments of dynamic portfolio optimizations in a
mean-variance framework often fail to reach the high expectations set forth by analytical evaluations. A major reason
for this shortfall is the imprecise estimation of asset moments and in particular, the expected return. This work levers
recent advancements in the field of machine learning and employs three types of artificial neural networks in an attempt
to improve the accuracy of the asset return estimation and the expected associated portfolio performances. After an
introduction of the dynamic portfolio optimization framework and the artificial neural networks, their suitability for
the considered application is analyzed in a two asset universe of a market and a risk-free asset. A comparison of the
corresponding risk-return characteristics and those achieved using a more traditional exponentially weighted moving
average estimator is subsequently drawn. While outperformance of the artificial neural networks is found for daily and
monthly estimated returns, significance can only be established in the latter case, especially in light of trading costs.
Multiple robustness checks are performed before an outlook for subsequent research opportunities is given.

Keywords: Portfolio optimization; machine learning; multilayer perceptron; convolutional neural network; long
short-term memory.

1. Introduction

Since the establishment of Modern Portfolio Theory
through the seminal work of Markowitz (1952) on port-
folio selection, this field has seen a persistent rise of at-
tention ever since. Indicated by both a vast body of liter-
ature as well as ever-growing interest from practitioners,
the continued importance of ideal portfolio composition
in the spirit of Markowitz is apparent, with the benefits
of diversification and trade-offs between risk and return
being cornerstones of modern investment practices.

A key implementational challenge to the originally
proposed optimization problem remains as to how re-
turns in financial markets can be forecast in order to
make informed allocation decisions and avoid portfolio
compositions that ex-post turn out to be suboptimal. His-
torically, the great difficulty of these forecasts has chal-
lenged both academia and practitioners alike. Generally,
financial markets are known for a low signal-to-noise ra-
tio, thereby making it hard to detect patterns within the
data, to begin with. However, perhaps an even bigger
challenge is posed by the constantly evolving and com-
petitive nature of financial markets, which quickly incor-

porate the information contained in relationships having
lead to an outperformance of some market participants,
thereby changing the data generation process itself. As
famously formulated in the random walk hypothesis (e.g.
Cootner, 1964), many would even argue that forecasting
financial returns is virtually impossible as prices are not
predictable based on previous observations. This argu-
ment is closely linked to the efficient market hypothesis
(e.g. Fama, 1970), a fundamental work of financial litera-
ture which in its strongest form states that markets imme-
diately reflect all public and private information. Others,
however, propose that markets are "efficiently inefficient"
(e.g. Gârleanu & Pedersen, 2018), implying that at least
minor information inefficiencies can persist, therefore
potentially making prediction efforts worthwhile. Since
Markowitz-style portfolio optimizations are highly sen-
sitive to estimated future returns (Best & Grauer, 1991;
Black & Litterman, 1992), uncovering even subtle and
intricate patterns in financial data could indeed result in
substantial differences in performance.

While the improvement of return forecasts is un-
doubtedly a major challenge, other fields have recently
seen strong progress on tasks previously deemed hard by

DOI: https://doi.org/10.5282/jums/v6i1pp149-189

www.jums.academy
https://doi.org/10.5282/jums/v6i1pp149-189

P. Schiele / Junior Management Science 6(1) (2021) 149-189150

leveraging machine learning techniques. These include
advances in medical applications like cancer detection
(Esteva et al., 2017) or natural language processing (Rad-
ford et al., 2019). In particular, artificial neural networks
seem to show continued improvements in model per-
formance with increasing data sets (Sun, Shrivastava,
Singh, & Gupta, 2017). While these models were already
introduced by McCulloch and Pitts (1943), their recent
resurgence is fueled by improved training algorithms
and a sharp increase in computational power available
to researchers (Livni, Shalev-Shwartz, & Shamir, 2014).
Although in financial markets, the sheer amount of data
generated on a daily basis is vast, the mentioned chal-
lenges unique to this field still have to be overcome in
order to improve forecasts. Incidentally, the identification
of complex patterns is one of the key strengths of artifi-
cial neural networks, which makes it natural to consider
incorporating these techniques in the portfolio alloca-
tion context. The research objective is thus to investigate
the usefulness of artificial neural networks in the con-
text of dynamic portfolio optimization. More specifically,
three types of artificial neural networks are being used to
estimate the expected asset returns, followed by a subse-
quent assessment of the realized portfolio performances
based on these estimates.

The remainder of the thesis is structured as follows:
Chapter 2 reviews the literature concerning both dynamic
portfolio optimization and artificial neural networks.
Chapter 3 presents the methods and implementations
used for the empirical analysis. In Chapter 4, the results
of this empirical analysis are presented and discussed.
Finally, Chapter 5 concludes the results of the thesis and
presents an outlook for further research.

2. Literature Review

Since this thesis considers the use of neural networks
in the context of dynamic portfolio optimization, both
elements are introduced in this chapter. First, a brief
overview of the considered portfolio optimization frame-
work is given. Then, the different types of neural net-
works used for the succeeding analysis are reviewed, be-
fore the chapter concludes by formulating the research
hypotheses.

2.1. Dynamic Portfolio Optimization
Modern Portfolio Theory is inevitably tied to Markowitz

(1952), who introduced a framework considering a trade-
off between the expected return of a portfolio and its
risk. Markowitz measures the risk of a portfolio by its
variance, and thus this approach is also referred to as the
mean-variance framework. In this setting, a portfolio is
considered efficient if it has the highest expected return
for a given variance, or equivalently, the lowest variance
for a given return. Formally, let w be the vector of asset
weights and let µ be the vector of their expected returns.

Further, let Σ be the covariance matrix of these assets1. To
find an efficient portfolio, one can minimize the portfolio
variance σ2

p for a given expected portfolio return µ̄:

min
w

σ2
p = wᵀΣw (1a)

s.t. µᵀw ≥ µ̄ (1b)
1ᵀw = 1 (1c)
(wi ≥ 0 ∀i ∈ {1, . . . , n}) (1d)

This optimization problem can be stated as a quadratic
program with linear constraints. The additional con-
straint 1c2 ensures that the portfolio weights sum up to
one. If the constraint 1d is added, short sales of assets
are prevented. However, efficient portfolios can also be
found by maximizing the expected portfolio return µp for
a given level of portfolio variance σ̄:

max
w

µp = µᵀw

s.t. wᵀΣw ≤ σ̄

1ᵀw = 1
(wi ≥ 0 ∀i ∈ {1, . . . , n})

(2)

Here, quadratically constrained linear programming can
be used to solve the optimization problem. The set of ef-
ficient asset allocations that can be reached for varying
σ̄ or µ̄ values is referred to as the efficient frontier. Mer-
ton (1972) first suggested an analytical solution to finding
these efficient portfolios in the case without the no short
sales constraint 1d. However, additionally constrained
settings often require an optimization for different risk
or return targets to obtain the efficient frontier. The op-
timal portfolio is defined as the allocation for which an
investors’ indifference curve is tangential to the efficient
frontier.

In this framework, only a single investment period is
considered, making it static. However, it is of both the-
oretical and practical interest to optimize portfolios not
only in a single period but dynamically in a multi-period
setting, taking into account new information about the as-
sets each period. Numerous contributions in this field
have been made, such as Smith (1967), where at each
point in time the portfolio is reevaluated based on the
change in expected returns and covariances of the as-
sets. The parameter estimation was performed by using a
least-squares estimator, placing a higher weight on more
recent data. The study considered a trade-off between the
possibly inefficient allocation given the new moment es-
timates and costs involved when trading towards a new
efficient allocation. The costs of trading thereby included

1Here and throughout the thesis, uppercase bold letters refer to ma-
trices, lowercase bold letters to vectors and lowercase light letters to
scalars.

21 represents the vector (1, . . . , 1)ᵀ.

P. Schiele / Junior Management Science 6(1) (2021) 149-189 151

direct costs such as brokerage fees and indirect costs in
the form of forgone profits on deferred tax obligations
when taxable gains are realized early.

Brown and Smith (2011) start from a dynamic portfo-
lio optimization model under the assumption of friction-
less markets and consider different heuristic strategies to
improve portfolio performances when this assumption
is relaxed. These heuristics include the consideration of
transaction costs in repeated static optimizations as well
as the iterative maximization of expected utilities at a fu-
ture date until which the chosen allocation needs to be
held (i.e., no readjustment of the portfolio is possible). In
numeric experiments, the performance of these heuris-
tic strategies for different utility functions and levels of
transaction costs is assessed, concluding that the strate-
gies perform well in many cases.

A more analytical approach is taken by D. Li and Ng
(2000), who derive an optimal investment policy for an
unconstrained multiperiod mean-variance investor in the
absence of trading costs. This provides a deepened un-
derstanding of portfolio optimality in a dynamic setting
and can possibly be extended to include market frictions
and portfolio constraints.

Other fundamental contributions to the general ap-
proach of optimizing dynamic investments include Mossin
(1968), Samuelson (1969), Dumas and Luciano (1991) and
Elton and Gruber (1974).

However, many of these theoretical contributions do
not consider the question of how to optimally estimate
moments of the asset return distribution, with the neces-
sity of this estimation becoming clear when looking at the
optimization problems themselves. Therefore, any empir-
ical work on Modern Portfolio Theory needs to estimate
the two main components of the optimization problems,
namely the expected asset returns and their covariance
matrix. Focusing on the estimation of the expected re-
turns, Michaud (1989) states that in many applications
the sample mean is used to estimate the expected asset
returns, which he assesses to be a suboptimal choice, thus
arguing for more advanced estimators. A crucial short-
coming of the sample mean in the estimation of time se-
ries moments is the equality of weights given to each ob-
servation, irrespective of their recency. Assuming more
recent observations are more similar to future ones, the
exponentially weighted moving average (EWMA) provides a
natural extension to the sample mean by assigning expo-
nentially decaying weights and thereby embedding the
assumption into the estimation process (Severini, 2017).
With this estimator, the expected return at time t can be
recursively calculated as

µ̂t = λµ̂t−1 + (1− λ)rt (3)

for t > 1, where rt refers to the return at time t, µ is the
expected return and λ is a smoothing factor in the inter-
val (0, 1). Given its simplicity and the described inherent

advantage over the sample mean, the EWMA estimator
forms the baseline to which the neural networks are com-
pared.

2.2. Neural Network Expected Return Estimators
Since the main research object is to evaluate the use-

fulness of artificial neural network expected return esti-
mators in a portfolio optimization context, this section
introduces the three different network architectures used
throughout the analysis. In an abstract sense, artificial
neural networks, henceforth just referred to as neural
networks, can be thought of as versatile mappings of
input and output values. This was formalized in the uni-
versal approximation theorem (Cybenko, 1989; Hornik,
1991) which states that finitely sized neural networks
can approximate many continuous functions arbitrarily
closely. In particular, these mappings can be nonlinear
in their parameters, which makes them useful for many
applications such as natural language processing (Gold-
berg, 2016), image processing (Egmont-Petersen, de Rid-
der, & Handels, 2002), and time series forecasting (Hill,
O’Connor, & Remus, 1996). The latter scope makes them
especially useful for the estimation of portfolio moments
and provides the foundation for the considered analysis.
Neural networks can be used in supervised and unsu-
pervised learning settings. In supervised learning, the
neural networks seek to minimize the prediction error
made based on a model trained on data which contains
the set of input values, so-called features, and the desired
output values. In the context of financial forecasting,
inputs could include historical returns, fundamental or
macroeconomic data, with the outputs often represented
by the future returns or just a binary representation of
their sign. In contrast, unsupervised learning is con-
cerned with tasks where no desired output is presented
to the models explicitly. The focus of this thesis lies on su-
pervised learning neural network applications, which can
further be divided into regression and classification tasks,
depending on whether class memberships or continuous
outputs are modeled (Alpaydin, 2010). A general intro-
duction to financial time series forecasting using neural
networks is given by Kaastra and Boyd (1996) and Azoff
(1994), with recent applications including the improve-
ment of time series momentum strategies (Lim, Zohren,
& Roberts, 2019), the forecast of ETF returns (Liew &
Mayster, 2017) and the development of a statistical arbi-
trage strategy using neural network predictions (Krauss,
Do, & Huck, 2017).

2.2.1. Multilayer Perceptrons
One widely used and sometimes referred to as the

"vanilla" neural network architecture (Hastie, Tibshirani,
& Friedman, 2009) is the multilayer perceptron (MLP). As
schematically represented in Figure 1, it consists of one
input layer, one or more hidden layers, and one output
layer. The total number of layers in the network is de-
noted L. More specifically, the illustrated network has

P. Schiele / Junior Management Science 6(1) (2021) 149-189152

three input nodes, two hidden layers consisting of three
nodes (or units) each and one output node. If two or more
hidden layers are present, the network is referred to as a
deep neural network (Bengio, 2009; LeCun, Bengio, & Hin-
ton, 2015).

Following standard notation, the vector of input pa-
rameters is denoted as x and consists of the features
(x1, . . . , xn)ᵀ and an additional bias term x0 which can
be seen as an intercept term, as it always takes on a value
of one. For reasons of simplicity, this bias term is not
depicted in the figures in this chapter. In the shown illus-
tration, the input vector would thus be

x =


x0
x1
x2
x3

 . (4)

The values a(2) = (a(2)1 , . . . , a(2)m)ᵀ are obtained by first
multiplying the input vector with the weight matrix
Θ(1) ∈ Rm×(n+1) which assigns a single weight to each
input value for every node in the first hidden layer. Θ

(1)
ij

thereby refers to the weight applied to the connection
between the ith node in the first hidden layer and the jth

node in the input layer. In general, when two adjacent
layers are considered, let n + 1 be the number of the pre-
ceding layers’ nodes (including the bias unit) and let m be
the number of nodes in the succeeding layer. Likewise,
j always refers to a node in the preceding layer and i to
a node in the succeeding layer. Again, in the illustrative
example this weight matrix would be

Θ(1) =

Θ10 Θ11 Θ12 Θ13
Θ20 Θ21 Θ22 Θ23
Θ30 Θ31 Θ32 Θ33

 . (5)

This yields z(2) = Θ(1)x, a vector of weighted inputs
to which an activation function g(z) is element-wise ap-
plied. For this purpose, McCulloch and Pitts (1943) pro-
posed a binary threshold function modelled after neuron
activations in the brain. This function is defined as

g0(z) =

{
0 for z ≤ 0
1 for z > 0

. (6)

Since then, many activation functions have been sug-
gested, such as the sigmoid function3 (sometimes also
referred to as the logistic or soft step function)

g1(z) = σ(z) =
1

1 + e−z , (7)

the hyperbolic tangent function

g2(z) = tanh(z) =
ez − e−z

ez + e−z , (8)

3Note that depending on the context, σ refers to the sigmoid activa-
tion function or the standard deviation.

or the rectified linear unit function (ReLU), introduced by
Hahnloser, Sarpeshkar, Mahowald, Douglas, and Seung
(2000) and again inspired by biological processes,

g3(z) =

{
0 for z ≤ 0
z for z > 0

= max(z, 0) . (9)

To add intuition on the functional principle of MLPs it
should be noted that if the sigmoid function is used, each
node in the hidden layer is a logistic regression on its in-
put values, with the weights representing the regression
coefficients. As in the MLP the activation of each node
depends on all nodes in the previous layer, the hidden
layers and the output layer are referred to as fully con-
nected layers. As shown by Hayou, Doucet, and Rousseau
(2018), the selection of an appropriate activation func-
tion needs to be performed under the consideration con-
vergence performance, computational efficiency and the
vanishing gradient problem, which is discussed below.
Independent of the of activation function, the applica-
tion of g(z) on each element of z(2) now yields a(2). For
each subsequent hidden layer k, again the previous nodes
a(k−1) and a bias term are multiplied by a weight matrix
Θ(k−1) and the activation function is applied on the re-
sulting vector z(k) as shown in Equation 10:

a(k) = g(Θ(k−1)a(k−1)) (10)

For the output layer, a(L), which again can consist of one
or more nodes, the last hidden layer is multiplied by a
final weight matrix Θ(L−1). Depending on the objective,
different activation functions need to be applied here. For
classification tasks, where output values in the interval
[0, 1] represent probabilities of a positive classification, of-
ten sigmoid or softmax functions are used, depending on
whether exactly two or more than two classes are to be
differentiated. For regression tasks where output values
can lie outside of the interval [0, 1], it is common to use
no activation function (or equivalently, the linear activa-
tion function g(z) = z). Computing the output layer for
a given input vector and weight matrices is referred to as
forward propagation or a forward pass. As indicated by the
arrows in Figure 1, the flow of information in an MLP is
always directed from the input layer to the output layer.
In particular, there are no cycles in this network architec-
ture, which is why an MLP can be described as a feedfor-
ward neural network.

Backpropagation
Before a useful regression or classification can be per-
formed on new input vectors using forward passes, the
appropriate weight matrices have to be derived from
training samples, which are sets of input vectors with
known or ground truth output values denoted y. The
optimization of these weights is often achieved by em-
ploying the backpropagation algorithm, whose outline

P. Schiele / Junior Management Science 6(1) (2021) 149-189 153

!"

!#

!$

%"(#)

%#(#)

%"($)

%#($)

Input Layer Hidden Layers Output Layer

%"(

%$(#) %$($)

Figure 1: Schematic representation of an MLP

and origin is presented by Schmidhuber (2015). The un-
derlying idea of backpropagation is to minimize the error
made by the network on training data, starting with ran-
domly initialized weights and iteratively adjusting them
in the direction which decreases the overall error the
most. A common analogy, among others used by F.-F. Li
(2019), is to descend from a hill (point of high error) by
only looking at the immediate surrounding and stepping
in the direction which has the steepest downward slope
(gradient) until the valley (a (local or global) minimum)
is reached. For a single training example and randomly
initialized weights, the activations of the output layer
can be computed by performing a forward pass. Next,
the error made using these weights in the output layer
is calculated and denoted J(Θ). Θ here refers to all indi-
vidual weights from all layers, obtained by first unrolling
all weight matrices Θ(1), . . . , Θ(L−1) into vectors and con-
catenating them. A typical error function for regressions
is the mean squared error function (MSE, Equation 11) with
the categorical cross-entropy function (CCE, Equation 12)
often being used for classification tasks.

JMSE(Θ) =
1
m

m

∑
ν=1

(a(L)
ν − yν)

2 (11)

JCCE(Θ) = −
m

∑
ν=1

yν log(a(L)
ν) (12)

The derivative of this error with respect to Θ is indica-
tive of the necessary adjustments that need to be made
in order to decrease the error. It is also referred to as the

gradient of J and can be written as

∇J =
∂J(Θ)

∂Θ
=


∂J(Θ)

∂Θ(1)
10
...

∂J(Θ)

∂Θ(L−1)
m(n+1)

 . (13)

For each of the weights in the final layer, Θ(L−1)
ij , one can

apply the chain rule as shown in Equation 14 in order to
decompose the derivative of the error with respect to this
weight into a change in z(l)i caused by the initial change in

Θ(L−1)
ij . This in turn changes a(L)

i through the activation
function, thereby directly influencing the error term J(Θ).

∂J(Θ)

∂Θ(L−1)
ij

=
∂J(Θ)

∂z(L)
i

∂z(L)
i

∂Θ(L−1)
ij

=
∂J(Θ)

∂a(L)
i

∂a(L)
i

∂z(L)
i

∂z(L)
i

∂Θ(L−1)
ij

(14)

Next, the derivatives of J(Θ) with respect to the
weights in the penultimate layer, Θ(L−2), are needed.
Again, using the chain rule, this derivative can be decom-
posed as follows:

∂J(Θ)

∂Θ(L−2)
ij

=
∂J(Θ)

∂z(L−1)
i

∂z(L−1)
i

∂Θ(L−2)
ij

=
∂J(Θ)

∂a(L−1)
i

∂a(L−1)
i

∂z(L−1)
i

∂z(L−1)
i

∂Θ(L−2)
ij

(15)

However, ∂J(Θ)

∂a(L−1)
i

is not known but needs to be de-

rived first. The node a(L−1)
i contributes to the total er-

ror through all its connections to the output layer. Since
the layers are fully connected, the error induced in all

P. Schiele / Junior Management Science 6(1) (2021) 149-189154

output nodes needs to be considered if a(L−1)
i changes.

A change in in a(L−1)
i introduces a change in z(L) which

again through the activation function changes a(L), lead-
ing to a change in J(Θ). Thus, it follows that:

∂J(Θ)

∂a(L−1)
j

=
m

∑
i=1

∂z(L)
i

∂a(L−1)
j

∂a(L)
i

∂z(L)
i

∂J(Θ)

∂a(L)
i

(16)

Note that the index of a(L−1) was changed from i to
j as now not the layers L − 2 and L − 1, but L − 1 and
L are considered. Also note that the derivative with re-
spect to a(L−1)

0 , the bias node, is omitted since its activa-
tion is fixed at a value of 1. With this, the derivative of the
error with respect to the weights of all layers can be ob-
tained. This is achieved by propagating the error from the
output layer back to the currently analyzed layer through
a recursive application of the single-layer error propaga-
tion introduced in Equation 16. This behavior is epony-
mous for the algorithm. There, the error can then be de-
composed similarly to Equation 15. A generalized form
of the derivative of the loss functions with respect to the
weights for all previous layers l = L− 3, ..., 1 is shown in
Equation 17 which makes use of recursively propagating
the error from the output layer to layer l by making use
of Equation 18.

∂J(Θ)

∂Θ(l)
ij

=
∂J(Θ)

∂z(l+1)
i

∂z(l+1)
i

∂Θ(l)
ij

=
∂J(Θ)

∂a(l+1)
i

∂a(l+1)
i

∂z(l+1)
i

∂z(l+1)
i

∂Θ(l)
ij

(17)

∂J(Θ)

∂a(l+1)
j

=
m

∑
i=1

∂z(l+2)
i

∂a(l+1)
j

∂a(l+2)
i

∂z(l+2)
i

∂J(Θ)

∂a(l+2)
i
(18)

At this point, the complete gradient vector ∇J is known
and thus the weight vector Θ can be adjusted to reduce
the error. This is done by an incremental change in the
negative direction of the gradient. The improved weight
vector, denoted Θ+, is thus given by:

Θ+ = Θ− α∇J (19)

An iterative application of forward propagations and
backpropagations is used to further improve weights
until ideally the gradient vector approaches 0 and a mini-
mum of the error function is reached. The constant α > 0
is referred to as the learning rate and has to be chosen
based on a trade-off between convergence speed and
convergence probability (Bengio, 2012). In order to sim-
plify the notation, the description of the backpropagation
algorithm above only focuses on one training example.
For a set of o training samples, {(x(1), y(1), ..., x(o), y(o)},
the overall gradient ∇Jtotal is defined as the arithmetic
mean of all individual sample gradients:

∇Jtotal =
1
o

o

∑
p=1
∇Jp (20)

Gradient Descent

Starting from a random initialization and repeatedly
updating the weights using the overall gradient ∇Jtotal
until convergence is reached is referred to as (batch) gra-
dient descent (GD). Algorithm 1 gives an overview of the
gradient descent algorithm, making use of both forward
propagation and backpropagation.

Data: Training samples {(x(1), y(1), ..., x(o), y(o)}
Randomly initialize Θ
while not converged do

Set ∇J = 0
for i = 1 to o do

Set ∇Ji = 0
Set a(1) = x(i)

Perform forward propagation to compute
a(l) for l = 2, 3, ..., L

for l = L-1 to 1 do
Obtain ∂J(Θ)

∂a(l+1) by backpropagation the
error

Compute ∂J(Θ)

∂Θ(l) and concatenate to ∇Ji

end
∇J = ∇J + 1

o∇Ji
end
Θ = Θ− α∇J

end
Algorithm 1: Gradient descent

An alternative implementation exists where the weights
are not updated based on the cumulative gradient of all
samples, but rather after each individual sample based
on the gradient as measured by this sample alone. This
method is called stochastic gradient descent (SGD). The
name refers to the stochastic approximation of the over-
all gradient descent algorithm through repeated adjust-
ments based on the single gradients. This approximation
is often supported by shuffling the data set first in order
to avoid clustering. There are several advantages and
disadvantages to both GD and SGD, such as the stable
gradient of GD and more memory efficient implemen-
tations of SGD (since only one sample needs to be held
in memory at any point in time, not the complete data
set). Thus, for practical applications oftentimes mini-batch
gradient descent is used, which aims to combine the ad-
vantages of GD and SGD without introducing too many
of the disadvantages. In mini-batch gradient descent, the
weights are updated after the gradient of a subset of n
training examples is computed, with 1 < n < o. Its main
advantages are a more stable gradient compared to SGD
while still, only the samples of the current batch need to
be held in memory. On the other hand, one drawback is
that the batch size is an additional variable which needs
to be chosen by the researcher. An extended overview of
the introduced gradient descent variations is given by Ng

P. Schiele / Junior Management Science 6(1) (2021) 149-189 155

(2019a).
After choosing a subtype of the gradient descent algo-

rithm, the weights of the MLP network can be optimized
using the training data and predictions can subsequently
be made using forward passes on new samples, thereby
completing the functional principle of the MLP.

2.2.2. Convolutional Neural Networks
Another class of neural networks is the convolutional

neural network (CNN). In their current form, CNNs were
pioneered by LeCun et al. (1989, 1990), with a comprehen-
sive introduction being provided by Lecun, Bottou, Ben-
gio, and Haffner (1998). Until today, following their orig-
inal domain of application, CNNs are most commonly
used in the analysis of image data (Ciresan, Meier, &
Schmidhuber, 2012; Lawrence, Giles, Ah Chung Tsoi, &
Back, 1997). However, their applications also extend be-
yond image data to tasks like natural language processing
(Collobert et al., 2011; Grefenstette, Blunsom, de Freitas,
& Hermann, 2014; Kalchbrenner, Grefenstette, & Blun-
som, 2014; Kim, 2014) and even time series forecasting
(Borovykh, Bohte, & Oosterlee, 2017). As shown in Figure
2, CNNs differ from MLPs through the inclusion of of-
tentimes multiple and alternating convolutional layers and
pooling layers and usually a single flatten layer, which is
further discussed below. In univariate time series appli-
cations, the input vector x represents the individual ob-
servations of the time series. Multivariate time series or
gray-scale image data, on the other hand, require the in-
put layer to be a two-dimensional matrix, with colored
images or video data requiring even higher dimensional
inputs.

Convolutional Layers
The convolutional layers of a CNN are at the core of its
functional principle. As shown in Figure 2, these lay-
ers take subsets of the input layer and apply a filter (also
called kernel) to them, resulting in a weighted sum of
these input values. This aggregation process is referred
to as a convolution and is intended to extract higher-level
features from the input while retaining spatial structures.
For the more general case with a two dimensional input,
let this input layer be a matrix X with dimensions [k× l].
Further, let the kernel be the weight matrix Θ(1) with di-
mensions [m × n]. Convolutions usually are performed
on a central element and its surroundings, thus m and n
are uneven in these cases. In the one-dimensional exam-
ple depicted in Figure 2, the dimensions of the input are
[8 × 1] with a kernel size of [3 × 1]. The kernel is thus
given by:

Θ(1) =

Θ11
Θ21
Θ31

 (21)

Define Xsub as a subset of X with the shape of the ker-

nel [m× n]. For this subset, the scalar output of a convo-
lution is given by

zki lj
=

m

∑
ν=1

n

∑
η=1

Θ(1)
νη Xsub,νη = 1ᵀ(Θ(1) � Xsub))1 (22)

with � denoting the Hadamard product. A convo-
lution, therefore, is the sum of the elements resulting
from an element-wise multiplication of Xsub and the ker-
nel Θ(1)4. The indices of the output zki lj

thereby refer
to the position of the central element of Xsub within X.
While theoretically conceivable, it is uncommon to apply
a nonlinear activation function to this output, thus set-
ting aki lj

= zki lj
. The full convolutional layer is obtained

by repeating the convolution process for each possible
subset Xsub in X. More specifically, starting in one corner
of X, after each convolution the filter is offset by s in the
horizontal direction, where s is referred to as the stride
parameter. This is repeated until no further horizontal
shifting is possible. Then, the kernel is reset to its orig-
inal horizontal position and shifted by s in the vertical
direction before starting another horizontal pass. This
is repeated until the end of the input matrix is reached.
This "serpentine" shifting pattern of the kernel can also be
visualized as a typewriter which moves from left to right
until the end of the line is reached and it starts again from
the left in the next line. It is important to note here that
in contrast to a fully connected layer the spatial structure
in the input layer is contained during the convolution
since one node in the output layer only contains informa-
tion from the surrounding nodes in the input layer. More
specifically, the same weights are used whenever the filter
is moved across the input, which is referred to as weights
sharing. In the one-dimensional case, a horizontal shift
is not possible, so only vertical shifts take place. Thus,
as shown in Figure 2, for a stride value of s = 1, after
the initial convolution, the filter can be shifted five times
vertically. The size of the convolutional layer is therefore
given as [6× 1]. In general, in a one-dimensional setting
the length of the convolutional layer is given by

ka =

⌊
k−m

s

⌋
+ 1 . (23)

However, for some applications, it is desirable to have
convolutional layers with the same shape as the input
layer. In these cases, the input matrix can be extended by
padding inputs with a value of zero (Goodfellow, Bengio,
& Courville, 2016). As again shown in Figure 2, different
kernels can be used in order to extract different higher-
level features from the input, thus resulting in another di-
mension for the output of the convolutional layer.

4In some applications the kernel is flipped both horizontally and ver-
tically to differentiate a convolution from a cross-correlation. While re-
sults would vary for a given, non-symmetric kernel, this has no effect in
a CNN since the filter weights are not given but learned by the model.

P. Schiele / Junior Management Science 6(1) (2021) 149-189156

!"($%")

!'($%") !"$

!(($%")

Input
Layer

Fully
Connected
Layers

Output
Layer

Conv.
Layers

Flatten
Layer

Pooling
Layers

Number of filters

)

Figure 2: Schematic representation of a CNN

Pooling Layers
After a convolutional layer, often a pooling layer is used
in order to reduce the dimensionality of the layers. Since
CNNs often have a large input matrix, this reduction in
dimensionality can lead to a significant improvement in
the training speed of the model and also reduces its num-
ber of trainable parameters. The underlying idea is to
aggregate neighboring nodes, ideally capturing most of
their information content while reducing the layer dimen-
sions. Similar to the convolutions, an aggregation func-
tion is applied to subsets of nodes of the previous layer
with size [m × n], where m and n can be different from
the filter size of previous layers. Popular aggregations
include the arithmetic mean (average pooling) or the max-
imum (max pooling) of these nodes (Goodfellow et al.,
2016). Again, this subset is moved along the previous
layer by stride increments of s, which is often chosen such
that the subsets do not overlap. In Figure 2 the aggrega-
tion subsets are chosen to have size [2 × 1] with s = 2.
This reduces the size of the layers by 50% from [6× 1] to
[3× 1].

Flatten Layer
In a CNN the number of filters used determines the num-
ber of resulting convolutional layers. Turning again to
Figure 2, it is apparent that the number of layers also per-
sists when pooling layers are applied. In order to use the
higher-level features extracted through convolutions and
pooling, a single matrix needs to be formed based on the
forwardmost convolutional or pooling layer. This is per-
formed by a flatten layer, which effectively concatenates
all matrices of the preceding layer.

Fully Connected Layers
The fully connected layers can finally take the extracted

higher-level features from the previous layers and model
their dependencies, just like a discrete MLP network
would if these features were provided externally. This be-
havior makes CNNs especially useful for extensive data
sets with many potential features, since learning these
features is part of the model training, thus requiring lit-
tle domain knowledge for manual feature engineering
(Kang, Ye, Li, & Doermann, 2014). Rather, the network
itself can first find higher-level features and then train an
MLP network on them.

Gradient Descent
Like MLP networks, CNNs are often trained from a ran-
dom initialization using the gradient descent algorithm.
Thus, after a forward pass, as described above, was per-
formed, the error made using these weights is computed.
For the fully connected layers, the derivative of the er-
ror with respect to their weights can again be obtained
through the application of Equation 17. Arriving at the
flatten layer, no derivative with respect to weights needs
to be computed since this layer is merely a reshaping of
the preceding nodes and it has no impact on the gradient.
Since pooling layers also do not have weights which are
learned by the model, again no derivative with respect to
their weights can be computed. They do, however, affect
the composition of the error through the way they aggre-
gate the nodes of the previous layer. Thus, when average
pooling is used, the error also has to be equally split to the
nodes of the previous layer. For a subset size of [m× n],
the error is thus multiplied by 1

mn when passing it to the
previous nodes. For max pooling layers, the full error
is propagated to the "winning" node of the forward pass
(i.e., the node with the maximum activation, the value of
which was used by the max pooling node) and an error of
0 is propagated to all other nodes, since their activations
eventually had no effect on the error. Next, the derivative

P. Schiele / Junior Management Science 6(1) (2021) 149-189 157

of the error with respect to the weights of a convolutional
layer is considered. Since a filter shares the same weights
when moved across the input layer, it is intuitive to see
that a single weight in a filter contributes to the total er-
ror through multiple paths. Thus, the total contribution of
a weight in a filter is given by the sum of the derivatives
of the backpropagated errors over all nodes of the convo-
lutional layers’ output nodes. Since convolutional layers
are not restricted to succeed the input layer, the output
of the convolutional layer is denoted a(l) and its inputs
a(l−1). Further, let [k(l−1) × l(l−1)] denote the dimensions
of a(l−1), with [k(l) × l(l)] denoting the dimensions of a(l).
Then, the total contribution of weight Θ(l−1)

ij is given by

∂J(Θ)

∂Θ(l−1)
ij

=
k(l)

∑
ν=1

l(l)

∑
η=1

∂J(Θ)

∂a(l)νη

∂a(l)νη

∂z(l)νη

∂z(l)νη

∂Θ(l−1)
ij

. (24)

In case there are other layers preceding the convolu-
tional layer, also the derivative of the error with respect
to the input layer a(l−1) needs to be obtained. Again,
each node in this layer can contribute to the overall er-
ror through multiple paths since moving a filter across
the input layer exposes the node to different weights in
the filter matrix. The total contribution of node a(l−1)

ij is
again the sum over all these paths through the different
weights of the filter, as shown in Equation 25.

∂J(Θ)

∂a(l−1)
ij

=
k(l)

∑
ν=1

l(l)

∑
η=1

∂z(l)νη

∂a(l−1)
ij

∂a(l)νη

∂z(l)νη

∂J(Θ)

∂a(l)νη

(25)

Since convolutional layers are not fully connected, the

sparsity of the connections results in
∂z(l)νη

∂a(l−1)
ij

= 0 for un-

connected nodes.
With that, the error can be propagated back through

pooling and convolutional layers, and thus the gradient
vector ∇J can be obtained. The gradient descent algo-
rithm can then be applied, as shown in Algorithm 1.

2.2.3. Recurrent Neural Networks
While MLPs and CNNs evaluate each sample of in-

puts and outputs independently from others, for specific
tasks, it would be beneficial to model a dependence struc-
ture between samples. In fact, sequential tasks like the
modeling of the next word based on parts of a sentence or
a time series prediction often require information about
multiple preceding samples. One approach would be to
feed multiple previous values to an MLP network. How-
ever, one could also conceptualize to only feed one sam-
ple at a time to a network which itself keeps information
about previous samples. This is where recurrent neural
networks (RNNs) emerge. As insinuated in Figure 3, at ev-
ery step t in the training process, the inputs of an RNN do

encompass not only the original input features xt at that
point, but also information about previous samples.

Elman Networks
Like for most neural network architectures, many imple-
mentations of RNNs exist. The specific network depicted
in Figure 3 and described in the following was suggested
by Elman (1990) and is thus referred to as the Elman net-
work. In this network, information is passed from t − 1
to t by providing the activations of the hidden layer as
further inputs to the network.

Mathematically, at each time step t, this is achieved by
first multiplying a weight matrix Θ1 by the input vector
xt. Next, the weight matrix Θ2 is multiplied by the previ-
ous samples’ hidden layer activations a(L−1)

t−1 . Both results
are then added element-wise to obtain the inputs for the
hidden layer, z(L−1)

t . Like in any neural network, in order
to obtain the hidden state, an activation function g(z) is
applied to each element of z(L−1)

t , as shown in Equation

26. While the dimensions of xt and a(L−1)
t−1 , i.e., the input

vector and previous activations, can differ, it is required
for Θ1 and Θ2 to match in their first dimension such that
the resulting vectors can be added element-wise.

Based on the hidden layer a(L−1)
t , the output layer a(L)

t
can again be computed similar to the MLP case, namely
by multiplying the weight matrix Θ3 by the hidden acti-
vations and applying an activation function.

a(L−1)
t = g(Θ1xt + Θ2a(L−1)

t−1) (26)

a(L)
t = g(Θ3a(L−1)

t) (27)

For the next time step t + 1, the hidden layer of t,
a(L−1)

t , is combined with a new input vector xt+1 and with
the same weights Θ1, Θ2 and Θ3 again the hidden and
output layer can be computed. This process is repeated
iteratively until the end of the sequence is reached.

In order to keep Figure 3 easily understandable, vec-
tors, matrices and single connections between them were
drawn. However, just like in the MLP case in Figure 1,
each line is fully connecting all nodes of one layer to all
nodes of the subsequent layer. Further, it should be noted
that the activation functions g(z) of the hidden and out-
put layer do not necessarily have to be identical. This is
especially relevant as the activation function of the output
layer often is determined by the application of the neural
network.

Considered at each point in time, simple RNNs usu-
ally consist of only one hidden layer. The deepness of this
network architecture rather comes from the possibility to
access information from previous observations. This is
achieved by first performing a forward pass as described
above, starting at the first time step. Since for the first
time step, no previous activations are present, a randomly
initialized vector or a vector of zeros can be used. This

P. Schiele / Junior Management Science 6(1) (2021) 149-189158

!"#$%#$

!"%

Input Layer Output LayerHidden Layer

!"%#$

&'

+

()

($

(*

Figure 3: Schematic representation of an RNN

forward pass can be conceptualized by chaining copies of
Figure 3, only adjusting the time index at each point. This
is also called unfolding the network (Goodfellow et al.,
2016). Then, the error at each time step can be computed,
resulting in a loss of J(Θ). Through propagating the error
back from the final to the first observation and applying
the chain rule as shown in Equation 17, ∂J(Θ)

Θ1
, ∂J(Θ)

Θ2
and

∂J(Θ)
Θ3

are obtained. The weight matrices are then adjusted
before another pass is started. Since this retains the time
dimension of the observations, this method of training is
referred to as backpropagation through time (BPTT), which
was proposed by Werbos (1988), Mozer (1989) as well as
Robinson and Fallside (1987).

Another popular simple RNN network was intro-
duced by Jordan (1997), with the major differentiating
factor being that not the previous hidden layer a(L−1)

t−1 ,

but the previous output layer a(L)
t−1 is provided as an ad-

ditional input at time t.

Long Short-Term Memory Networks

RNNs allow for information to persist in a network
between observations. However, if the relevant informa-
tion was not contained in a recent observation, but rather
many observations before, simple RNNs can have great
difficulty to represent these dependencies. Although
there is no theoretical limit to how far back the informa-
tion in these RNNs can persist, in empirical applications
it has been difficult to model long term dependencies
with them (Bengio, Simard, & Frasconi, 1994). The so-
called vanishing gradient problem, as analyzed by Hochre-
iter (1991) and Hochreiter, Bengio, Frasconi, and Schmid-
huber (2001), was found to play a major role in this restric-
tion. Vanishing gradients describe a phenomenon where
the gradient continuously decreases with the distance to
the output layer. One example of this phenomenon can be
considered where the chain rule is applied repeatedly by
the backpropagation algorithm, as described in Equation

18. The derivative of many common activation functions,
∂a
∂z = g′(z), is bound to the range (0, 1). The derivative
of the popular sigmoid function (7) is even bound to
the range (0, 1

4). Thus, when these activation functions
are used, and the error is propagated back many layers,
the multiplicative linkage of these derivatives tends to-
wards zero exponentially. One possible mitigation can
be to use activation functions which do not exhibit this
property, such as the ReLU function (9). However, while
here the derivative equals one for z > 0, a single node
with z ≤ 0 leads to multiplication with zero and thus
stops the gradient for earlier layers. Another approach
to counteract the vanishing gradient problem is to use
network architectures based on RNNs which are specif-
ically designed to pass information along for many time
steps, such as the Long Short-Term Memory (LSTM) net-
work. Building on previous work in the field of RNNs,
the LSTM architecture was introduced by Hochreiter and
Schmidhuber (1997). It was much more recent, however,
that using larger data sets on this model has produced
numerous state-of-the-art results in speech recognition
(Graves, Mohamed, & Hinton, 2013), handwriting recog-
nition (Graves et al., 2009), the supersedence of humans
in complex computer games (OpenAI, 2018) and also time
series forecasting (Laptev, Yosinski, Li, & Smyl, 2017).

Essential to the ability of these networks to retain in-
formation over extended periods is the so-called cell state
c, also called the memory of the model. This vector can
hold information for many time steps, or more specifi-
cally until it is actively forgotten. A full overview of the
network architecture at time t is again given in Figure 4.

Looking at the functional principles of the network,
there are four layers with individual weights in an LSTM
which control the flow of information, indicated by the el-
lipses in the figure. These layers, also referred to as gates,
are defined as follows:

The forget gate (Equation 28), as implied by the name,
is trained to forget information by selectively removing
it from the cell state, based on the current inputs xt and

P. Schiele / Junior Management Science 6(1) (2021) 149-189 159

!"#$%#$!"%

Input Layer Output
Layer

LSTM Cell

&"|(

)"|(

*+"|tanh

0"|(

⊙

⊙ +

tanh

+"#$ +"

⊙ !"%#$

23

Fully Connected
Layer

Figure 4: Schematic representation of an LSTM Network

a(L−1)
t−1 . This is achieved by applying the sigmoid function

to the weighted inputs, thus mapping them into the in-
terval (0, 1). Since the Hadamard product of the resulting
vector and the cell state is computed, values close to one
correspond to a retention of the information in the cell
state, whereas values close to zero discard most of the in-
formation.

ft = σ(xt ∗Θx, f + a(L−1)
t ∗Θa, f) (28)

c̄t = tanh(xt ∗Θx,c + a(L−1)
t ∗Θa,c) (29)

it = σ(xt ∗Θx,i + a(L−1)
t ∗Θa,i) (30)

ot = σ(xt ∗Θx,o + a(L−1)
t ∗Θa,o) (31)

Similarly, information can also be added to the cell
state dependent on the inputs through a combination of
the candidate gate (Equation 29) and the input gate (Equa-
tion 30). The candidate gate first produces possible val-
ues to update the cell state with. Since it has a hyper-
bolic tangent activation function, the results lie in the in-
terval (−1, 1) such that both positive and negative states
can be achieved. The input gate, on the other hand, has
a sigmoid activation function in order to control the ex-
tent to which each of the candidate nodes is added to
the cell state. The described updating process of the cell
state is expressed in Equation 32. With the cell state up-
dated, the output of the network can now be computed.
Therefore, first the output cell (Equation 31) combines the
weighted inputs xt and a(L−1)

t−1 and applies a sigmoid ac-
tivation function. These activations are now amended by
the information of the cell state. In order to make sure
the cell state is in the interval (−1, 1), the hyperbolic tan-
gent function is applied to it again. Finally, the Hadamard
product of the output gate and the squashed cell state
yield the hidden layer output of the LSTM cell, a(L−1)

t ,
as shown in Equation 33. The multiplicative link of the

cell state thus can either weaken or even invert the acti-
vation of the output gate. The effect of this step can be
conceptualized well with an example from natural lan-
guage modeling. A negating word at the beginning of a
sentence might be held in the cell state with a negative
value, which would then invert the prediction otherwise
made based on words occurring much later in the sen-
tence.

ct = ct−1 � ft + it � c̄t (32)

a(L−1)
t = ot � tanh(ct) (33)

To obtain the appropriate activation for the task at
hand, a final fully connected layer is added before reach-
ing the output layer, which yields a(L)

t . Although the
LSTM is is more complex than a simple RNN, it is also
trained using the BPTT algorithm by first unrolling the
network and propagating the error back from the last to
the first observation, finally updating the weight matrices
Θx,ν and Θa,ν ∀ ν ∈ { f , c, i, o}.

Again, numerous adaptions to the LSTM model were
suggested since its introduction. Gers and Schmidhuber
(2000) introduce so-called peepholes to the network, which
add the incoming cell state ct−1 as inputs to the gates.
Another alteration was suggested by Cho et al. (2014),
who combine the functionally related candidate and in-
put gates to a single gate referred to as the update gate.

2.3. Hypotheses formulation
Following the presented literature, the research ob-

jective is to compare the performance of portfolios op-
timized using expected return estimates stemming from
the introduced neural networks to those optimized us-
ing a more traditional EWMA estimator. It is well known

P. Schiele / Junior Management Science 6(1) (2021) 149-189160

that in the presented framework the estimation of the ex-
pected return is a key determinant of the resulting port-
folio performance as the optimal portfolio weights are
highly sensitive to these estimates (Best & Grauer, 1991;
Black & Litterman, 1992). If neural networks indeed are
superior in estimating the expected return, a substantial
increase in portfolio performance is to be expected. As
higher portfolio returns can also come at the expense of
increased volatility, the Sharpe ratio (Sharpe, 1966) of the
portfolios is chosen as a performance metric to address
this trade-off.

With the presented EWMA estimator referred to as
the baseline estimator, and the MLP, CNN and LSTM es-
timators jointly referred to as the neural network estimators
throughout the thesis, the considered working hypothesis
is defined as follows:

Hypothesis 1 (H1): The neural network estimators are able
to extract information from the return history of the assets.
Based on their estimates, they can outperform the baseline es-
timator in terms of Sharpe ratio by reallocating the portfolio
according to the optimized portfolio weights at every trading
day without considering trading costs.

However, it is likely that the neural network estima-
tors result in significantly increased trading volumes, as
in contrast to the EWMA estimator, vast differences in
the return estimations are possible from one observa-
tion to the next, potentially leading to a drastic change
in optimal portfolio weights. Thus, the trading volumes
are measured in the daily rebalancing case, and it shall
be analyzed if common measures used to decrease trad-
ing volumes such as a reduced rebalancing frequency
or intertemporal smoothing of the optimized portfolio
weights (Würtz et al., 2009) can mitigate the potential in-
crease. The following secondary hypothesis, therefore, is
also considered:

Hypothesis 2 (H2): In conjunction with common measures
to reduce trading volume, the neural network estimators are
able to outperform the baseline estimator in terms of Sharpe
ratio in the presence of trading costs.

3. Methodology

Having covered the theoretical background of the the-
sis and the hypotheses it seeks to examine, the general
structure of the analysis carried out is presented in the
following, covering the data set itself, the covariance es-
timator as well as the neural network and optimization
implementations.

3.1. Data
The analysis was performed on data obtained from

the data library of Kenneth R. French (Fama & French,
2019) which itself uses stock price data from the Center for
Research in Security Prices (CRSP) and interest rate data

provided by Ibbotson Associates. The data set contains
synthetic daily returns of a market asset, a risk-free as-
set, a high minus low asset, and a small minus big asset.
The construction of these assets follows Fama and French
(1993). The market asset reflects a value-weighted mean
of US stocks listed on the NYSE, AMEX, or NASDAQ.
The risk-free asset represents the return on the one-month
US Treasury bill. A detailed description of the composi-
tion methodology is also available at the previously men-
tioned data library. In order to keep the scope of the
analysis on the comparison of expected return estima-
tors, only the market and risk-free asset are considered,
reducing the setting to the two-asset case. In line with
the naming conventions of the data set, the market asset
is henceforth abbreviated as Mkt, while the risk-free asset
is referred to as RF. The date range covered spans from
1926-07-01 to 2019-06-28, thus covering 93 years with a
total of 24,515 observations. In terms of pre-processing,
the data set was first analyzed for missing or implausible
data points. Since none were observed, no data clean-
ing was required. The return of the market asset rMkt is
not provided directly, but as excess over the risk-free re-
turn. Thus, the return of the risk-free asset must be added
to reflect the total returns obtained by an investor in the
asset. A first look at the total return indices associated
with the asset returns reveals that, over the long observa-
tion period, both assets performed as one would expect
based on the asset classes. As shown in Figure 5 on a
logarithmic ordinate, the market asset shows significant
long term growth accompanied by substantial risk and
even years with consecutive large drawdowns. Notably,
periods of extended upward trends are interrupted by fi-
nancial crises like the Great Depression from 1929-1939,
the oil crisis of 1973, the burst of the dot-com bubble in
the early 2000s, the global financial crisis of 2007-2008 and
the subsequent European debt crisis. The distribution of
these events ensures that the neural network estimators
are exposed to different market environments in both the
training and the testing phase and therefore, potentially
capable of finding subtle patterns in the market returns.
On the other hand, the risk-free asset by its nature shows
a very smooth return profile. However, the yield of the
risk-free asset has undergone significant changes during
the time span of the data set. Starting at a relatively low
yield of 0.9 basis points per day, a period of prevailing in-
creases in the return on the risk-free asset followed, reach-
ing a peak of 6.1 basis points per day in 1981. After-
ward, the yield decreased again, incidentally back to the
exact initial yield of 0.9 basis points per day, resulting in
a sigmoid-like total return graph. While the EWMA esti-
mator eventually follows both upwards and downwards
trends, it remains to be seen if the neural networks could
improve on the baseline estimator if the models were to
be trained on data stemming from a regime with predom-
inantly increases in the risk-free rate but tested on data
with predominantly decreases in the risk-free rate. This
could be the case if the regime switch aligns with the split

P. Schiele / Junior Management Science 6(1) (2021) 149-189 161

1930 1940 1950 1960 1970 1980 1990 2000 2010
Year

100

101

102

103

104

To
ta

lr
et

ur
n

in
de

x

Mkt
RF

Figure 5: Total return index of assets

of training and testing data.
Next, the asset returns were analyzed for autocorrela-

tion, with the results illustrated in Figures 6 and 7.
As expected, over the full observation period the sam-

ple autocorrelation function (ACF) is close to zero for the
returns of the market assets, with the highest value of
0.067 observed at a lag of one day, as shown in Figure
6. While some of these autocorrelations are significant at
the 5% level when compared to the confidence intervals
obtained from Bartlett’s formula (Bartlett, 1946), they are
not stable over time, exhibiting both negative and pos-
itive estimates for different subperiods of the return se-
ries. This is shown in Figure 7, where the rolling one
year (251 day) sample autocorrelation function for a lag
of one day on the market asset returns is plotted over
time. On the other hand, the risk-free return is by con-
struction almost perfectly positively autocorrelated for all
analyzed ten lags. For reference, a correlogram for the
risk-free asset is thus provided in the Appendix. While
not surprising, this analysis allows for an assessment of
the estimators’ prediction performance. Since the risk-
free asset returns are highly positively autocorrelated, a
reasonable prediction is always provided by the previous
return. Thus, the differences in the estimates are expected
to be small. For the market asset, even though ex-post lin-
ear relations to previous returns can easily be identified,
finding these linear (or also nonlinear) relationships ex-
ante is a different challenge, leading to an expectation of
more substantial differences in the estimates.

3.2. Covariance Estimator
While the varied factor in this analysis is the expected

return estimator, it is also necessary to estimate the co-
variance matrix to perform the portfolio optimization.

The sample covariance matrix can be a suboptimal esti-
mator when the number of assets approaches the number
of observations per asset (Ledoit & Wolf, 2003, 2004).
However, in the case at hand, the number of assets is
small, and the return history has the same length for all
assets. Thus, the sample covariance could be considered
a valid estimator. In fact, Lopez and Walter (2002) find
that in a Value-at-Risk context, similar to the optimiza-
tion approach considered in this thesis, simple covariance
estimators are not inferior compared to more complex es-
timators like GARCH models. Especially highlighted
by them is the EWMA covariance estimation, which
again overweighs more recent observations compared to
older ones. Thus, the covariance was estimated using an
EWMA model with a smoothing parameter of λ = 0.94.
For daily data, this value was suggested by J.P. Morgan
(1996) as well as Walter and Lopez (2000). The result-
ing annualized standard deviation estimates are shown
in Figure 8. The standard deviation of the market asset
generally lies between 5% and 20%, with further elevated
levels during periods of financial distress and less fre-
quent spikes reaching almost 80%. While the standard
deviation of the risk-free asset is not zero, it is minuscule
compared to the market asset and thus indistinguishable
from zero when viewed on the same scale. The same
applies to the covariance of the market asset and the
risk-free asset. While the annualized figures are used to
provide a more intuitive interpretation, one should note
that these values are obtained by scaling the daily volatil-
ities with the factor

√
251. However, this is only accurate

when logarithmic returns are used and remains an ap-
proximation for the discrete returns used in the portfolio
optimization context of this thesis. Therefore, all figures
displaying annualized volatilities are replicated using

P. Schiele / Junior Management Science 6(1) (2021) 149-189162

1 2 3 4 5 6 7 8 9 10
Lag

−0.04

−0.02

0.00

0.02

0.04

0.06
A

C
F

Market asset
95% Confindence interval

Figure 6: Autocorrelation analysis – Full sample market autocorrelation

1930 1940 1950 1960 1970 1980 1990 2000 2010
Year

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

R
ol

lin
g

A
C

F

ρ̂Mkt,Lag=1

Figure 7: Autocorrelation analysis – Rolling one year market autocorrelation

unscaled daily values in the Appendix.

3.3. Neural Network Implementation
The neural network estimators are implemented in

Python using the TensorFlow machine learning library
(Abadi et al., 2015). More specifically, the high-level ap-
plication programming interface Keras was used within
TensorFlow. The following section introduces the three
chosen network implementations and describes the con-
siderations behind the choice of the model hyperparame-
ters. While model parameters are the weights and biases
that are optimized during model training, hyperparam-

eters are any additional configuration factors that them-
selves influence the training of the neural network, such
as the size and number of hidden layers as well as the
batch size. Among other approaches, these hyperparam-
eters can be optimized by performing a grid search on
a set of reasonable hyperparameter combinations, which
can lead to additional improvements in the model per-
formance. It is important to underline, however, that the
scope of this thesis is to analyze the general suitability of
neural network estimators in the context of dynamic port-
folio optimization. Thus, hyperparameter optimization
was not performed before the main analysis but is nev-

P. Schiele / Junior Management Science 6(1) (2021) 149-189 163

1930 1940 1950 1960 1970 1980 1990 2000 2010
Year

0.0

0.2

0.4

0.6

0.8
A

nn
ua

liz
ed

as
se

ts
ta

nd
ar

d
de

va
ti

on

σ̂Mkt

σ̂RF

Figure 8: Annualized asset standard deviation over time

ertheless considered in the sensitivity analysis. Rather,
sensible hyperparameters were chosen based on related
research and best practices.

3.3.1. Multilayer Perceptron
Before implementing an MLP network, the input fea-

tures have to be selected. As the EWMA estimator only
contains information from historical returns, the neural
networks also were constrained to this information set.
However, while the EWMA estimator encompasses in-
formation from all previous observations, a very large
number of lagged daily returns would swiftly lead to
a dramatic increase in model parameters for the MLP.
Thus, a reduced number of features encompassing in-
formation about the recent returns had to be chosen.
Since the EWMA estimator predicts positive returns if re-
cent returns were also positive and vice versa, a strategy
based on this estimator can be considered a momentum
strategy. Momentum strategies invest in assets which
have performed well (compared to other assets or eval-
uated only on their own return history) over a fixed
window of recent observations, usually the last year.
These strategies were analyzed by numerous researchers,
such as Antonacci (2014); Asness, Frazzini, Israel, and
Moskowitz (2014); Baz, Granger, Harvey, Le Roux, and
Rattray (2015); Goetzmann and Huang (2018); Hurst, Ooi,
and Pedersen (2017); Jegadeesh and Titman (1993); Lem-
périère, Deremble, Seager, Potters, and Bouchaud (2014);
Swinkels (2004), with most finding at least partial sup-
port for the strategy. Closely related to the topic of this
thesis, Lim et al. (2019) even combined a momentum
strategy on futures contracts with neural network estima-
tors and concluded that the neural network estimators
outperformed the traditional signals. In order to reflect

the informational content of these momentum strategies,
the trailing one year return (251 days), one month return
(21 days), one week return (5 days), as well as the most
recent daily return, are used as features. Additionally, the
rolling one month sample standard deviation is added
to provide the model with information about the current
level of return uncertainty.

Next, the number of hidden layers and their node
count had to be decided upon. Given the relatively small
size of the data set compared to other machine learning
tasks, the model was also kept compact. Goodfellow et
al. (2016) find that in different settings, deeper networks
provided better generalization. Additionally, Di Persio
and Honchar (2016) find that for a similar application in
prediction of financial time series, two hidden layers were
optimal. Thus, two hidden layers were also used in this
model, as shown in the schematic representation in Fig-
ure 9.

The number of nodes in each hidden layer was cho-
sen next. A typical default parameterization chooses a
number of hidden nodes between one and two times the
number of input nodes (Berry & Linoff, 1997; Blum, 1992).
Conventionally, the number of nodes are often chosen as
powers of two, as this allows for broad coverage of the
search space when multiple node counts are compared.
Sticking with the convention, with five input nodes, the
number of nodes in the hidden layers was set to eight.

For the activation function in the hidden layers, the
ReLU function was used. This activation function has nu-
merous theoretical and empirically founded advantages.
One example is that its activations are linear and thereby
unsaturated for positive inputs, making models using
this activation function easier to train (Goodfellow et al.,
2016). Additionally, this property also mitigates the van-

P. Schiele / Junior Management Science 6(1) (2021) 149-189164

InputLayer
input:

output:

[(None, 5)]

[(None, 5)]

Dense
input:

output:

(None, 5)

(None, 8)

Dropout
input:

output:

(None, 8)

(None, 8)

Dense
input:

output:

(None, 8)

(None, 8)

Dropout
input:

output:

(None, 8)

(None, 8)

Dense
input:

output:

(None, 8)

(None, 1)

Figure 9: MLP implementation

ishing gradient problem as described by Glorot, Bordes,
and Bengio (2011) who also found that ReLU activations
more closely reflect the principle of operation of neurons
in the brain compared to other popular activation func-
tions. While these considerations led to the selection of
the ReLU activation function for the hidden layer, a lin-
ear activation was necessary for the output layer, since
the prediction of returns is a regression problem.

The number of trainable model parameters in a neural
network can often be large compared to other statistical
models. Intuitively, it makes sense that neural networks
with many parameters can more easily overfit smaller
data sets. This was also observed by Srivastava, Hinton,
Krizhevsky, Sutskever, and Salakhutdinov (2014), who
proposed the implementation of dropout layers into the
model. A dropout layer randomly deactivates some of
its nodes (along with their corresponding weights) with a
pre-specified probability during the forward pass and the
backpropagation steps of the gradient descent algorithm.
The underlying idea is that whenever a set of nodes is
deactivated, the other nodes each learn an internal rep-
resentation of the model, thus reducing a co-adaption of
neighboring nodes. This technique was also described by
Hinton, Srivastava, Krizhevsky, Sutskever, and Salakhut-
dinov (2012), suggesting a dropout probability of 0.5. It is

therefore often considered best practice to add a dropout
layer when implementing a neural network. The cho-
sen model architecture thus introduces dropout layers,
as shown in the network architecture schematics in Fig-
ure 9. Note that in this representation, the dropout layer
does not have its own nodes, but rather sets each node of
the preceding dense layer to 0 with probability 0.5. Addi-
tionally, it should be noted that the fully connected layers
of the MLP model are referred to as Dense layers in the
Keras framework. Thus, for each sample, there are five
input values which are passed through two hidden lay-
ers with eight nodes each. Finally, the output layer has a
single node since only the return on the next day is esti-
mated. The None values refer to the batch size, which is
not set yet during the model construction and is further
addressed below.

3.3.2. Convolutional Neural Network
For the CNN implementation, schematically depicted

in Figure 2, a new set of input features had to be decided
upon.

Since the extraction of higher dimensional features is
at the core of CNNs, rather than one month, one week and
one day return, all 21 lagged daily returns of the preced-
ing month of a given observation were used as features.

P. Schiele / Junior Management Science 6(1) (2021) 149-189 165

Following this argument, the rolling one month standard
deviation was also removed from the inputs since this in-
formation too could be learned by the model. The one
month period was chosen in particular since the half-life
and center of mass of the baseline estimator also lie in this
region with 17 and 24 days, respectively. However, the
rolling one year return was kept as an input in order to
retain the longer term information content without dra-
matically increasing the model parameters through the
inclusion of the full year of lagged daily returns. Thus,
the total number of input features for each observation
is 22. For the convolutional layer, or Conv1D as termed
in the Keras framework, following Di Persio and Hon-
char (2016), the size of the filter was chosen to be [3× 1]
with a stride of s = 1. While the number of filters in
their analysis was 32 and 64 respectively, considering the
size of the data set and the comparability of the number
of parameters across the different models of this thesis,
only 16 features were used. It should be noted that the
Conv1D layer in the network outputs one vector of nodes
for each filter, as indicated by the output of an additional
dimension by this layer. Furthermore, since no padding
is used, the size of the convolutional layer decreases from
[22× 1] to [20× 1] per filter, as per Equation 23. Consid-
ering all filters, the total shape of the convolutional layer
thus is [20 × 16]. A max pooling layer follows, which
uses an input size of [2 × 1] and stride s = 2, thus re-
ducing the number of nodes by 50%. This parameteriza-
tion again follows Di Persio and Honchar (2016). After
the technically required flatten layer, the abstracted fea-
tures are combined through a fully connected layer with
16 nodes and ReLU activation function. Before the final
output layer, a dropout layer is added to counteract over-
fitting.

3.3.3. Long Short-Term Memory Network
For the LSTM architecture shown in Figure 4, the in-

put layer again had to be created differently from the pre-
vious models since it allows the network to create its own
internal representation of the importance of previous re-
turns.

At each point in time, the individual daily returns of
the previous month (21 days) are given to the model as in-
puts, again encompassing the half-life and center of mass
of the baseline estimator. This window is shifted one day
ahead at each new training sample. Since these inputs
are not 21 different features but rather 21 lagged observa-
tions of a single feature, again a second dimension in the
input layer is required. Hence, the tuple (21, 1) is used to
specify the input shape.

The 16 nodes in the LSTM layer were again chosen to
be approximately equal to the number of input nodes. In
this model, the number of nodes describes the length of
the vectors used in its gates and the cell state. To allow for
further long term dependencies, it is crucial not to shuffle
the data set before training, which otherwise is the default
implementation in Keras. While other model implemen-

tations treat each training sample independently with the
input and output values they provide, the very definition
of RNNs requires the sequences to be ordered for both
training and testing. When it comes to regularization
techniques in an RNN network such as the LSTM model,
it is possible to not only conceptualize dropouts on the
direct path from the input to the output layer, but also on
the gates which control the influence of previous hidden
layers. Indeed, this was noted by Gal and Ghahramani
(2015), who proposed theoretically founded dropouts for
RNNs and provided empirical evidence for their useful-
ness. Thus, in the LSTM model, recurrent dropouts are
used in addition to the previously introduced dropouts.
Only the regular dropout layer is shown in the schematic,
as the recurrent dropouts are included in the LSTM layer
in Keras.

Even though the architecture of the LSTM model
might look simpler compared to the MLP and CNN mod-
els, it is in no way inferior in its capability to represent
complex dependencies through its internal gate structure
and the transfer of information between samples.

3.3.4. Model training
In order to train the models, the data set first needs to

be split into train and test data sets. It is common prac-
tice to use the older part of the data as training data and
the more recent data as test data in order to improve the
likelihood that the performance of the model in an out-
of-sample implementation would be closely reflected by
the test data performance. The ratio by which to divide
the data set is dependent on the application and espe-
cially the size of the data set. While on vast data sets the
training data can encompass up to 99 percent of the total
samples, smaller data sets can require a relatively larger
testing set, such that equal splits of the data are also not
uncommon (Ng, 2019b). In the data set at hand, a split of
60 percent for the training data and 40 percent for the test
data was chosen. Theoretically, this would leave 14,709
observations for the training data set and 9,806 observa-
tions for the test data set. However, as shown in Figure
12, not all of this data can be used for training and test-
ing. At the beginning of the training phase, the data re-
quired to obtain the first set of input features cannot be
used as training examples. If for example, the trailing
one year return is one of the input features, this data is
not available for data points up to one year into the data
set. At the very end of the data set, one also needs to ac-
count for the output values. If the prediction target is the
return on the next day, then a single observation at the
end needs to be omitted from the test data set, as other-
wise, no observed return for the prediction on the very
last day is available. If returns for longer time horizons
are predicted, more observations need to be spared for
validating the predictions. Furthermore, it is especially
important to separate the training and testing data by a
gap with the combined length of the data points required
for the input features and the number of days predicted

P. Schiele / Junior Management Science 6(1) (2021) 149-189166

InputLayer
input:

output:

[(None, 22, 1)]

[(None, 22, 1)]

Conv1D
input:

output:

(None, 22, 1)

(None, 20, 16)

MaxPooling1D
input:

output:

(None, 20, 16)

(None, 10, 16)

Flatten
input:

output:

(None, 10, 16)

(None, 160)

Dense
input:

output:

(None, 160)

(None, 16)

Dropout
input:

output:

(None, 16)

(None, 16)

Dense
input:

output:

(None, 16)

(None, 1)

Figure 10: CNN implementation

ahead. The importance of this step stems from the phe-
nomenon that neural networks are outstanding in finding
subtle information about the test data within the training
data. This is called information leakage. In particular, it
needs to be assured that the test data does not contain
any information the network could have seen during the
training phase. Continuing the example of trailing one
year returns used as a feature, if no gap between the train
and test data sets were present, the returns of the final
year of training observations would be part of both the
train and test data set and thus contribute to information
leakage. A further overview of information leakage is
given by Kaufman, Rosset, and Perlich (2011). Removing
the observations in question leaves 9,552 samples or ap-
proximately 38 years for backtesting the neural networks
against the baseline estimator.

While the EWMA estimator is agnostic to the size and
variance of the inputs, neural networks can be affected
significantly by inputs of varying scales. In particular, if
inputs are on different scales, the loss function of the neu-

ral network is dominated by the larger features (Theodor-
idis & Koutroumbas, 2009). Conceptually, for unscaled
features, the minima of the error surface become more el-
liptical, with the gradient descent algorithm potentially
oscillating towards the optimum in an inefficient manner.
The increased convergence efficiency on scaled features
was also noted by Ioffe and Szegedy (2015). Therefore,
it is beneficial to scale the input and output data for the
training and testing data set to a comparable range. Since
the resulting estimates are used in a mean-variance opti-
mization setting, the commonly used method of z-score
normalization was used to ensure the input features do
match in these dimensions. Formally, for each feature xi
with given sample mean µ̂ and sample standard devia-
tion σ̂, the normalized feature x′i was computed as

x′i =
xi − µ̂

σ̂
. (34)

However, as suggested by Müller and Guido (2016),
scaling the data can also be another source of informa-

P. Schiele / Junior Management Science 6(1) (2021) 149-189 167

InputLayer
input:

output:

[(None, 21, 1)]

[(None, 21, 1)]

LSTM
input:

output:

(None, 21, 1)

(None, 16)

Dropout
input:

output:

(None, 16)

(None, 16)

Dense
input:

output:

(None, 16)

(None, 1)

Figure 11: LSTM implementation

data set

training data (0.6) test data (0.4)

data for first input features final prediction padding

Figure 12: Schematic representation of the train/test split

tion leakage. If the data set is scaled before being split,
implicitly the training data contains the mean and stan-
dard deviation of the full sample even though this infor-
mation would not have been available at that time. Thus,
the training data needs to be scaled first based only on the
estimates obtained on these samples. Next, the test data
can be scaled by using the same mean and standard de-
viation estimates. The same scale is then also used when
re-scaling the estimates after training and prediction have
been performed.

Finally, before training the model, a batch size had to
be chosen. As discussed in section 2.2.1, this parame-
ter can influence the convergence speed and probability
of the model considerably. A batch size of 32 is recom-
mended by Bengio (2012) as well as Masters and Luschi
(2018). Their research shows that batches in this size re-
gion provide a good trade-off between training stability
and model generalization across different applications.
Thus, this value was chosen as a starting point.

Under consideration of these implementation details,
the models could now be trained. The return of the fol-

lowing trading day was used as the output, and the neu-
ral networks were trained to minimize the mean squared
error with respect to these targets. Computation time
was decreased significantly by training the models on
a graphics processing unit (GPU) rather than a central
processing unit (CPU), with the particular implementa-
tion making use of the optimized linear algebra subrou-
tines provided by the Nvidia CUDA framework (Nick-
olls, Buck, Garland, & Skadron, 2008). Each model was
trained for 30 epochs, i.e., the training set was looped
over 30 times by the gradient descent algorithm. It was
monitored that the loss was decreasing during the train-
ing phase (indicating convergence on the training data)
and that the loss on the test data was not significantly
larger than the loss on the training data (indicating over-
fitting). It should also be noted that for training the neural
networks, a slightly improved version of gradient descent
was used, namely the Adaptive Moment Estimation algo-
rithm (Adam). This optimizer was suggested by Kingma
and Ba (2014) and has since found wide adoption in the
field. Compared to the single, fixed learning rate param-

P. Schiele / Junior Management Science 6(1) (2021) 149-189168

eter α in the introduced GD algorithm, Adam uses vary-
ing learning rates for each parameter which are updated
based on exponential moving averages of the first and
second moment of recent gradients. It is the default opti-
mization algorithm recommended by Ruder (2016).

3.4. Optimization Implementation
When implementing the portfolio optimization, either

the approach of maximizing the portfolio return for a
given level of risk or the minimization of risk for a given
level of return had to be chosen. As seen in Figure 8, the
risk of the assets was comparatively stable over time. By
contrast, market returns are much harder to predict, and
therefore the optimized portfolio could deviate signifi-
cantly from the targeted return. Additionally, assuming
a constant relative risk aversion was found to be a good
representation of some investors’ utility functions (Chi-
appori & Paiella, 2011; Wakker, 2008) and thus a constant
level of targeted risk for the portfolio is reasonable. With
that in mind, the optimization with respect to a prespeci-
fied level of risk was selected. In order to reflect different
degrees of risk aversion, multiple risk targets were con-
sidered. The lowest volatility target was chosen at 2%,
well below the lowest volatility estimate for the market
asset at over 5% and thus always requiring a portfolio
composed of both assets whenever the expected return
of the market asset is above the expected return of the
risk-free asset. Additional risk targets were placed in in-
crements of 2.5 percentage points, covering a range up to
19.5% annualized volatility, the upper end of the market
volatility during most of the observation period.

To obtain the optimized weights necessary for the
analysis, the portfolio optimization had to be performed
for each date where all estimators delivered estimates
(the EWMA estimator does not need training data, but
since this split was required for the neural networks, the
intersection of the estimation periods had to be used).
This included 9,552 dates for which the optimization
needed to be performed. For the EWMA estimator, the
same smoothing parameter of λ = 0.94 as for the covari-
ance estimator was chosen. Additionally, alongside the
baseline and neural network estimators a RANDOM "es-
timator" was added as a point of reference. This model
uses the sample mean and standard deviation of the as-
sets during the training period to parameterize a normal
distribution from which a sample was drawn for each
testing observation. With the five estimators and the
eight considered levels of risk tolerance, this equates to
a total of 382,080 optimizations. Conceptually, the opti-
mization seeks to find weights wtarget, which maximize
the expected return for a given level of risk σ̄, as shown
in the optimization problem 2. However, solving this
linear program with quadratic constraints was not easily
implementable in the chosen programming framework.
Thus, the efficient portfolio for the given risk level was
obtained by repeatedly minimizing the risk for a given
expected return (optimization problem 1a). In the chosen

implementation, first, the portfolio weights with mini-
mal standard deviation wσmin were computed. If the risk
target was below the standard deviation of this portfo-
lio, σmin, the optimal portfolio weights were set to wσmin ,
which have an expected return of µmin, respectively. Sim-
ilarly, the point on the efficient frontier with the highest
standard deviation, an investment solely in the asset with
the highest expected return µmax was obtained. For risk
targets larger than the standard deviation of this upper
end of the efficient frontier, σmax, again the weights of
this portfolio wσmax were used. It should be noted that
investing solely in the asset with the highest expected
return marks the upper bound of the efficient frontier
only when the no short sale constraint mentioned in 1d
is added. This was the case throughout the analysis, as
otherwise extreme leverage of the portfolio could not be
prevented. Since this is held constant between estimators,
it is not expected to influence the overall result.

For risk targets between these upper and lower
bounds, first define ∆w(σ(µ)) := σ(µ) − σ̄. The orig-
inal optimization problem of maximizing the expected
return for a given level of risk is now equivalent to find-
ing the µ for which the weights with the minimal stan-
dard deviation set ∆w(σ(µ)) = 0. To find this root, Brent’s
method (Brent, 1973) was used, which stands out due to its
high reliability and rate of convergence. This is achieved
by combining fast converging methods like the secant
method with the more reliable bisection method. As a start-
ing point, either σmin or σmax was used, depending on
which had the lower absolute distance to the risk target.
Then, for every iterative change in µ, first the optimiza-
tion problem 1a was solved, yielding the corresponding
efficient level or standard deviation σ(µ). The resulting
change in ∆w(σ(µ)) was then used for the next iteration
in Brent’s method. Dybvig (1984) shows that the efficient
frontier in the presence of a no short sale constraint is
continuous but not always differentiable at every point,
disproving a conjecture of Ross (1977). However, only
continuity is required for Brent’s method to always con-
verge to wtarget (Brent, 1973). Indeed, the convergence
was asserted during all optimizations and could always
be achieved using the employed implementation.

A disadvantage of this approach, however, is the mul-
tiplicatively increased number of optimizations that had
to be performed since every initial return maximizing op-
timization problem was substituted by multiple risk min-
imizing optimizations. An overview of the full optimiza-
tion approach is given in Algorithm 2. By using this algo-
rithm, the optimized weights for all data points, estima-
tors, and risk levels were obtained.

4. Results

In the following chapter, the results of the performed
analysis are presented and discussed. First, the case of
daily portfolio adjustments (also referred to as rebalanc-
ing) without the consideration of trading costs is ana-

P. Schiele / Junior Management Science 6(1) (2021) 149-189 169

Compute minimum variance portfolio with σmin,
µmin and wσmin

Compute maximum return portfolio with σmax,
µmax and wσmax

if σ̄ ≤ σmin then
wtarget = wσmin

else if σ̄ ≥ σmax then
wtarget = wσmax

else
µ = arg min

µ∈{µmin ,µmax}
|σ(µ)− σ̄|

∆w = σ(µ)− σ̄
while |∆w| > εtol do

Adjust µ according to Brent’s method
Minimize portfolio volatility for µ, yielding
σµ and wσµ

∆w = σ(µ)− σ̄
end
wtarget = wσµ

end
Algorithm 2: Risk targeting optimization

lyzed. Afterward, two approaches to reduce trading vol-
umes are considered: a reduction in trading frequency
and the intertemporal smoothing of optimized portfolio
weights. In this setting, the portfolio performances are
evluated in the presence of trading costs. Finally, a sensi-
tivity analysis is performed to evaluate the robustness of
the results.

4.1. Daily Rebalancing
With the daily rebalancing setting chosen as a start-

ing point, the neural networks were trained, and the op-
timization algorithm was employed for each observation
in the test data set. The results of this analysis are pre-
sented in the following.

4.1.1. Predictive Accuracy
Before the performances of the dynamically opti-

mized portfolios are analyzed, the underlying return
predictions are assessed. Relating to the error function of
the networks, a natural first criterion is the mean squared
error of the estimates. An overview of this metric for all
estimators and both assets is provided in Table 1. Addi-
tionally, the related mean absolute error (MAE) is stated to
add a measure which is less sensitive to outliers.

Unsurprisingly, all estimators perform substantially
better on the risk-free asset compared to the market asset.
On the risk-free asset, the CNN network has both the low-
est MSE and MAE, with the EWMA estimator as a runner-
up in both measures. The LSTM and MLP follow, with
the largest error made by the RANDOM estimator. For
the market asset, the lowest squared and absolute errors
are made by the MLP model, with the LSTM, CNN, and
EWMA asset closely behind. The relative difference of

the baseline and neural network estimators to the RAN-
DOM model is considerably smaller for the market asset,
illustrating the large uncertainty in the returns of this as-
set. To compare the predictive accuracy of two estima-
tors, Diebold and Mariano (1995) propose a test for non-
nested models which can be used across a wide variety of
error functions, including MSE and MAE. Diebold (2015)
suggests that the underlying assumption of the error dif-
ferential being covariance stationary often provides a rea-
sonable approximation for economic time series. More-
over, Harvey, Leybourne, and Newbold (1997) propose a
bias correction for the test statistic and the Student-t dis-
tribution to compare this corrected statistic against in or-
der to improve the properties of the test for smaller sam-
ples. Table 2 presents the bias-corrected, two-sided test
statistics of predictive accuracy comparisons between the
neural networks against the baseline estimator, with the
null hypothesis stated as a zero error differential. Again,
the RANDOM estimator is added as a reference point.
The sign of these test statistics indicates whether the base-
line estimator had the lower (negative sign) or higher
(positive sign) error, corresponding to the errors stated in
Table 1.

Although on the risk-free asset the absolute losses
were small, all tests show a highly significant loss dif-
ferential against the baseline, both for the more accurate
CNN model as well as the other, less accurate models.
On the market asset, the test statistics generally turn out
to be smaller. While the lower error of the MLP is still
significant against the baseline for both error measures,
the error differentials of the CNN and LSTM model do
not show significance even at the 10% level on the MSE
metric. For the MAE, the inferiority of the LSTM against
the baseline estimator also is not significant, but the more
precise estimation of the CNN model is. Again, as ex-
pected, the RANDOM model is outperformed on both
assets with the highest significance. No model has there-
fore significantly outperformed the EWMA estimator on
both assets and error metrics, with the CNN model com-
ing closest and only one error differential being insignif-
icant. Since the magnitude of the error on the risk-free
asset is much smaller, it is likely that the accuracy on
the market asset dominates the performance of the dy-
namically optimized portfolios as statistic significance
not always implies likewise economic significance. Ad-
ditionally, while the considered error measures can give
a first assessment of the predictions, their accuracy might
not be linearly reflected in the portfolio performances.
While a lower prediction error indicates a better fit and
performance ceteris paribus, two different estimators can-
not solely be compared on these measures. This can be
demonstrated with a simple example. When consider-
ing a day with a positive return in an asset and an even
higher estimated return for this asset, the portfolio would
still benefit from the positive realized return, yet per-
haps in an ex-post suboptimal portfolio composition. If,
however, the return was underestimated by the same dis-

P. Schiele / Junior Management Science 6(1) (2021) 149-189170

Table 1: MSE and MAE of daily return predictions

MSE MAE

RF Mkt RF Mkt

EWMA 3.09e-10 1.18e-04 1.06e-05 7.24e-03
MLP 2.69e-09 1.15e-04 3.65e-05 7.17e-03
CNN 7.52e-11 1.17e-04 6.41e-06 7.19e-03
LSTM 5.66e-10 1.16e-04 1.88e-05 7.26e-03
RANDOM 2.80e-08 2.28e-04 1.33e-04 1.15e-02

Bold and italic table entries represent the lowest and second
lowest error per column, respectively.

Table 2: Diebold-Mariano test for predictive accuracy against baseline estimator

MSE MAE

RF Mkt RF Mkt

MLP −35.182∗∗∗ 3.835∗∗∗ −71.605∗∗∗ 5.687∗∗∗

CNN 21.667∗∗∗ 0.764 30.121∗∗∗ 3.049∗∗∗

LSTM −19.023∗∗∗ 1.550 −36.320∗∗∗ −1.125
RANDOM −64.953∗∗∗ −36.036∗∗∗ −120.705∗∗∗ −50.786∗∗∗

Bold and italic table entries represent the highest and second highest abso-
lute test statistics per risk target, respectively. Negative test statistics corre-
spond to lower errors by the baseline estimator, positive test statistics cor-
respond to higher errors by the baseline estimator.
*** p < 0.01, ** p < 0.05, * p < 0.1 for a two-sided test.

tance, perhaps even leading to a negative prediction, the
optimization might not have chosen this asset, and the
portfolio would forgo the positive return. However, the
portfolio performance is not only asynchronously depen-
dent on the prediction error, but the portfolio weights
resulting from an optimization are also discontinuous in
the estimated returns, as for example two assets with the
same estimated volatility are swapped when the asset
estimated to have the higher expected return changes.

4.1.2. Risk-Return Characteristics
The portfolio returns based on the predictions are as-

sessed next. Since the portfolios are rebalanced daily, it
is assumed that at the end of each day t, the portfolios
are adjusted towards the optimized weights based on the
predictions obtained from the returns preceding and in-
cluding day t. Denoting these weights as wt, the portfolio
return on the next day rp f ,t+1 is obtained by summing the
returns of each asset after multiplying them by their re-
spective weights within the portfolio. In matrix notation,
the portfolio return is obtained as

rp f ,t+1 = rᵀassets,t+1wt . (35)

Iteratively applying this computation to each day in
the test period across both risk targets and estimators
yields a total of 40 portfolio return time series. A good

overview of the performance characteristics of these time
series can be obtained by plotting them in the same risk-
return space they were optimized in. This is shown in
Figure 135, where all portfolio performances, as well as
the two underlying assets, are shown in the µ-σ-space.
The first thing to note is that even the strategies with the
highest risk targets are well below their risk budget, with
all but the LSTM model reaching a maximum portfolio
volatility of around 10%. Since even the market asset
only reached around 17% annualized volatility, it is clear
that no portfolio could have achieved the upper limit of
the risk targets. Additionally, whenever the expected re-
turn of the market falls below the risk-free asset, the port-
folio is wholly allocated in the latter asset. These peri-
ods further decrease the upper risk limit of the portfolios.
Since the underlying assets are essentially uncorrelated,
it is natural to observe a risk-return profile above the line
connecting the realizations of the market and the risk-
free asset. As a notable exception, the RANDOM estima-
tor does not even experience this diversification benefit.
However, the risk-return profiles of this estimator by con-
struction showed significant inconsistency between runs,
sometimes also exhibiting slightly better or worse real-
izations. While no model quite achieved the return of the
market, the CNN model came closest whilst still provid-

5All figures in this chapter showing approximated annualized
volatilities are again presented in the Appendix using daily figures.

P. Schiele / Junior Management Science 6(1) (2021) 149-189 171

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Annualized portfolio volatility

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

A
nn

ua
liz

ed
po

rt
fo

lio
re

tu
rn

EWMA
MLP
CNN
LSTM
RANDOM
Mkt
RF

Figure 13: Portfolio performances in µ-σ-space
(daily rebalancing, no TC)

ing a lower level of volatility. The LSTM and MLP model
further reduce the volatility at their highest risk target,
but at an again slightly reduced return. Overall, the MLP
and LSTM models achieve higher portfolio returns com-
pared to the EWMA model while staying close to it in
the risk space. The realizations using the CNN estimator
instead extend the "realized frontier" of the EWMA esti-
mator by providing higher returns in exchange for higher
volatility. While the EWMA realizations are inefficient
compared to the MLP and LSTM model, the efficiency
criterion does not allow for a comparison between the
EWMA and the CNN models.

Nevertheless, a closer look at the total return indices
of the individual time series is required to assess prop-
erties not reflected by their first two moments. The time
series for the medium risk target of 12% are shown in Fig-
ure 14. Most notably, the MLP and LSTM models achieve
substantial outperformance in the beginning, approxi-
mately until the turn of the millennium. At that point,
the market asset, which is closely tracked by the CNN
model, reduces the gap to the MLP and LSTM model,
eventually overtaking them for the given risk level. One
possible explanation for the decreasing outperformance
of the neural networks could be given by the emergence
of increased research focusing on the application of these
models in the financial industry around that time (see for
example Bergerson and Wunsch (1991); Chen, Leung, and
Daouk (2003); Deboeck (1994); Gately (1995); Tino, Schit-
tenkopf, and Dorffner (2001)). Practitioners following this
research could potentially have lead to the incorporation
of this information into the market, reducing the edge
these models may have had before. The EWMA estima-
tor also tracks the market asset, however, more loosely

than the CNN model. Compared to the market asset, the
EWMA model partly avoids the largest drawdowns at
the cost of fast recoveries, which is especially apparent
at the global financial crisis of 2008, where the market
asset dropped sharply by over 50%, followed by an ex-
tended period of predominantly positive returns. While
the EWMA model fell significantly less during the cri-
sis, it also did not fully experience the following upward
trend. In this figure, the improvement of all models over
the RANDOM model is also clearly visualized. Look-
ing at the total return indices for the highest and lowest
volatility targets generally provided similar insights, and
these figures are therefore presented in the Appendix.

The performance of the models during financial
downturns is further emphasized in Figure 15, where
the risk axis represents the maximum drawdown (Max
DD) of a portfolio, i.e. the largest loss sustained from
a previous high-water mark, rather than its volatility.
Again, all models reduce the risk substantially compared
to the market asset. What stands out, however, is that the
EWMA estimator decreases the maximum drawdown
the most, topping at around 26% for the highest volatility
target, thereby reducing the risk in this metric by over
ten percentage points compared to the neural networks.
By construction, the EWMA estimator projects a negative
outlook after repeated negative returns, which results in
withdrawal from the risky market asset and a shift to-
wards the risk-free asset, thus reducing losses if the mar-
ket continues to decline. This perhaps is one of the main
reasons why the EWMA estimator is often chosen for this
application. Conversely, the higher maximum drawdown
for the neural networks might be particularly harmful for
these estimators. The high degree of complexity of these

P. Schiele / Junior Management Science 6(1) (2021) 149-189172

1984 1988 1992 1996 2000 2004 2008 2012 2016
Year

0

10

20

30

40

50

To
ta

lr
et

ur
n

in
de

x

EWMA
MLP
CNN
LSTM
RANDOM
Mkt
RF

Figure 14: Total return indices for the medium risk target (12% volatility)

0.0 0.1 0.2 0.3 0.4 0.5
Maximum Portfolio Drawdown

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

A
nn

ua
liz

ed
po

rt
fo

lio
re

tu
rn

EWMA
MLP
CNN
LSTM
RANDOM
Mkt
RF

Figure 15: Portfolio performances in µ-Max DD-space
(daily rebalancing, no TC)

models compared to more traditional estimators is likely
to have an adverse effect on less sophisticated investors
from a behavioral point of view, especially since the es-
timates of these models are not easily traceable. This
applies not only to periods marked by large drawdowns
but also to periods of relative underperformance against
a benchmark.

4.1.3. Portfolio Sharpe Ratios
As the hypotheses are formulated on this basis of the

portfolio Sharpe ratios, this metric is considered next.

For a more intuitive interpretation, the annualized rather
than the daily Sharpe ratios are considered throughout
the analysis, with the non-approximated, daily ratios be-
ing presented in the Appendix.

Formally, the ex-post Sharpe ratio is defined as SR =
r̄e
σre

, where r̄e represents the mean return in excess of the
risk-free asset and σre represents the volatility of these
returns (Sharpe, 1994). Table 3 presents an overview of
all 40 Sharpe ratios obtained by the portfolios. As was
already apparent from the risk-return figure, the LSTM
achieves the highest Sharpe ratio of up to 0.942 on the

P. Schiele / Junior Management Science 6(1) (2021) 149-189 173

lower risk targets. Following the hyperbolic shape of the
efficient frontier, the Sharpe ratios decrease for the neu-
ral network estimators with increasing risk targets. The
Sharpe ratio of the EWMA estimator does not experi-
ence this decline and even shows a slight upward trend
towards the higher risk targets. Compared to the mar-
kets’ Sharpe ratio of 0.481 over the same period, all but
the RANDOM estimator showed a substantial increase in
this metric. While the MLP and LSTM networks achieve
higher Sharpe ratios compared to the EWMA estimator
across all risk levels, the CNN only leads in the lower risk
range.

To assess the significance of these results, a test of
Sharpe ratio differentials suggested by Ledoit and Wolf
(2008) was conducted. This test is suited for the com-
monly observed heavy tails of financial time series. It
uses a heteroskedasticity and autocorrelation (HAC) ro-
bust kernel estimation to compute consistent standard er-
rors on the Sharpe ratio differential. The two-sided test
statistics for all estimators against the baseline is given in
Table 4, with the null hypothesis stating the equality of
Sharpe ratios.

For the MLP and the CNN models, none of the Sharpe
ratio differentials are found to be significant. The LSTM
model shows significance at the 5% level for the risk tar-
gets up to 7% volatility and significance at the 10% level
for the risk target of 9.5% volatility, with no significance
for higher volatilities. Remarkably, the inferiority of the
RANDOM estimator also only shows significance at the
10% level. One should note that even though the RAN-
DOM model has larger test statistics, the LSTM model
shows stronger significance for the lowest three risk lev-
els. This is due to the fact that the stated test statistic rep-
resents the HAC standard error by which the Sharpe ratio
differential is normalized to determine the statistical sig-
nificance. More specifically, the p-value of the two-sided
test is given by p = 2 ∗ Φ(−

∣∣∣ ∆̂SR
σ∆̂SR

∣∣∣), where Φ(.) is the

cumulative standard normal distribution function, ∆̂SR
is the estimated non-annualized Sharpe ratio differential
and σ∆̂SR is the HAC standard error of this differential. As
the LSTM model has the largest Sharpe ratio differential
in this lower risk region, it achieves higher significance
even though the HAC standard error is slightly smaller.

In light of these results, only a partial support for Hy-
pothesis 1 can be established. While the neural network
estimators do show higher Sharpe ratios across most risk
targets, few of these performance differentials withstand
a test for statistical significance.

4.1.4. Trade Volume
While no trading costs were considered in this case,

it is still worthwhile to asses the trade volume associated
with these strategies in order to evaluate how drastically
the trading volume differs between them and potentially
by how much it would need to be reduced to make them
viable. Since the portfolios are rebalanced every day, the

trade volume is given by the sum of absolute weight dif-
ferences in the weight vector before and after the rebal-
ancing. At the beginning of day t, the weights wt,bod are
given by the optimized weights of day t− 1, to which the
portfolio was traded. During day t, the weights change
through the different returns on the assets, thus at the
end of the day, their new weight is determined by their
growth, normalized to one by a division through the sum
of adjusted portfolio weights for all assets. Formally, for
n assets, the end of day weights are given by

wt,eod =
wt,bod � (1 + rt)

∑n
ν=1 wνt,bod(1 + rνt)

, (36)

and trade volume at day t is thus being defined as the
sum of absolute differences between the end of day
weights and the optimal portfolio weights for that day, or
formally

tvt =
n

∑
ν=1

∣∣∣wνt,eod − wνt,optimized

∣∣∣ . (37)

One should note that the trade volume defined by Equa-
tion 37 is defined in the portfolio weight space, thus mak-
ing it comparable across time when the portfolio value
changes. A switch from a portfolio completely allocated
in the risk-free asset to a portfolio completely comprised
of the market asset would therefore correspond to a trade
volume of 2.0. Table 5 shows the average yearly trade
volumes for all estimators and risk targets. Since the
EWMA estimator by construction only adjusts its esti-
mates in a smoothed manner, it shows the lowest trade
volume across all estimators. Yet still, it too would not
be a viable strategy even at low trade costs. While the
CNN network shows approximately a doubling, the MLP
and especially the LSTM network show a manifold in-
crease in trade volume, with the latter even resulting in
higher trade volumes than the RANDOM model. The
slight edge in performance of the MLP and LSTM models
thus comes in conjunction with an extreme trading vol-
umes which would make them unprofitable even for very
low trading costs. These volumes are also indicative of
very unstable predictions with little clustering. Thus, in
the following, two ways to reduce the trade volume in the
presence of these unstable estimates shall be discussed.

4.2. Monthly Rebalancing
The first and perhaps most obvious way to reduce

trading costs is to reduce the rebalancing frequency. This
represents a trade-off between trading noise in the daily
data and forgoing potential profits within this noise. For
the neural networks, this changes the way they are being
trained since they now do not minimize the error based
on the next day’s, but rather the next month’s (21 days)
return. The optimization is then repeated for these mod-
els, yielding new optimized weights. Next, the portfolio
returns are computed for all risk targets, but the portfo-
lios are only traded towards the optimized weights on the
first day of each month.

P. Schiele / Junior Management Science 6(1) (2021) 149-189174

Table 3: Annualized portfolio Sharpe ratios
(daily rebalancing, no TC)

Vola Target EWMA MLP CNN LSTM RANDOM

2.0% 0.624 0.842 0.658 0.942 0.360
4.5% 0.624 0.841 0.659 0.942 0.360
7.0% 0.621 0.838 0.656 0.936 0.353
9.5% 0.611 0.812 0.644 0.894 0.344
12.0% 0.631 0.800 0.654 0.865 0.357
14.5% 0.645 0.778 0.640 0.834 0.366
17.0% 0.645 0.746 0.619 0.798 0.368
19.5% 0.646 0.721 0.606 0.775 0.366

Bold and italic table entries represent the highest and second highest Sharpe ratios
per risk target, respectively.

Table 4: Ledoit-Wolf test for equality of Sharpe ratios against baseline estimator

Vola Target MLP CNN LSTM RANDOM

2.0% 0.0088 0.0076 0.0096∗∗ 0.0100∗

4.5% 0.0088 0.0076 0.0097∗∗ 0.0100∗

7.0% 0.0088 0.0076 0.0097∗∗ 0.0100∗

9.5% 0.0088 0.0078 0.0097∗ 0.0101∗

12.0% 0.0088 0.0080 0.0098 0.0103∗

14.5% 0.0089 0.0084 0.0100 0.0105∗

17.0% 0.0089 0.0087 0.0102 0.0107∗

19.5% 0.0089 0.0088 0.0104 0.0108∗

Bold and italic table entries represent the highest and second highest
absolute test statistics per risk target, respectively.
*** p < 0.01, ** p < 0.05, * p < 0.1 for a two-sided test.

Table 5: Average yearly portfolio trade volume
(daily rebalancing)

Vola Target EWMA MLP CNN LSTM RANDOM

2.0% 6.84 29.75 10.10 42.20 40.42
4.5% 15.39 66.96 22.73 94.99 90.94
7.0% 23.62 103.51 35.00 147.04 140.77
9.5% 30.01 133.68 45.26 191.41 182.82
12.0% 33.16 152.85 52.06 220.65 210.17
14.5% 34.82 163.51 57.12 236.82 225.10
17.0% 36.00 170.29 61.08 246.75 234.08
19.5% 36.65 174.67 63.73 253.08 239.76

Bold and italic table entries represent the lowest and second lowest trade volume per
risk target, respectively.

4.2.1. Predictive Accuracy
A first insight can again be obtained by assessing the

predictive accuracy of the monthly return estimates. Ta-
ble 6 provides an overview of the error metrics of these
estimates.

First, it should be noted that these error metrics cannot
be compared directly to those of the daily forecasts since
the monthly returns are generally different from daily re-

turns in their distributions. Nevertheless, looking at the
relative error differences, the results are generally similar
to the errors on the daily return forecasts. For the risk-
free asset, the baseline estimator provides the best esti-
mates, followed by the CNN model. In contrast, the mar-
ket asset is again best predicted by the MLP and LSTM
models. For this asset, the CNN also performs well, with
only the EWMA estimator lagging behind the neural net-
works. Performing the Diebold-Mariano test against the

P. Schiele / Junior Management Science 6(1) (2021) 149-189 175

Table 6: MSE and MAE of monthly return predictions

MSE MAE

RF Mkt RF Mkt

EWMA 2.38e-07 8.47e-04 2.97e-04 2.20e-02
MLP 3.57e-06∗∗∗ 1.43e-06∗∗∗ 1.39e-03∗∗∗ 7.62e-04∗∗∗

CNN 2.54e-07 8.11e-05∗∗∗ 3.52e-04∗∗∗ 3.32e-03∗∗∗

LSTM 5.97e-07∗∗∗ 4.22e-05∗∗∗ 6.42e-04∗∗∗ 4.19e-03∗∗∗

RANDOM 1.17e-05∗∗∗ 1.06e-01∗∗∗ 2.72e-03∗∗∗ 2.54e-01∗∗∗

Bold and italic table entries represent the lowest and second lowest error per
column, respectively.
Asterisks refer to the p-value of the Diebold-Mariano test statistics against

the baseline estimator with *** p < 0.01, ** p < 0.05, * p < 0.1 for a two-sided
test.

baseline estimator also indicates a statistical significance
of all error differentials with the exception of the only
small edge of the EWMA against the CNN model when
comparing the MSE of the risk-free asset. In the table, the
significance of the Diebold-Mariano test statistics is also
indicated by the asterisks. One should note that these
significance indicators refer to an edge of the baseline es-
timator against the neural networks on the risk-free asset,
and vice versa for the market asset. However, as was the
case for the daily returns, the overall error on the risk-free
asset is much smaller, potentially suggesting a superiority
for the neural networks in portfolio performances, which
are analyzed next.

4.2.2. Risk-Return Characteristics
A first assessment of the risk-return characteristics of

the portfolios can again be obtained by plotting the re-
turns against their volatility, as shown in Figure 16.

Again, the EWMA estimator is able to reduce the
portfolio volatility the most, however, only accompanied
by lower returns compared to the neural networks. The
LSTM network provides higher returns but also higher
volatility compared to the baseline estimator, again ex-
tending the "realized frontier" of the EWMA model.
The MLP and CNN models provide similar risk-return
characteristics in this setting, with both models showing
both higher risks and returns compared to the EWMA
model. These models, unlike the CNN, achieve a better
risk-return trade-off compared to the EWMA and LSTM
models. Notably, in the monthly rebalancing case, all
portfolios are much closer to the line connecting the risk-
free and the market asset compared to the daily setting,
indicating an outperformance against the market asset as
measured by the Sharpe ratio would be unlikely. Keeping
in mind that these results were achieved without consid-
ering trade costs, the trade volumes of the portfolios are
analyzed in the following.

4.2.3. Trade Volume
As can be seen in Table 7, the reduction of trade fre-

quency is extremely effective in reducing the average
trade volume of the portfolios. All neural networks show
a lower trade volume than the baseline estimator in this
setting, potentially also indicating a more stable estimate
for monthly returns by these models. Since these trade
volumes are in a range where strategies could be prof-
itable when realistic trade costs are considered, the re-
mainder of this section shows results net of trading costs.
In fact, trade costs have changed significantly during the
observation period and thus assuming them to be con-
stant would not be a good approximation. Jones (2002)
assembled average trading costs for stocks in the Dow
Jones during the 20th century. Pillared on the presented
time series of trading costs, a linear interpolation was per-
formed for the time span from 1980-2000, starting with
costs of 90 basis points in the year 1980 and dropping to
20 basis points in the year 2000. Thereafter, the trading
costs were conservatively estimated to remain at 20 basis
points until 2019. More specifically, these figures repre-
sent the relative one-way trading costs consisting of half
of the average bid-ask spread plus the exchange commis-
sions. Thus, the return on each day where trading occurs
is reduced by the trade volume weighted trading costs.
When considering trading costs, the portfolios move ver-
tically in the risk-return space as can be seen comparing
Figure 16 to Figure 17. The vertical movement can only
be approximated in Table 7 due to the potentially differ-
ent distribution of trade volumes during the observation
period.

Due to its small trading volumes, the MLP achieves
the highest returns when trading costs are considered,
with only a narrow gap to the CNN model. However, the
return distance to the LSTM and EWMA models widens
significantly, which due to their similar trade volume con-
tinue to be close to each other. For the first time, the
random model even underperforms the risk-free asset, il-
lustrating the detrimental effect trading costs can have to
unsubstantiated trading strategies. When instead of the

P. Schiele / Junior Management Science 6(1) (2021) 149-189176

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Annualized portfolio volatility

0.04

0.06

0.08

0.10

0.12

A
nn

ua
liz

ed
po

rt
fo

lio
re

tu
rn

EWMA
MLP
CNN
LSTM
RANDOM
Mkt
RF

Figure 16: Portfolio performances in µ-σ-space
(monthly rebalancing, no TC)

Table 7: Average yearly portfolio trade volume
(monthly rebalancing)

Vola Target EWMA MLP CNN LSTM RANDOM

2.0% 1.47 0.53 0.71 1.18 1.93
4.5% 3.32 1.20 1.61 2.67 4.34
7.0% 5.10 1.80 2.43 4.08 6.71
9.5% 6.41 1.93 2.78 5.06 8.76
12.0% 7.07 1.58 2.68 5.42 10.03
14.5% 7.29 1.12 2.41 5.42 10.64
17.0% 7.43 0.85 2.30 5.41 10.96
19.5% 7.50 0.63 2.21 5.35 11.17

Bold and italic table entries represent the lowest and second lowest trade volume per
risk target, respectively.

portfolio volatility, the maximum drawdown is selected
as a risk measure, very similar interpretations ensue, with
the most notable difference being a slightly wider gap
between the MLP and CNN models. For reference, this
chart is presented in the Appendix.

4.2.4. Portfolio Sharpe Ratios
Finally, the Sharpe ratios of the portfolios are consid-

ered, with an overview given in Table 8.
Unsurprising when recalling the µ-σ plot, the MLP

and CNN models achieve the highest Sharpe ratios of up
to 0.529 for the MLP and 0.472 for the CNN. The Sharpe
ratios of the EWMA and LSTM model, on the other hand,
only reach 0.212 and 0.251, respectively. Considering the
LSTM model had the highest Sharpe ratios and trade
volumes in the daily rebalance setting, it is evident that
this model sustained the largest reduction in portfolio

returns. Potentially, this model gained its high returns
through many small adjustments to the portfolio, which
was severely restricted by the switch to a monthly rebal-
ancing schedule. In contrast to the daily rebalancing case,
the execution of the Ledoit-Wolf test suggests that the
Sharpe ratio differentials of the MLP and CNN models
against the baseline estimator are mostly significant at
the 1% level, as indicated by the asterisks in the table.
Overall, the reduction of trading frequency works well
for the MLP and CNN models, providing support for
Hypothesis 2, as these models outperform the baseline
estimator even in the presence of trading costs. However,
the LSTM model does not support this hypothesis under
these circumstances but also does not perform worse than
the baseline estimator.

P. Schiele / Junior Management Science 6(1) (2021) 149-189 177

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Annualized portfolio volatility

0.04

0.06

0.08

0.10

0.12

A
nn

ua
liz

ed
po

rt
fo

lio
re

tu
rn

EWMA
MLP
CNN
LSTM
RANDOM
Mkt
RF

Figure 17: Portfolio performances in µ-σ-space
(monthly rebalancing, with TC)

Table 8: Annualized portfolio Sharpe ratios
(monthly rebalancing, with TC)

Vola Target EWMA MLP CNN LSTM RANDOM

2.0% 0.155 0.492∗∗∗ 0.471∗∗∗ 0.208 −0.036
4.5% 0.155 0.491∗∗∗ 0.469∗∗∗ 0.208 −0.035
7.0% 0.154 0.490∗∗∗ 0.469∗∗∗ 0.208 −0.030
9.5% 0.151 0.498∗∗∗ 0.476∗∗∗ 0.207 −0.027
12.0% 0.157 0.509∗∗∗ 0.477∗∗∗ 0.211 −0.017
14.5% 0.175 0.516∗∗∗ 0.474∗∗∗ 0.226 −0.006
17.0% 0.201 0.527∗∗∗ 0.475∗∗ 0.241 0.005
19.5% 0.212 0.529∗∗∗ 0.472∗∗ 0.251 0.012

Bold and italic table entries represent the highest and second highest Sharpe ratios
per risk target, respectively.
Asterisks refer to the p-value of the Ledoit-Wolf test statistics against the baseline

estimator with *** p < 0.01, ** p < 0.05, * p < 0.1 for a two-sided test.

4.3. Weight smoothing
As previously established, the low signal-to-noise ra-

tio of historic returns results in a low certainty and high
error rate in the forecasts. Similar to the underlying prin-
ciple of exponentially smoothing previous returns, one
could also conceptualize the smoothing of the weights
resulting from the portfolio optimizations, such that the
weights only change gradually for repeatedly deviating
weights. Ideally, this would remove many of the noisy
trades while retaining the beneficial shifts in the portfo-
lio weights. One could either apply this smoothing to
the weights optimized according to the daily or monthly
forecasts or to the forecasts themselves, with the former
approach being employed in the analysis. For this, sim-
ilar to the EWMA estimator, the weights were smoothed

in an exponential manner with a smoothing parameter of
λ = 0.94. When smoothing over the optimized weights,
the average lag of the weights in the resulting compo-
sition clearly is greater than one, and thus, the half-life
and the center of mass of the chosen smoothing param-
eter were considered to find a return estimate better re-
flecting this property. These lie at 17 and 24 days, respec-
tively, and thus the monthly predictions provide a good
fit and the portfolio weights optimized using these fore-
casts were used. As no fixed trading costs are considered,
the portfolios are traded towards these smoothed weights
on a daily basis.

4.3.1. Trade volume
In order to assess the effectiveness of this methodol-

ogy, the trade volumes are examined and presented in

P. Schiele / Junior Management Science 6(1) (2021) 149-189178

Table 9.
Compared to the monthly rebalancing setting in Table

7, the smoothing of the weights results in a very similar
and even slightly higher reduction in trade volumes. In
particular, the rank of the models is unchanged, with the
MLP model still achieving the lowest trade volume, fol-
lowed by the CNN, LSTM and eventually the EWMA and
RANDOM models. In light of these promising decreases
in trade volumes and therefore corresponding trade costs,
the analysis can now be focused on the risk-adjusted re-
turns of the portfolios.

4.3.2. Risk-Return Characteristics
Again, the portfolios are plotted in the µ-σ-space for

the first assessment of performance. Figure 18 provides
this overview.

Like for the trade volumes, the ranking is again un-
changed compared to the monthly rebalancing setting.
Especially the MLP and CNN models are almost indis-
tinguishable when comparing the two approaches. The
LSTM and EWMA, on the other hand, perform better
both in terms of risk as well as return when the smoothing
method is chosen. The LSTM model can even widen its
return margin against the EWMA model, indicating that
more of the returns from the unsmoothed daily rebalanc-
ing case can be retained compared to monthly rebalanc-
ing, whilst showing less overall trade volume. Choosing
the maximum drawdown as a risk metric again shows
very similar results, implying an approximate propor-
tionality between these measures in both the smoothed
and monthly rebalancing settings. The corresponding fig-
ure can also be found in the Appendix.

4.3.3. Portfolio Sharpe Ratios
To quantify these implications of the further reduc-

tions in trade volumes, the Sharpe ratios of the portfolios
in a setting with trade costs are considered next, as pre-
sented in Table 10.

Given the similarity in the risk-return figures, it is
unsurprising that the Sharpe ratios between the monthly
rebalancing and the smoothed rebalancing show a com-
parable dependency. The MLP model again leads in this
metric, closely followed by the CNN model. According
to the Ledoit-Wolf test, the outperformance against the
EWMA model is slightly less significant in this setting
due to the slightly increased Sharpe ratio of the baseline
estimator. Up to an annualized volatility target of 12%,
the Sharpe ratio differentials are still significant at the
1% level. The higher risk categories remain significant
at the 5% level, with solely the 19.5% volatility target of
the CNN model showing only significance at the 10%
level. The increased Sharpe ratios of the LSTM model, on
the other hand, are not enough to constitute significant
outperformance against the EWMA estimator as mea-
sured by the Ledoit-Wolf test. Conversely, the increased
Sharpe ratios of the baseline estimator itself now exhibit
an outperformance against the RANDOM model, which

is statistically significant at the 1% level. The weight
smoothing approach thus underlines the findings of the
monthly rebalancing setting and provide further support
for Hypothesis 2 by showing significant outperformance
of the MLP and CNN model against the baseline. Fur-
thermore, the LSTM model now not only matches but
also outperforms the EWMA model, however without
the corresponding degree of statistical significance.

4.4. Sensitivity analysis
While the previous sections have given insights into

the performance of the employed neural network estima-
tors, it is important to check these results for robustness.
Therefore, this section analyzes the sensitivity of these re-
sults towards hyperparameter variation, universe expan-
sion, recalibration, and rerun variations.

4.4.1. Hyperparameter variation
Neural networks generally consist of a multitude of

model parameters and hyperparameters. As described in
Chapter 3, many theoretical and empirical factors were
considered when choosing these hyperparameters. This,
however, does not guarantee that these hyperparameters
are ideal for the specific data set. A variation in these
hyperparameters can have a significant impact on model
performance, which can be utilized by specifying parts of
the data as a validation data set and fine-tuning the hy-
perparameters based on the results obtained on this data.
Alternatively, one can change these hyperparameters af-
ter the analysis to assess whether the choices made are
stable across a wide range of model configurations or if
the results are particularly (un-)favorable only for the nar-
row set of chosen hyperparameters. Since each hyperpa-
rameter can be adapted individually, all possible combi-
nations of these adaptations could theoretically be evalu-
ated. However, each new combination requires a retrain-
ing of the estimators and renewed optimization. There-
fore, this approach is computationally very costly.

As a narrower approach, for each of the neural net-
works, both a smaller as well as a larger configuration
in terms of layers and nodes was tested. For the larger
configurations also a higher dropout probability of 0.6
was used, whereas the smaller configurations only used
a dropout probability of 0.4. Finally, the batch size was
increased (decreased) from 32 to 64 (16) in the larger
(smaller) configuration. The final configurations are also
schematically represented in the Appendix. The results
of these repeated analyses are depicted in Figure 19. For
each of the neural networks, the smaller and lighter mark-
ers aptly represent the performances of the smaller mod-
els, with the larger and darker markers indicating the
larger models. Notably, for the LSTM and CNN mod-
els the scaling of the models seemingly did not affect
the performance substantially. On the other hand, the
MLP model also showed similar performance for the re-
stricted model, but a worse performance for the larger

P. Schiele / Junior Management Science 6(1) (2021) 149-189 179

Table 9: Average yearly portfolio trade volume
(smoothed daily rebalancing)

Vola Target EWMA MLP CNN LSTM RANDOM

2.0% 1.01 0.55 0.62 0.82 1.63
4.5% 2.25 1.08 1.26 1.76 3.67
7.0% 3.45 1.44 1.77 2.62 5.68
9.5% 4.42 1.45 1.96 3.24 7.39
12.0% 5.02 1.18 1.93 3.54 8.53
14.5% 5.30 0.86 1.82 3.62 9.15
17.0% 5.46 0.65 1.79 3.65 9.53
19.5% 5.56 0.48 1.77 3.65 9.75

Bold and italic table entries represent the lowest and second lowest trade volume per
risk target, respectively.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Annualized portfolio volatility

0.04

0.06

0.08

0.10

0.12

A
nn

ua
liz

ed
po

rt
fo

lio
re

tu
rn

EWMA
MLP
CNN
LSTM
RANDOM
Mkt
RF

Figure 18: Portfolio performances in µ-σ-space
(smoothed daily rebalancing, with TC)

Table 10: Annualized portfolio Sharpe ratios
(smoothed daily rebalancing, with TC)

Vola Target EWMA MLP CNN LSTM RANDOM

2.0% 0.296 0.491∗∗∗ 0.472∗∗∗ 0.402 0.071∗∗∗

4.5% 0.299 0.503∗∗∗ 0.481∗∗∗ 0.405 0.071∗∗∗

7.0% 0.297 0.512∗∗∗ 0.487∗∗∗ 0.405 0.069∗∗∗

9.5% 0.285 0.517∗∗∗ 0.488∗∗∗ 0.400 0.060∗∗∗

12.0% 0.281 0.517∗∗∗ 0.484∗∗∗ 0.394 0.056∗∗∗

14.5% 0.293 0.518∗∗ 0.480∗∗ 0.393 0.062∗∗∗

17.0% 0.305 0.516∗∗ 0.474∗∗ 0.390 0.067∗∗∗

19.5% 0.312 0.514∗∗ 0.470∗ 0.387 0.072∗∗∗

Bold and italic table entries represent the highest and second highest Sharpe ratios
per risk target, respectively.
Asterisks refer to the p-value of the Ledoit-Wolf test statistics against the baseline

estimator with *** p < 0.01, ** p < 0.05, * p < 0.1 for a two-sided test.

P. Schiele / Junior Management Science 6(1) (2021) 149-189180

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Annualized portfolio volatility

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

A
nn

ua
liz

ed
po

rt
fo

lio
re

tu
rn

MLP
LSTM
CNN
EWMA
RANDOM
Mkt
RF

Figure 19: Portfolio performances in µ-σ-space
(small and large models, daily rebalancing, no TC)

model. While the larger model did, in fact, show higher
returns, these came at the cost of over-proportionally
higher volatilities, thus reducing the overall performance
from a Sharpe ratio perspective. A potential explana-
tion for the different performance characteristics for this
model could be overfitting, as the nodes per layer were
doubled, thereby quadratically increasing the parameters
per fully connected layer, as apparent when looking at
the construction of the weight matrix (compare the sam-
ple weight matrix in Equation 5). The addition of another
fully connected layer could further have contributed to
the overfitting of the model. Overall, it can be concluded
that for the data set at hand, the LSTM and CNN models
seem robust against changes in the model architecture,
with the MLP model showing inferior performance for
larger models. Thus, when implementing an MLP model,
special attention should be paid to the choice of hyperpa-
rameters, and the usage of parts of the data set to validate
hyperparameter choices seems advantageous.

4.4.2. Universe expansion
While the presented analysis considered a two-asset

case, the implementation can easily be expanded to a
multi-asset case. Thus, the two previously excluded as-
sets representing the high minus low (HML) and small
minus big (SMB) factors are added to the estimation and
subsequent optimization. This provides further valuable
insights, as unlike the risk-free asset, these factor assets
are not completely uncorrelated to the market and there-
fore, can provide a better proxy for a realistic application
of portfolio optimization. Figure 20 shows the perfor-
mances of the portfolios optimized on the extended uni-
verse in the µ-σ-space. It is apparent that both the HML

and SMB factor assets did underperform even the risk-
free asset during the testing period. For approximately
half of the volatility of the market asset, the HML return
is similar to the risk-free return, and the SMB effectively
has no return at all. These full period measures do not
necessarily hold true for every sub-period, and outper-
formance can thus be achieved by shifting the portfolio
weights towards assets with good risk-return trade-offs
at any given day. In fact, all neural networks estimators
seem to be better in this anticipatory shifting of portfo-
lio weights, as the outperformance against the baseline
estimator increases substantially. Furthermore, all neu-
ral networks achieve higher absolute returns compared
to the market asset at the upper end of the risk targets,
which was not achieved in the two-asset case. The port-
folios’ volatilities, on the other hand, are not affected
substantially, resulting in greatly improved Sharpe ra-
tios for these portfolios, as indicated by the slope of the
"realized frontiers".

Overall, the expansion of the asset universe does not
undermine the results of the main analysis based on the
two-asset case, but rather provide further support for
the usefulness of the neural network estimators. Ad-
ditionally, the remarkable performance improvements
obtained through the addition of two assets which on
their own underperformed during the training period
opens up further research questions like the inclusion of
short assets (i.e., assets which track the inverse perfor-
mance of a benchmark or index), which are also expected
to underperform in the long run in this setting due to
the positive expected return of the market, but can pro-
vide excess returns when held during times of financial
distress. Furthermore, these results justify the expan-

P. Schiele / Junior Management Science 6(1) (2021) 149-189 181

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Annualized portfolio volatility

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

A
nn

ua
liz

ed
po

rt
fo

lio
re

tu
rn EWMA

MLP
CNN
LSTM
RANDOM
Mkt
RF
HML
SMB

Figure 20: Portfolio performances in µ-σ-space
(all assets, daily rebalancing, no TC)

sion of the analysis across a broader set of asset classes,
thereby providing the optimization access to different
risk-return profiles, which are more or less advantageous
at any given moment. To achieve optimal performance,
the portfolio composition, therefore, needs to be adapted
over time, a task at which the incorporation of neural
network estimators seemingly can be beneficial.

4.4.3. Recalibration
Since capital markets are constantly evolving, even

a well-performing model trained on any given data set
would become outdated at some point. Therefore, mod-
els need to be updated to reflect the information con-
tained in more recent data. Neural networks can poten-
tially deal with this phenomenon by being retrained on
an expanding data set, also referred to as recalibration.

Theoretically, one could update the model parameters
incrementally using a single stochastic gradient descent
step whenever a single new observation is available. This
is referred to as incremental or online learning. It is in so
far advantageous as only the gradient for the most recent
sample has to be computed, thus making it computation-
ally more efficient. A more comprehensive overview of
this technique is given by Gepperth and Hammer (2016).

On the other hand, completely retraining the model
from a random initialization using the extended data set
is referred to as offline learning. This method has the ad-
vantage that it is often easier to implement and monitor.
However, due to the random initialization and the non-
convex error function, it is also possible to reach a differ-
ent local minimum during the next optimization, poten-
tially causing a more drastic change in model behavior
after each retraining. It is also possible to recalibrate the
models at less frequent intervals, for example, once per
month or once per year.

To assess the possible improvements that can be
gained from this technique, a single recalibration step

is added to the analysis. After the first half of the test
data set is predicted, these observations are added to the
training data set. Next, the model is retrained from a ran-
dom initialization on the extended data, again preventing
information leakage by introducing a gap between the
(extended) training data and the (remaining) test data.
Finally, a prediction on the second half of the test set
is performed. The performance of the recalibrated and
non-recalibrated models are plotted in Figure 21. Since
the recalibration is only relevant for the neural networks,
the EWMA and RANDOM estimators are omitted from
the figure. The added larger and darker markers refer to
the recalibrated models. The overall effect of recalibrat-
ing the model is not consistent, with the LSTM model
showing only very minor differences, the MLP model
showing a substantial improvement in returns accompa-
nied by an under-proportional increase in volatility and
the CNN even showing a small reduction in returns at
similar volatilitie. Possibly, the different patterns recog-
nized by the models in the additional data points were
not equally recurring in the following testing period.
Moreover, one should consider whether an extension of
the training window is necessarily the ideal approach,
or whether a shifting of the training window would be
more efficient as this would remove the oldest data which
potentially is least relevant for the prediction.

An alternative approach would be to extend the win-
dow, but weight each sample according to its recency,
thereby overweighing newer observations compared to
older ones. An overview of this approach is given by
Morantz, Whalen, and Zhang (2008). While different
weighting schemes can be conceptualized, following the
argumentation of the EWMA estimator itself, an expo-
nential decay of the importance of previous samples
could be used as a starting point. In conclusion, the
recalibration of the model can substantially affect the
performance of the model in the long run but is not a

P. Schiele / Junior Management Science 6(1) (2021) 149-189182

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Annualized portfolio volatility

0.04

0.06

0.08

0.10

0.12

0.14

A
nn

ua
liz

ed
po

rt
fo

lio
re

tu
rn

MLP
LSTM
CNN
Mkt
RF

Figure 21: Portfolio performances in µ-σ-space
(recalibrated, daily rebalancing, no TC)

guaranteed way to improve performance. The different
introduced approaches need to be carefully evaluated
when implementing a neural network, especially when
considering the computational burden of frequently re-
calibrating large models.

4.4.4. Prediction consistency
Since the gradient descent algorithm starts with ran-

dom initialization of the model, it is possible that differ-
ent local minima are obtained as the objective function
is often non-convex. While Du, Lee, Li, Wang, and Zhai
(2018) show that overparameterized networks can find
the global minimum of the error function, Choromanska,
Henaff, Mathieu, Arous, and LeCun (2014) and Good-
fellow et al. (2016) conclude that it is generally more
likely to obtain local minima close to the global mini-
mum. Furthermore, at the point at which the training
process is stopped, as defined by the number of epochs,
different model parameters can follow from different
paths towards the minimum as a result of the random
initialization. Repeating the analysis thus gives insights
into how different the obtained optimization results are.
Additionally, repeating the analysis supports the repro-
ducibility of results. While commonly a fixed random
seed is used in the analysis, this does not guarantee that
the outcomes based on this seed are representative for
any starting values. Furthermore, it is not easily possible
to fix all occurrences of randomness in the interplay of
different programming libraries used. Thus, the main
analysis with daily rebalancing was repeated three times.
Figure 22 gives a first overview of the results, with again
the EWMA and RANDOM estimators being omitted.
Compared to the initial analysis, the two additional rep-

etitions are again presented with smaller and lighter as
well as larger and darker markers. The LSTM model
shows the smallest rerun variation across the samples,
with both repeated "realized frontiers" closely tracking
the initial performances. For the MLP model, one repeti-
tion shows higher returns for similar volatilities, whereas
the other shows higher returns at higher volatilities, with
the overall results being similar. For the CNN model, on
the other hand, both repetitions show up to two percent-
age points lower returns at similar volatilities, marking
the largest deviation across the models. Most impor-
tantly, the overall impression of model performances
remains valid when comparing multiple runs of model
training, especially when considering the sensitivity of
portfolio optimizations to the estimation of the expected
asset returns. This is especially pronounced when the
case of daily rebalancing based on single day return pre-
dictions is considered where forecasts are particularly
unstable. Thus, the analysis of rerun consistency was
also performed for the daily smoothed portfolios based
on monthly predicted returns. As apparent from Figure
23, the smoothing in combination with the substantially
more stable monthly returns, results in almost unaltered
portfolio performances across multiple runs.

Overall, the repetition of the analysis provides sup-
port for the main findings by corroborating that the ob-
served portfolio performances based on the neural net-
work estimates were not coincidentally obtained from
an exceptional manifestation of otherwise clearly worse-
performing models. However, for practical applications,
variation between runs would obviously pose a greater
problem. In this case, one could consider choosing ei-
ther the return forecasts or the optimized weights based

P. Schiele / Junior Management Science 6(1) (2021) 149-189 183

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Annualized portfolio volatility

0.04

0.06

0.08

0.10

0.12
A

nn
ua

liz
ed

po
rt

fo
lio

re
tu

rn

MLP
LSTM
CNN
Mkt
RF

Figure 22: Portfolio performances in µ-σ-space
(rerun consistency, daily rebalancing, no TC)

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Annualized portfolio volatility

0.04

0.06

0.08

0.10

0.12

A
nn

ua
liz

ed
po

rt
fo

lio
re

tu
rn

MLP
LSTM
CNN
Mkt
RF

Figure 23: Portfolio performances in µ-σ-space
(rerun consistency, smoothed daily rebalancing, no TC)

on the mean of multiple runs, which would, however,
again sharply increase the computational demands of the
implementation.

4.5. Discussion
As could be shown in the previous sections of this the-

sis and the resulting partial acceptance of the formulated
hypotheses, neural networks were found to be beneficial
in a portfolio selection framework for the data set under
examination. However, several challenges arise with the

generalization of these results.
Firstly, certain common assumptions in academia em-

ployed in this thesis do not entirely reflect the real-world
dynamics of financial markets. One of the most com-
mon deviations is that portfolios can be optimized after
observing the closing prices in real-time, and the result-
ing allocations are also obtained based on these very
prices. Arguably, this is rather a result of data availability
and more specifically, the lack of intraday prices, whose
presence would allow modeling a time gap between op-

P. Schiele / Junior Management Science 6(1) (2021) 149-189184

timization and trading prices. However, this most likely
does not impact the fundamental interpretability of re-
sults, as price differences between optimization and exe-
cution prices are not one-sided and likely provide netting
effects over time. A more severe impact likely arises due
to the negligence of tax effects, as potential savings from
tax deferrals are not realized when sell trades on assets
with taxable gains are executed. Yet, the baseline model
also exhibits this negligence and in fact, boasts even
higher trading volumes in the monthly and smoothed
rebalancing settings compared to the neural network es-
timators, thus potentially even strengthening the neural
networks’ edge. In order to avoid such trades, a buy
and hold strategy could also be implemented and indeed
would be a viable option to compare against the neural
networks in future analyses, especially since the mar-
ket asset provided the highest absolute return in many
settings.

Secondly, implementations of neural networks, es-
pecially in the analysis of time series, often are subject
to explicit and implicit research biases. Hence, special
care was taken to avoid common pitfalls within the pro-
cess. This includes the prevention of information leak-
age through complete separation of training and testing
data for both feature engineering and data scaling. At
the same time, the model hyperparameters were chosen
based on academic consensus and best practices rather
than repeated iterations on the same data set, which
would immediately invalidate the generalization power.

Thirdly, while it lies beyond the scope of this analy-
sis, the additional model complexity brought on by the
neural networks can potentially lead to behavioral conse-
quences when implemented in a real-time environment.
One example could be a reduced model confidence in
times of underperformance, possibly leading to adverse
decision-making. This is especially true for neural net-
works, as their mapping process of inputs and outputs is
poorly understood and can be counterintuitive at times
(e.g. Szegedy et al., 2013).

Finally, a higher degree of reliability on the results can
only be obtained by repeating the analysis for additional
data sets reflecting other asset classes, markets and time
periods, thereby assessing whether the properties of the
neural networks in a portfolio optimization framework
retain their validity across the multitude of possible ap-
plications found in financial data.

5. Conclusion

After a brief introduction of the dynamic portfolio
optimization framework, three types of neural networks
with potentially advantageous properties for the estima-
tion of expected asset returns are presented: the Multi-
layer Perceptron, Convolutional Neural Network, and
Long Short-Term Memory Network. The usefulness of
these neural networks is then evaluated by using their

asset return estimates within a dynamic portfolio op-
timization framework and an asset universe consisting
of a risk-free and a market asset. This thesis finds evi-
dence that in the analyzed data set the neural networks
were able to outperform a more traditional EWMA esti-
mator in most settings. In a daily rebalancing scenario
and utilizing daily return estimates, the outperformance
was mostly insignificant, and the neural network esti-
mates would have resulted in infeasible trade volumes,
thus providing only partial support for the correspond-
ing hypothesis. Using monthly return estimates and a
likewise monthly rebalancing frequency sharply reduced
the trade volumes of the neural networks, resulting in a
mostly significant outperformance when historically ad-
justed trading costs are considered. Applying a smooth-
ing function to the optimized portfolio weights and again
using a daily rebalancing frequency results in even lower
trade volumes, thus further strengthening the outperfor-
mance of the neural networks and yielding an increase
in Sharpe ratios of up to 0.2 against the EWMA base-
line. Therefore, support is presented for the hypothesis
associated with outperformance in the scenarios aiming
at reduced trading volumes. The results were further
validated through the assessment of model sensitivities
towards hyperparameter variations, recalibrations, and
repeated executions. Moreover, the analysis of an asset
universe extended beyond two assets has shown remark-
able results, substantiating the future analysis of other
combinations of asset classes, market regions, and time
periods.

Besides these naturally emerging research questions,
the incorporation of neural network research into the
portfolio optimization framework opens a multitude of
additional research opportunities. Related to this the-
sis, weighting schemes for individual observations dur-
ing the training phase could be considered in order to
increase the relevance of more recent samples. Further-
more, instead of modeling each asset’s time series in-
dividually, returns of other assets could be included as
additional features to implicitly reflect the dependency
structure between asset returns in the model. Neural
networks are not restricted to the use of historic returns
either, enabling the inclusion of fundamental or other-
wise relevant data into the estimation. Similarly, neural
networks can directly be incorporated in the estimation
of asset covariances or, taking it one step further, the
optimal portfolio weights (and thus performance) could
directly be targeted by a neural network. Thereby the mo-
ment estimation and optimization steps can be combined
in a single architecture, providing a transition to rein-
forcement learning models. Whenever neural networks
are applied in the context of financial data, however, one
needs to pay particular attention to the unique challenges
arising from these models, such that a compromise of
the result validity through repeated analysis on a single
data set or information leakage can be prevented. As
reinforced by this thesis, financial markets by their very

P. Schiele / Junior Management Science 6(1) (2021) 149-189 185

nature continue to provide a challenging environment for
reliable forecasting. Depending on the implementation,
advanced models such as neural networks might be able
to provide improvements in academic analyses, but one
always needs to keep in mind the inherent limitations of
forecasts in this setting. For practitioners, the potential
adverse effects of additional model complexity should
not be underestimated, and if implemented, research
into the traceability of the neural network estimates is
demanded.

P. Schiele / Junior Management Science 6(1) (2021) 149-189186

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
. . . Zheng, X. (2015). TensorFlow: Large-scale machine learning on
heterogeneous systems. Retrieved from http://tensorflow.org/
(Software available from tensorflow.org)

Alpaydin, E. (2010). Introduction to machine learning. Cambridge: MIT
Press.

Antonacci, G. (2014). Dual Momentum Investing: An Innovative Approach
for Higher Returns with Lower Risk. New York: McGraw-Hill Ed-
ucation.

Asness, C., Frazzini, A., Israel, R., & Moskowitz, T. (2014, 9). Fact,
Fiction, and Momentum Investing. The Journal of Portfolio Man-
agement, 40(5), 75–92. Retrieved from http://jpm.pm-research
.com/lookup/doi/10.3905/jpm.2014.40.5.075 doi: 10.3905/
jpm.2014.40.5.075

Azoff, E. M. (1994). Neural network time series forecasting of financial mar-
kets (1st ed.). New York: John Wiley & Sons.

Bartlett, M. S. (1946). On the Theoretical Specification and
Sampling Properties of Autocorrelated Time-Series. Supple-
ment to the Journal of the Royal Statistical Society, 8(1), 27–
41. Retrieved from https://www.jstor.org/stable/2983611
?origin=crossref doi: 10.2307/2983611

Baz, J., Granger, N. M., Harvey, C. R., Le Roux, N., & Rattray, S. (2015).
Dissecting Investment Strategies in the Cross Section and Time
Series. SSRN Electronic Journal. Retrieved from http://www.ssrn
.com/abstract=2695101 doi: 10.2139/ssrn.2695101

Bengio, Y. (2009). Learning Deep Architectures for AI. Foundations and
Trends in Machine Learning, 2(1), 1–127. Retrieved from http://
www.nowpublishers.com/article/Details/MAL-006 doi: 10
.1561/2200000006

Bengio, Y. (2012). Practical Recommendations for Gradient-Based Train-
ing of Deep Architectures. (arXiv:1206.5533v2 [cs.LG]). Retrieved
from http://deeplearning.net/software/pylearn2

Bengio, Y., Simard, P., & Frasconi, P. (1994, 3). Learning long-term
dependencies with gradient descent is difficult. IEEE Transac-
tions on Neural Networks, 5(2), 157–166. Retrieved from https://
ieeexplore.ieee.org/document/279181/ doi: 10.1109/72
.279181

Bergerson, K., & Wunsch, D. C. (1991). A commodity trading model
based on a neural network-expert system hybrid. In Ijcnn-91-
seattle international joint conference on neural networks (Vol. i, pp.
289–293). IEEE. Retrieved from http://ieeexplore.ieee.org/
document/155192/ doi: 10.1109/IJCNN.1991.155192

Berry, M. J. A., & Linoff, G. (1997). Data Mining Techniques. New York:
John Wiley & Sons.

Best, M. J., & Grauer, R. R. (1991, 4). On the Sensitivity of Mean-
Variance-Efficient Portfolios to Changes in Asset Means: Some
Analytical and Computational Results. Review of Financial
Studies, 4(2), 315–342. Retrieved from https://academic.oup
.com/rfs/article-lookup/doi/10.1093/rfs/4.2.315 doi:
10.1093/rfs/4.2.315

Black, F., & Litterman, R. (1992, 9). Global Portfolio Optimization. Finan-
cial Analysts Journal, 48(5), 28–43. Retrieved from https://www
.tandfonline.com/doi/full/10.2469/faj.v48.n5.28 doi:
10.2469/faj.v48.n5.28

Blum, A. (1992). Neural Networks in C++. New York: John Wiley & Sons.
Borovykh, A., Bohte, S., & Oosterlee, C. W. (2017, 3). Conditional

Time Series Forecasting with Convolutional Neural Networks.
(arXiv:1703.04691v5 [stat.ML]). Retrieved from http://arxiv
.org/abs/1703.04691

Brent, R. P. (1973). Algorithms for Minimization Without Derivatives.
In Algorithms for minimization without derivatives (chap. 3-4). En-
glewood Cliffs: Prentice-Hall.

Brown, D. B., & Smith, J. E. (2011, 10). Dynamic Port-
folio Optimization with Transaction Costs: Heuristics and
Dual Bounds. Management Science, 57(10), 1752–1770.
Retrieved from http://pubsonline.informs.org/doi/abs/10
.1287/mnsc.1110.1377 doi: 10.1287/mnsc.1110.1377

Chen, A.-S., Leung, M. T., & Daouk, H. (2003, 5). Application of neural
networks to an emerging financial market: forecasting and trad-
ing the Taiwan Stock Index. Computers & Operations Research,

30(6), 901–923. Retrieved from https://linkinghub.elsevier
.com/retrieve/pii/S0305054802000370 doi: 10.1016/S0305
-0548(02)00037-0

Chiappori, P.-A., & Paiella, M. (2011, 12). Relative risk aver-
sion is constant: evidence from panel data. Journal of the
European Economic Association, 9(6), 1021–1052. Retrieved
from https://academic.oup.com/jeea/article-lookup/doi/
10.1111/j.1542-4774.2011.01046.x doi: 10.1111/j.1542-4774
.2011.01046.x

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., & Bengio, Y. (2014, 6). Learning Phrase Repre-
sentations using RNN Encoder-Decoder for Statistical Machine
Translation. (arXiv:1406.1078v3 [cs.CL]). Retrieved from http://
arxiv.org/abs/1406.1078

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., & LeCun,
Y. (2014, 11). The Loss Surfaces of Multilayer Networks.
(arXiv:1412.0233v3 [cs.LG]). Retrieved from http://arxiv.org/
abs/1412.0233

Ciresan, D., Meier, U., & Schmidhuber, J. (2012, 6). Multi-column
deep neural networks for image classification. In 2012 ieee
conference on computer vision and pattern recognition (pp. 3642–
3649). IEEE. Retrieved from http://ieeexplore.ieee.org/
document/6248110/ doi: 10.1109/CVPR.2012.6248110

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., &
Kuksa, P. (2011, 3). Natural Language Processing (almost) from
Scratch. (arXiv:1103.0398v1 [cs.LG]). Retrieved from http://
arxiv.org/abs/1103.0398

Cootner, P. H. (1964). The random character of stock market prices. Cam-
bridge: MIT Press.

Cybenko, G. (1989, 12). Approximation by superpositions of a sig-
moidal function. Mathematics of Control, Signals, and Systems, 2(4),
303–314. Retrieved from http://link.springer.com/10.1007/
BF02551274 doi: 10.1007/BF02551274

Deboeck, G. J. (1994). Trading on the edge: neural, genetic, and fuzzy systems
for chaotic financial markets (Vol. 39). New York: John Wiley &
Sons.

Diebold, F. X. (2015, 1). Comparing Predictive Accuracy, Twenty
Years Later: A Personal Perspective on the Use and Abuse of
Diebold–Mariano Tests. Journal of Business & Economic Statistics,
33(1), 1–9. Retrieved from http://www.tandfonline.com/doi/
abs/10.1080/07350015.2014.983236 doi: 10.1080/07350015
.2014.983236

Diebold, F. X., & Mariano, R. S. (1995, 7). Comparing Predic-
tive Accuracy. Journal of Business & Economic Statistics, 13(3),
253–263. Retrieved from http://www.tandfonline.com/doi/
abs/10.1080/07350015.1995.10524599 doi: 10.1080/07350015
.1995.10524599

Di Persio, L., & Honchar, O. (2016). Artificial neural networks archi-
tectures for stock price prediction: Comparisons and applica-
tions. International Journal of Circuits, Systems and Signal Process-
ing, 10, 403–413. Retrieved from http://www.naun.org/main/
NAUN/circuitssystemssignal/2016/b482005-303.pdf

Du, S. S., Lee, J. D., Li, H., Wang, L., & Zhai, X. (2018, 11). Gra-
dient Descent Finds Global Minima of Deep Neural Networks.
(arXiv:1811.03804v4 [cs.LG]). Retrieved from http://arxiv
.org/abs/1811.03804

Dumas, B., & Luciano, E. (1991, 6). An Exact Solution to a Dynamic
Portfolio Choice Problem under Transactions Costs. The Journal
of Finance, 46(2), 577. Retrieved from https://www.jstor.org/
stable/2328837?origin=crossref doi: 10.2307/2328837

Dybvig, P. H. (1984, 3). Short Sales Restrictions and Kinks on the
Mean Variance Frontier. The Journal of Finance, 39(1), 239–244.
Retrieved from http://doi.wiley.com/10.1111/j.1540-6261
.1984.tb03871.x doi: 10.1111/j.1540-6261.1984.tb03871.x

Egmont-Petersen, M., de Ridder, D., & Handels, H. (2002, 10). Im-
age processing with neural networks—a review. Pattern Recog-
nition, 35(10), 2279–2301. Retrieved from https://linkinghub
.elsevier.com/retrieve/pii/S0031320301001789 doi: 10
.1016/S0031-3203(01)00178-9

Elman, J. L. (1990, 6). Finding structure in time. Cognitive Science, 14(2),
179–211. Retrieved from http://doi.wiley.com/10.1016/0364

http://tensorflow.org/
http://jpm.pm-research.com/lookup/doi/10.3905/jpm.2014.40.5.075
http://jpm.pm-research.com/lookup/doi/10.3905/jpm.2014.40.5.075
https://www.jstor.org/stable/2983611?origin=crossref
https://www.jstor.org/stable/2983611?origin=crossref
http://www.ssrn.com/abstract=2695101
http://www.ssrn.com/abstract=2695101
http://www.nowpublishers.com/article/Details/MAL-006
http://www.nowpublishers.com/article/Details/MAL-006
http://deeplearning.net/software/pylearn2
https://ieeexplore.ieee.org/document/279181/
https://ieeexplore.ieee.org/document/279181/
http://ieeexplore.ieee.org/document/155192/
http://ieeexplore.ieee.org/document/155192/
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/4.2.315
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/4.2.315
https://www.tandfonline.com/doi/full/10.2469/faj.v48.n5.28
https://www.tandfonline.com/doi/full/10.2469/faj.v48.n5.28
http://arxiv.org/abs/1703.04691
http://arxiv.org/abs/1703.04691
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1110.1377
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.1110.1377
https://linkinghub.elsevier.com/retrieve/pii/S0305054802000370
https://linkinghub.elsevier.com/retrieve/pii/S0305054802000370
https://academic.oup.com/jeea/article-lookup/doi/10.1111/j.1542-4774.2011.01046.x
https://academic.oup.com/jeea/article-lookup/doi/10.1111/j.1542-4774.2011.01046.x
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1412.0233
http://arxiv.org/abs/1412.0233
http://ieeexplore.ieee.org/document/6248110/
http://ieeexplore.ieee.org/document/6248110/
http://arxiv.org/abs/1103.0398
http://arxiv.org/abs/1103.0398
http://link.springer.com/10.1007/BF02551274
http://link.springer.com/10.1007/BF02551274
http://www.tandfonline.com/doi/abs/10.1080/07350015.2014.983236
http://www.tandfonline.com/doi/abs/10.1080/07350015.2014.983236
http://www.tandfonline.com/doi/abs/10.1080/07350015.1995.10524599
http://www.tandfonline.com/doi/abs/10.1080/07350015.1995.10524599
http://www.naun.org/main/NAUN/circuitssystemssignal/2016/b482005-303.pdf
http://www.naun.org/main/NAUN/circuitssystemssignal/2016/b482005-303.pdf
http://arxiv.org/abs/1811.03804
http://arxiv.org/abs/1811.03804
https://www.jstor.org/stable/2328837?origin=crossref
https://www.jstor.org/stable/2328837?origin=crossref
http://doi.wiley.com/10.1111/j.1540-6261.1984.tb03871.x
http://doi.wiley.com/10.1111/j.1540-6261.1984.tb03871.x
https://linkinghub.elsevier.com/retrieve/pii/S0031320301001789
https://linkinghub.elsevier.com/retrieve/pii/S0031320301001789
http://doi.wiley.com/10.1016/0364-0213(90)90002-E
http://doi.wiley.com/10.1016/0364-0213(90)90002-E
http://doi.wiley.com/10.1016/0364-0213(90)90002-E

P. Schiele / Junior Management Science 6(1) (2021) 149-189 187

-0213(90)90002-E doi: 10.1016/0364-0213(90)90002-E
Elton, E. J., & Gruber, M. J. (1974). On the Optimality of Some Multi-

period Portfolio Selection Criteria. The Journal of Business, 47(2),
231–243. doi: 10.1086/295633

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., &
Thrun, S. (2017, 2). Dermatologist-level classification of skin can-
cer with deep neural networks. Nature, 542(7639), 115–118. Re-
trieved from http://www.nature.com/articles/nature21056
doi: 10.1038/nature21056

Fama, E. F. (1970, 5). Efficient Capital Markets: A Review of The-
ory and Empirical Work. The Journal of Finance, 25(2), 383–
417. Retrieved from https://www.jstor.org/stable/2325486
?origin=crossref doi: 10.2307/2325486

Fama, E. F., & French, K. R. (1993, 2). Common risk factors in the
returns on stocks and bonds. Journal of Financial Economics,
33(1), 3–56. Retrieved from https://linkinghub.elsevier
.com/retrieve/pii/0304405X93900235 doi: 10.1016/0304
-405X(93)90023-5

Fama, E. F., & French, K. R. (2019). Kenneth r. french - data li-
brary. Retrieved 2019-08-08, from https://mba.tuck.dartmouth
.edu/pages/faculty/ken.french/data_library.html ([on-
line] Available at: https://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/data_library.html [Accessed 2019-08-
08])

Gal, Y., & Ghahramani, Z. (2015, 12). A Theoretically
Grounded Application of Dropout in Recurrent Neural Net-
works. (arXiv:1512.05287v5 [stat.ML]). Retrieved from http://
arxiv.org/abs/1512.05287

Gârleanu, N., & Pedersen, L. H. (2018, 8). Efficiently Inefficient Markets
for Assets and Asset Management. The Journal of Finance, 73(4),
1663–1712. Retrieved from http://doi.wiley.com/10.1111/
jofi.12696 doi: 10.1111/jofi.12696

Gately, E. (1995). Neural networks for financial forecasting. New York: John
Wiley & Sons.

Gepperth, A., & Hammer, B. (2016). Incremental learning algorithms
and applications. ESANN 2016 - 24th European Symposium on Ar-
tificial Neural Networks(April), 357–368.

Gers, F. A., & Schmidhuber, J. (2000). Recurrent nets that time
and count. In Proceedings of the ieee-inns-enns international
joint conference on neural networks. ijcnn 2000. neural computing:
New challenges and perspectives for the new millennium (pp. 189–
194). IEEE. Retrieved from http://ieeexplore.ieee.org/
document/861302/ doi: 10.1109/IJCNN.2000.861302

Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neu-
ral networks. In G. Gordon, D. Dunson, & M. Dudík (Eds.),
Proceedings of the fourteenth international conference on artificial in-
telligence and statistics (Vol. 15, pp. 315–323). Fort Lauderdale:
PMLR. Retrieved from http://proceedings.mlr.press/v15/
glorot11a.html

Goetzmann, W. N., & Huang, S. (2018, 12). Momentum in Impe-
rial Russia. Journal of Financial Economics, 130(3), 579–591. Re-
trieved from https://linkinghub.elsevier.com/retrieve/
pii/S0304405X18301843 doi: 10.1016/j.jfineco.2018.07.008

Goldberg, Y. (2016, 11). A Primer on Neural Network Models for Natu-
ral Language Processing. Journal of Artificial Intelligence Research,
57, 345–420. Retrieved from https://jair.org/index.php/
jair/article/view/11030 doi: 10.1613/jair.4992

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. Cam-
bridge: MIT Press.

Graves, A., Liwicki, M., Fernandez, S., Bertolami, R., Bunke, H., &
Schmidhuber, J. (2009, 5). A Novel Connectionist System for Un-
constrained Handwriting Recognition. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 31(5), 855–868. Retrieved
from http://ieeexplore.ieee.org/document/4531750/ doi:
10.1109/TPAMI.2008.137

Graves, A., Mohamed, A.-r., & Hinton, G. (2013, 3). Speech Recogni-
tion with Deep Recurrent Neural Networks. (arXiv:1303.5778v1
[cs.NE]). Retrieved from http://arxiv.org/abs/1303.5778

Grefenstette, E., Blunsom, P., de Freitas, N., & Hermann, K. M. (2014,
4). A Deep Architecture for Semantic Parsing. (arXiv:1404.7296v1
[cs.CL]). Retrieved from http://arxiv.org/abs/1404.7296

Hahnloser, R. H. R., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., &
Seung, H. S. (2000, 6). Digital selection and analogue amplifica-
tion coexist in a cortex-inspired silicon circuit. Nature, 405(6789),
947–951. Retrieved from http://www.nature.com/articles/
35016072 doi: 10.1038/35016072

Harvey, D., Leybourne, S., & Newbold, P. (1997, 6). Testing the equal-
ity of prediction mean squared errors. International Journal of
Forecasting, 13(2), 281–291. Retrieved from https://linkinghub
.elsevier.com/retrieve/pii/S0169207096007194 doi: 10
.1016/S0169-2070(96)00719-4

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statisti-
cal Learning. New York: Springer. Retrieved from http://link
.springer.com/10.1007/978-0-387-84858-7 doi: 10.1007/
978-0-387-84858-7

Hayou, S., Doucet, A., & Rousseau, J. (2018, 5). On the Selection
of Initialization and Activation Function for Deep Neural Net-
works. (arXiv:1805.08266v2 [stat.ML]). Retrieved from http://
arxiv.org/abs/1805.08266

Hill, T., O’Connor, M., & Remus, W. (1996, 7). Neural Network Models
for Time Series Forecasts. Management Science, 42(7), 1082–1092.
Retrieved from http://pubsonline.informs.org/doi/abs/10
.1287/mnsc.42.7.1082 doi: 10.1287/mnsc.42.7.1082

Hinton, G., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdi-
nov, R. R. (2012, 7). Improving neural networks by preventing
co-adaptation of feature detectors. (arXiv:1207.0580v1 [cs.NE]).
Retrieved from http://arxiv.org/abs/1207.0580

Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Net-
zen [Investigations of dynamic neural nets] (Unpublished doctoral
dissertation). Technical University of Munich.

Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient
flow in recurrent nets: the difficulty of learning long-term dependen-
cies. A field guide to dynamical recurrent neural networks. IEEE
Press.

Hochreiter, S., & Schmidhuber, J. (1997, 11). Long Short-Term
Memory. Neural Computation, 9(8), 1735–1780. Retrieved
from http://www.mitpressjournals.org/doi/10.1162/neco
.1997.9.8.1735 doi: 10.1162/neco.1997.9.8.1735

Hornik, K. (1991). Approximation capabilities of multilayer feed-
forward networks. Neural Networks, 4(2), 251–257. Re-
trieved from https://linkinghub.elsevier.com/retrieve/
pii/089360809190009T doi: 10.1016/0893-6080(91)90009-T

Hurst, B., Ooi, Y. H., & Pedersen, L. H. (2017). A Century of Evidence
on Trend-Following Investing. SSRN Electronic Journal. Retrieved
from https://www.ssrn.com/abstract=2993026 doi: 10.2139/
ssrn.2993026

Ioffe, S., & Szegedy, C. (2015, 2). Batch Normalization: Acceler-
ating Deep Network Training by Reducing Internal Covariate
Shift. (arXiv:1502.03167v3 [cs.LG]). Retrieved from http://
arxiv.org/abs/1502.03167

Jegadeesh, N., & Titman, S. (1993, 3). Returns to Buying Winners
and Selling Losers: Implications for Stock Market Efficiency.
The Journal of Finance, 48(1), 65–91. Retrieved from http://
doi.wiley.com/10.1111/j.1540-6261.1993.tb04702.x doi:
10.1111/j.1540-6261.1993.tb04702.x

Jones, C. M. (2002). A century of stock market liquidity and trading
costs. SSRN Electronic Journal.

Jordan, M. I. (1997). Serial Order: A Parallel Distributed Processing Ap-
proach. In Advances in psychology, volume 121 (pp. 471–495). Re-
trieved from https://linkinghub.elsevier.com/retrieve/
pii/S0166411597801112 doi: 10.1016/S0166-4115(97)80111-2

J.P. Morgan. (1996). J.p. morgan/reuters riskmetricstm- technical document.
New York: J.P. Morgan.

Kaastra, I., & Boyd, M. (1996, 4). Designing a neural network for
forecasting financial and economic time series. Neurocomputing,
10(3), 215–236. Retrieved from http://linkinghub.elsevier
.com/retrieve/pii/0925231295000399 doi: 10.1016/0925
-2312(95)00039-9

Kalchbrenner, N., Grefenstette, E., & Blunsom, P. (2014). A Convolu-
tional Neural Network for Modelling Sentences. In Proceedings
of the 52nd annual meeting of the association for computational lin-
guistics (volume 1: Long papers) (pp. 655–665). Stroudsburg: Asso-

http://doi.wiley.com/10.1016/0364-0213(90)90002-E
http://doi.wiley.com/10.1016/0364-0213(90)90002-E
http://www.nature.com/articles/nature21056
https://www.jstor.org/stable/2325486?origin=crossref
https://www.jstor.org/stable/2325486?origin=crossref
https://linkinghub.elsevier.com/retrieve/pii/0304405X93900235
https://linkinghub.elsevier.com/retrieve/pii/0304405X93900235
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://arxiv.org/abs/1512.05287
http://arxiv.org/abs/1512.05287
http://doi.wiley.com/10.1111/jofi.12696
http://doi.wiley.com/10.1111/jofi.12696
http://ieeexplore.ieee.org/document/861302/
http://ieeexplore.ieee.org/document/861302/
http://proceedings.mlr.press/v15/glorot11a.html
http://proceedings.mlr.press/v15/glorot11a.html
https://linkinghub.elsevier.com/retrieve/pii/S0304405X18301843
https://linkinghub.elsevier.com/retrieve/pii/S0304405X18301843
https://jair.org/index.php/jair/article/view/11030
https://jair.org/index.php/jair/article/view/11030
http://ieeexplore.ieee.org/document/4531750/
http://arxiv.org/abs/1303.5778
http://arxiv.org/abs/1404.7296
http://www.nature.com/articles/35016072
http://www.nature.com/articles/35016072
https://linkinghub.elsevier.com/retrieve/pii/S0169207096007194
https://linkinghub.elsevier.com/retrieve/pii/S0169207096007194
http://link.springer.com/10.1007/978-0-387-84858-7
http://link.springer.com/10.1007/978-0-387-84858-7
http://arxiv.org/abs/1805.08266
http://arxiv.org/abs/1805.08266
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.42.7.1082
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.42.7.1082
http://arxiv.org/abs/1207.0580
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
http://www.mitpressjournals.org/doi/10.1162/neco.1997.9.8.1735
https://linkinghub.elsevier.com/retrieve/pii/089360809190009T
https://linkinghub.elsevier.com/retrieve/pii/089360809190009T
https://www.ssrn.com/abstract=2993026
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://doi.wiley.com/10.1111/j.1540-6261.1993.tb04702.x
http://doi.wiley.com/10.1111/j.1540-6261.1993.tb04702.x
https://linkinghub.elsevier.com/retrieve/pii/S0166411597801112
https://linkinghub.elsevier.com/retrieve/pii/S0166411597801112
http://linkinghub.elsevier.com/retrieve/pii/0925231295000399
http://linkinghub.elsevier.com/retrieve/pii/0925231295000399

P. Schiele / Junior Management Science 6(1) (2021) 149-189188

ciation for Computational Linguistics. Retrieved from http://
aclweb.org/anthology/P14-1062 doi: 10.3115/v1/P14-1062

Kang, L., Ye, P., Li, Y., & Doermann, D. (2014, 6). Convolutional Neu-
ral Networks for No-Reference Image Quality Assessment. In
2014 ieee conference on computer vision and pattern recognition (pp.
1733–1740). IEEE. Retrieved from http://ieeexplore.ieee
.org/lpdocs/epic03/wrapper.htm?arnumber=6909620 doi:
10.1109/CVPR.2014.224

Kaufman, S., Rosset, S., & Perlich, C. (2011). Leakage in data min-
ing. In Proceedings of the 17th acm sigkdd international conference on
knowledge discovery and data mining - kdd ’11 (p. 556). New York:
ACM Press. Retrieved from http://dl.acm.org/citation.cfm
?doid=2020408.2020496 doi: 10.1145/2020408.2020496

Kim, Y. (2014, 8). Convolutional Neural Networks for Sentence Clas-
sification. (arXiv:1408.5882v2 [cs.CL]). Retrieved from http://
arxiv.org/abs/1408.5882

Kingma, D. P., & Ba, J. (2014, 12). Adam: A Method for Stochas-
tic Optimization. (arXiv:1412.6980v9 [cs.LG]). Retrieved from
http://arxiv.org/abs/1412.6980

Krauss, C., Do, X. A., & Huck, N. (2017). Deep neural networks,
gradient-boosted trees, random forests: Statistical arbitrage on
the S&P 500. European Journal of Operational Research, 259(2),
689–702. Retrieved from http://dx.doi.org/10.1016/j.ejor
.2016.10.031 doi: 10.1016/j.ejor.2016.10.031

Laptev, N., Yosinski, J., Li, L. E., & Smyl, S. (2017). Time-series extreme
event forecasting with neural networks at uber. International Con-
ference on Machine Learning, 34, 1–5.

Lawrence, S., Giles, C., Ah Chung Tsoi, & Back, A. (1997). Face recog-
nition: a convolutional neural-network approach. IEEE Transac-
tions on Neural Networks, 8(1), 98–113. Retrieved from http://
ieeexplore.ieee.org/document/554195/ doi: 10.1109/72
.554195

LeCun, Y., Bengio, Y., & Hinton, G. (2015, 5). Deep learning. Nature,
521(7553), 436–444. Retrieved from http://www.nature.com/
articles/nature14539 doi: 10.1038/nature14539

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hub-
bard, W. E., & Jackel, L. D. (1989, 12). Backpropagation Applied
to Handwritten Zip Code Recognition. Neural Computation, 1(4),
541–551. Retrieved from http://www.mitpressjournals.org/
doi/10.1162/neco.1989.1.4.541 doi: 10.1162/neco.1989.1.4
.541

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hub-
bard, W. E., & Jackel, L. D. (1990). Handwritten digit recognition
with a back-propagation network. In Advances in neural informa-
tion processing systems (pp. 396–404).

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of
the IEEE, 86(11), 2278–2324. Retrieved from http://ieeexplore
.ieee.org/document/726791/ doi: 10.1109/5.726791

Ledoit, O., & Wolf, M. (2003, 12). Improved estimation of the co-
variance matrix of stock returns with an application to portfo-
lio selection. Journal of Empirical Finance, 10(5), 603–621. Re-
trieved from https://linkinghub.elsevier.com/retrieve/
pii/S0927539803000070 doi: 10.1016/S0927-5398(03)00007-0

Ledoit, O., & Wolf, M. (2004, 2). A well-conditioned estimator for large-
dimensional covariance matrices. Journal of Multivariate Analysis,
88(2), 365–411. Retrieved from https://linkinghub.elsevier
.com/retrieve/pii/S0047259X03000964 doi: 10.1016/S0047
-259X(03)00096-4

Ledoit, O., & Wolf, M. (2008, 12). Robust performance hypothesis
testing with the Sharpe ratio. Journal of Empirical Finance, 15(5),
850–859. Retrieved from https://linkinghub.elsevier.com/
retrieve/pii/S0927539808000182 doi: 10.1016/j.jempfin.2008
.03.002

Lempérière, Y., Deremble, C., Seager, P., Potters, M., & Bouchaud, J. P.
(2014, 4). Two centuries of trend following. (arXiv:1404.3274v1
[q-fin.PM]). Retrieved from http://arxiv.org/abs/1404
.3274

Li, D., & Ng, W.-L. (2000, 7). Optimal Dynamic Portfolio Selec-
tion: Multiperiod Mean-Variance Formulation. Mathematical Fi-
nance, 10(3), 387–406. Retrieved from http://doi.wiley.com/

10.1111/1467-9965.00100 doi: 10.1111/1467-9965.00100
Li, F.-F. (2019). Stanford University CS231n: Optimization. ([on-

line] Available at: http://cs231n.github.io/optimization
-1/ [Accessed 2019-09-08])

Liew, J. K., & Mayster, B. (2017, 12). Forecasting ETFs with Machine
Learning Algorithms. The Journal of Alternative Investments, 20(3),
58–78. Retrieved from http://jai.iijournals.com/lookup/
doi/10.3905/jai.2018.20.3.058 doi: 10.3905/jai.2018.20.3
.058

Lim, B., Zohren, S., & Roberts, S. (2019). Enhancing Time
Series Momentum Strategies Using Deep Neural Networks.
(arXiv:1904.04912v1 [stat.ML]). Retrieved from http://arxiv
.org/abs/1904.04912

Livni, R., Shalev-Shwartz, S., & Shamir, O. (2014, 10). On
the Computational Efficiency of Training Neural Networks.
(arXiv:1410.1141v2 [cs.LG]). Retrieved from http://arxiv.org/
abs/1410.1141

Lopez, J. A., & Walter, C. A. (2002). Evaluating Covariance Matrix
Forecasts in a Value-at-Risk Framework. SSRN Electronic Journal.
Retrieved from http://www.ssrn.com/abstract=305279 doi:
10.2139/ssrn.305279

Markowitz, H. (1952, 3). Portfolio Selection. The Journal of Finance, 7(1),
77. Retrieved from https://www.jstor.org/stable/2975974
?origin=crossref doi: 10.2307/2975974

Masters, D., & Luschi, C. (2018, 4). Revisiting Small Batch Training for
Deep Neural Networks. (arXiv:1804.07612v1 [cs.LG]). Retrieved
from http://arxiv.org/abs/1804.07612

McCulloch, W. S., & Pitts, W. (1943, 12). A logical calculus of the ideas
immanent in nervous activity. The Bulletin of Mathematical Bio-
physics, 5(4), 115–133. Retrieved from http://link.springer
.com/10.1007/BF02478259 doi: 10.1007/BF02478259

Merton, R. C. (1972, 9). An Analytic Derivation of the Efficient Port-
folio Frontier. The Journal of Financial and Quantitative Analysis,
7(4), 1851. Retrieved from https://www.jstor.org/stable/
2329621?origin=crossref doi: 10.2307/2329621

Michaud, R. O. (1989, 1). The Markowitz Optimization Enigma: Is
‘Optimized’ Optimal? Financial Analysts Journal, 45(1), 31–
42. Retrieved from https://www.tandfonline.com/doi/full/
10.2469/faj.v45.n1.31 doi: 10.2469/faj.v45.n1.31

Müller, A. C., & Guido, S. (2016). Introduction to Machine Learn-
ing with Python. Sebastopol: OŔeilly Media. Retrieved
from https://www.oreilly.com/library/view/introduction
-to-machine/9781449369880/

Morantz, B., Whalen, T., & Zhang, G. P. (2008). Neural
Network Time Series Forecasting Using Recency Weighting.
In Encyclopedia of decision making and decision support tech-
nologies (pp. 661–667). Hershey: IGI Global. Retrieved
from http://services.igi-global.com/resolvedoi/resolve
.aspx?doi=10.4018/978-1-59904-843-7.ch074 doi: 10.4018/
978-1-59904-843-7.ch074

Mossin, J. (1968). Optimal Multiperiod Portfolio Policies. The Journal of
Business, 41(2), 215–229.

Mozer, M. C. (1989). A Focused Backpropagation Algorithm for Tem-
poral Pattern Recognition. Complex Systems, 3, 349- 381.

Ng, A. (2019a). Stanford University CS229: Lecture notes. Re-
trieved 2019-09-08, from http://cs229.stanford.edu/notes/
cs229-notes1.pdf ([online] Available at: http://cs229
.stanford.edu/notes/cs229-notes1.pdf [Accessed 2019-09-
08])

Ng, A. (2019b). Stanford University CS229: Splitting into train,
dev and test sets. Retrieved 2019-09-08, from https://cs230
-stanford.github.io/train-dev-test-split.html ([online]
Available at: https://cs230-stanford.github.io/train-dev
-test-split.html [Accessed 2019-09-08])

Nickolls, J., Buck, I., Garland, M., & Skadron, K. (2008, 3). Scalable
parallel programming with CUDA. Queue - GPU Computing, 6(2),
40–53. Retrieved from http://portal.acm.org/citation.cfm
?doid=1365490.1365500 doi: 10.1145/1365490.1365500

OpenAI. (2018). OpenAI Five. Retrieved from https://blog.openai
.com/openai-five/ ([online] Available at: https://blog
.openai.com/openai-five/ [Accessed 2019-09-08])

http://aclweb.org/anthology/P14-1062
http://aclweb.org/anthology/P14-1062
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6909620
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6909620
http://dl.acm.org/citation.cfm?doid=2020408.2020496
http://dl.acm.org/citation.cfm?doid=2020408.2020496
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1412.6980
http://dx.doi.org/10.1016/j.ejor.2016.10.031
http://dx.doi.org/10.1016/j.ejor.2016.10.031
http://ieeexplore.ieee.org/document/554195/
http://ieeexplore.ieee.org/document/554195/
http://www.nature.com/articles/nature14539
http://www.nature.com/articles/nature14539
http://www.mitpressjournals.org/doi/10.1162/neco.1989.1.4.541
http://www.mitpressjournals.org/doi/10.1162/neco.1989.1.4.541
http://ieeexplore.ieee.org/document/726791/
http://ieeexplore.ieee.org/document/726791/
https://linkinghub.elsevier.com/retrieve/pii/S0927539803000070
https://linkinghub.elsevier.com/retrieve/pii/S0927539803000070
https://linkinghub.elsevier.com/retrieve/pii/S0047259X03000964
https://linkinghub.elsevier.com/retrieve/pii/S0047259X03000964
https://linkinghub.elsevier.com/retrieve/pii/S0927539808000182
https://linkinghub.elsevier.com/retrieve/pii/S0927539808000182
http://arxiv.org/abs/1404.3274
http://arxiv.org/abs/1404.3274
http://doi.wiley.com/10.1111/1467-9965.00100
http://doi.wiley.com/10.1111/1467-9965.00100
http://cs231n.github.io/optimization-1/
http://cs231n.github.io/optimization-1/
http://jai.iijournals.com/lookup/doi/10.3905/jai.2018.20.3.058
http://jai.iijournals.com/lookup/doi/10.3905/jai.2018.20.3.058
http://arxiv.org/abs/1904.04912
http://arxiv.org/abs/1904.04912
http://arxiv.org/abs/1410.1141
http://arxiv.org/abs/1410.1141
http://www.ssrn.com/abstract=305279
https://www.jstor.org/stable/2975974?origin=crossref
https://www.jstor.org/stable/2975974?origin=crossref
http://arxiv.org/abs/1804.07612
http://link.springer.com/10.1007/BF02478259
http://link.springer.com/10.1007/BF02478259
https://www.jstor.org/stable/2329621?origin=crossref
https://www.jstor.org/stable/2329621?origin=crossref
https://www.tandfonline.com/doi/full/10.2469/faj.v45.n1.31
https://www.tandfonline.com/doi/full/10.2469/faj.v45.n1.31
https://www.oreilly.com/library/view/introduction-to-machine/9781449369880/
https://www.oreilly.com/library/view/introduction-to-machine/9781449369880/
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-59904-843-7.ch074
http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-59904-843-7.ch074
http://cs229.stanford.edu/notes/cs229-notes1.pdf
http://cs229.stanford.edu/notes/cs229-notes1.pdf
http://cs229.stanford.edu/notes/cs229-notes1.pdf
http://cs229.stanford.edu/notes/cs229-notes1.pdf
https://cs230-stanford.github.io/train-dev-test-split.html
https://cs230-stanford.github.io/train-dev-test-split.html
https://cs230-stanford.github.io/train-dev-test-split.html
https://cs230-stanford.github.io/train-dev-test-split.html
http://portal.acm.org/citation.cfm?doid=1365490.1365500
http://portal.acm.org/citation.cfm?doid=1365490.1365500
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/

P. Schiele / Junior Management Science 6(1) (2021) 149-189 189

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I.
(2019). Language models are unsupervised multitask learners.

([online] Available at: https://d4mucfpksywv.cloudfront
.net/better-language-models/language_models_are
_unsupervised_multitask_learners.pdf [Accessed 2019-
09-08])

Robinson, A. J., & Fallside, F. (1987). The utility driven dynamic error prop-
agation network. University of Cambridge, Department of Engi-
neering Cambridge.

Ross, S. A. (1977, 3). The Capital Asset Pricing Model (CAPM), Short-
Sale Restrictions and Related Issues. The Journal of Finance, 32(1),
177. Retrieved from https://www.jstor.org/stable/2326912
?origin=crossref doi: 10.2307/2326912

Ruder, S. (2016, 9). An overview of gradient descent optimization al-
gorithms. (arXiv:1609.04747v2 [cs.LG]). Retrieved from http://
arxiv.org/abs/1609.04747

Samuelson, P. A. (1969, 8). Lifetime Portfolio Selection By Dynamic
Stochastic Programming. The Review of Economics and Statistics,
51(3), 239. Retrieved from https://www.jstor.org/stable/
1926559?origin=crossref doi: 10.2307/1926559

Schmidhuber, J. (2015, 1). Deep learning in neural net-
works: An overview. Neural Networks, 61, 85–117. Re-
trieved from https://linkinghub.elsevier.com/retrieve/
pii/S0893608014002135 doi: 10.1016/j.neunet.2014.09.003

Severini, T. A. (2017). Introduction to statistical methods for financial models.
Boca Raton: CRC Press, Taylor & Francis Group.

Sharpe, W. F. (1966, 1). Mutual Fund Performance. The Journal of
Business, 39(1), 119. Retrieved from https://www.jstor.org/
stable/2351741 doi: 10.1086/294846

Sharpe, W. F. (1994, 10). The Sharpe Ratio. The Journal of Portfo-
lio Management, 21(1), 49–58. Retrieved from http://jpm.pm
-research.com/lookup/doi/10.3905/jpm.1994.409501 doi:
10.3905/jpm.1994.409501

Smith, K. V. (1967, 9). A Transition Model for Portfolio Revision.
The Journal of Finance, 22(3), 425. Retrieved from https://www
.jstor.org/stable/2978895?origin=crossref doi: 10.2307/
2978895

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhut-
dinov, R. (2014). Dropout: A Simple Way to Prevent Neural
Networks from Overfitting. Journal of Machine Learning Research,
15, 1929–1958. Retrieved from http://jmlr.org/papers/v15/
srivastava14a.html

Sun, C., Shrivastava, A., Singh, S., & Gupta, A. (2017, 7). Re-
visiting Unreasonable Effectiveness of Data in Deep Learning
Era. (arXiv:1707.02968v2 [cs.CV]). Retrieved from http://arxiv
.org/abs/1707.02968

Swinkels, L. (2004, 8). Momentum investing: A survey. Journal
of Asset Management, 5(2), 120–143. Retrieved from http://
link.springer.com/10.1057/palgrave.jam.2240133 doi: 10
.1057/palgrave.jam.2240133

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Good-
fellow, I., & Fergus, R. (2013, 12). Intriguing properties of
neural networks. (arXiv:1312.6199v4 [cs.CV]). Retrieved from
http://arxiv.org/abs/1312.6199

Theodoridis, S., & Koutroumbas, K. (2009). Pattern recognition. Burling-
ton: Academic Press.

Tino, P., Schittenkopf, C., & Dorffner, G. (2001, 7). Financial volatil-
ity trading using recurrent neural networks. IEEE Transactions
on Neural Networks, 12(4), 865–874. Retrieved from http://
ieeexplore.ieee.org/document/935096/ doi: 10.1109/72
.935096

Wakker, P. P. (2008, 12). Explaining the characteristics of the power
(CRRA) utility family. Health Economics, 17(12), 1329–1344. Re-
trieved from http://doi.wiley.com/10.1002/hec.1331 doi:
10.1002/hec.1331

Walter, C. A., & Lopez, J. A. (2000, 2). Is Implied Correlation Worth
Calculating? The Journal of Derivatives, 7(3), 65–81. Retrieved
from http://jod.pm-research.com/lookup/doi/10.3905/jod
.2000.319125 doi: 10.3905/jod.2000.319125

Werbos, P. J. (1988, 1). Generalization of backpropagation with appli-
cation to a recurrent gas market model. Neural Networks, 1(4),

339–356. Retrieved from https://linkinghub.elsevier.com/
retrieve/pii/089360808890007X doi: 10.1016/0893-6080(88)
90007-X

Würtz, D., Ellis, A., Chalabi, Y., Packages, R., Chalabi, Y.,
Chen, W., & Ellis, A. (2009). Portfolio optimization
with r/rmetrics rmetrics, association & finance online. ([on-
line] Available at: https://www.rmetrics.org/downloads/
9783906041018-fPortfolio.pdf [Accessed 2019-09-08])

https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://www.jstor.org/stable/2326912?origin=crossref
https://www.jstor.org/stable/2326912?origin=crossref
http://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
https://www.jstor.org/stable/1926559?origin=crossref
https://www.jstor.org/stable/1926559?origin=crossref
https://linkinghub.elsevier.com/retrieve/pii/S0893608014002135
https://linkinghub.elsevier.com/retrieve/pii/S0893608014002135
https://www.jstor.org/stable/2351741
https://www.jstor.org/stable/2351741
http://jpm.pm-research.com/lookup/doi/10.3905/jpm.1994.409501
http://jpm.pm-research.com/lookup/doi/10.3905/jpm.1994.409501
https://www.jstor.org/stable/2978895?origin=crossref
https://www.jstor.org/stable/2978895?origin=crossref
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://arxiv.org/abs/1707.02968
http://arxiv.org/abs/1707.02968
http://link.springer.com/10.1057/palgrave.jam.2240133
http://link.springer.com/10.1057/palgrave.jam.2240133
http://arxiv.org/abs/1312.6199
http://ieeexplore.ieee.org/document/935096/
http://ieeexplore.ieee.org/document/935096/
http://doi.wiley.com/10.1002/hec.1331
http://jod.pm-research.com/lookup/doi/10.3905/jod.2000.319125
http://jod.pm-research.com/lookup/doi/10.3905/jod.2000.319125
https://linkinghub.elsevier.com/retrieve/pii/089360808890007X
https://linkinghub.elsevier.com/retrieve/pii/089360808890007X
https://www.rmetrics.org/downloads/9783906041018-fPortfolio.pdf
https://www.rmetrics.org/downloads/9783906041018-fPortfolio.pdf

	Introduction
	Literature Review
	Dynamic Portfolio Optimization
	Neural Network Expected Return Estimators
	Multilayer Perceptrons
	Convolutional Neural Networks
	Recurrent Neural Networks

	Hypotheses formulation

	Methodology
	Data
	Covariance Estimator
	Neural Network Implementation
	Multilayer Perceptron
	Convolutional Neural Network
	Long Short-Term Memory Network
	Model training

	Optimization Implementation

	Results
	Daily Rebalancing
	Predictive Accuracy
	Risk-Return Characteristics
	Portfolio Sharpe Ratios
	Trade Volume

	Monthly Rebalancing
	Predictive Accuracy
	Risk-Return Characteristics
	Trade Volume
	Portfolio Sharpe Ratios

	Weight smoothing
	Trade volume
	Risk-Return Characteristics
	Portfolio Sharpe Ratios

	Sensitivity analysis
	Hyperparameter variation
	Universe expansion
	Recalibration
	Prediction consistency

	Discussion

	Conclusion

