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Abstract

This paper evaluates the impact of the Markets in Financial Instruments Directive II (MiFID II) regulation on information
asymmetries. The microstructure models of Madhavan et al. (1997) and Glosten and Harris (1988) are adapted to estimate
potential changes in the adverse selection component of the spread. I use trade and quote data of 50 German stocks traded
at the Cboe Europe Equities exchange. To classify trades in presence of uncertainly about the sequence of trades and quotes
within a second, a robust classification method is developed. I find a short-term increase in adverse selection and transaction
cost after the MiFID II implementation. A long-term reduction of information asymmetries due to the regulation is indicated

and discussed.
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1. Introduction

On efficient security markets, all market participants have
the same expectation of the fundamental security value. The
resulting prices immediately incorporate new public informa-
tion because traders revise their beliefs about the fundamen-
tal value. In presence of information asymmetry, informed
traders take advantage of their private information by buy-
ing (selling) securities if their expectation of the fundamental
security value is higher (lower) than the market price. Ra-
tional uninformed traders protect themselves from informed
trading by adjusting their quotes and by revising their beliefs
based on actions of other market participants. This adapta-
tion in trading strategies and behavior typically leads to less
price efficiency and higher transaction costs. These conse-
quences are called adverse selection.

Therefore, regulators such as the European Union seek
to reduce information asymmetries by implementing laws
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and supervising financial markets. The Markets in Finan-
cial Instruments Directive II (MiFID II, 2014) and the asso-
ciated Markets in Financial Instruments Regulation (MiFIR)
came into force on January 3", 2018, to replace the previous
framework MiFID I and expand the scope to non-equities.’
2 Improved investor protection, market resilience, efficiency
and transparency for all market participants are the main
goals of MiFID II (see European Securities and Market Au-
thority, 2019). Reducing market fragmentation by limiting
dark pool and Over-the-counter (OTC) trading and homoge-
nizing tick sizes is supposed to increase competition and price
efficiency while driving down transaction cost. Post-trade
transparency is enhanced by extended reporting obligations
for dark pool and OTC trading. The newly applied reporting
standards for non-equities could also reveal relevant infor-
mation for equity markets.”

Whether MiFID II successfully reduces information asym-
metry and therefore adverse selection on equity markets
is evaluated by using two market microstructure models.

1European Parliament and Council of the European Union (2014)

2 From now on, MiFID II and MiFIR will be discussed together under the
name MiFID IL.

3 Detailed information on the regulations impacting market transparency
can be obtained from the MiFID II directive (2014) and its supplements or
from the European Securities and Market Authority (2019).
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The Madhavan-Richardson-Roomans model (1997) and the
Glosten-Harris model (1988) state that in addition to new
public information, the observed order flow is informative
and reveals private information about the fundamental value
of a security. While Madhavan et al. (1997) use the surprise
in order flow to measure adverse selection, Glosten and Har-
ris (1988) assume high trade volumes to be informative.
The models are adapted to measure the change in adverse
selection.

The paper is organized as follows. The microstructure
models Section 2 explains the price formation process, the
spread decomposition and the estimation procedures used.
Section 3 describes and analyzes the data used for the ef-
fect estimation and discusses the method of trade classifica-
tion. The model parameter and spread estimates are pre-
sented and discussed in Section 4 while the impact of the
MiFID II implementation on adverse selection is evaluated in
Section 5. Section 6 concludes and proposes further research
ideas.

2. Microstructure Models

2.1. Model Description

Market microstructure models are able to analyze market
frictions such as asymmetric information while accounting
for the basic trading mechanisms. The model proposed by
Roll (1984) shows that without asymmetric information, the
fundamental security value u, fluctuates randomly due to the
uncorrelated newly available public information u,. Trade
indicator models add the concept of informed trading to the
basic framework provided by the Roll model. Since both in-
formed and uninformed traders operate at the market, the
order flow will provide a noisy signal about the fundamental
security value u,. Therefore, market participants also revise
their beliefs about u, depending on the private information
revealed by the order flow.

The trade indicator variable x classifies transactions as
buyer initiated (x = 1), seller initiated (x = —1) or nei-
ther buyer nor seller initiated (x = 0). The Madhavan et al.
(1997) model assumes that surprises in the sequence of trade
indicators x are informative. The revision in beliefs due
to adverse selection depends on the surprise in order flow
x,—E(x,|x,_;) and degree of information asymmetry 6. The
post-trade expected security value y, in Eq. (1) includes both
the revision in beliefs due order flow and new public informa-
tion u,. According to the Glosten and Harris (1988) model,
higher trade volumes v, are associated with informed trades.
This is captured in the adverse selection component z, in Eq.

(2).

Madhavanetal.: U, = Uy + Q(Xt - E(thxt_l)) +u,
(1
Glosten-Harris: Ue = Uy T2, X, + U,
(2)

Without informed trading, these processes will reduce to a
random walk with parameters 6 and z, equal to zero.

Rational liquidity providers set ask (bid) quotes condi-
tional on the trade being buyer (seller) initiated (see Madha-
van et al., 1997, p.1040). The cost of providing liquidity such
as direct transaction fees, specialist rent, inventory holding
cost and potential profits for market makers are combined
in the transitory component ¢ (Madhavan et al., 1997) or
¢; (Glosten and Harris, 1988). The transitory component is
uncorrelated with the fundamental value and simply added
or subtracted from the conditional post-trade fundamental
value depending on the trade indicator x, (see Eq. (3)/(4)).*

Madhavan et al.: P, =y, + ¢x, 3

Glosten-Harris: P, =u, +c.x; @
Madhavan et al. (1997) include the possibility of trading at
the midquote with unconditional probability P(x, = 0) = A.
Whereas Glosten and Harris originally assume that trades are
executed at the quoted bid and ask prices, the model frame-
work also applies to trades with x, = 0.

For the unspecified Glosten-Harris model, the transitory
component ¢, and the adverse selection component 2z, both
include a constant and a volume-dependent parameter.

Glosten-Harris: C, =cCotciv,

Zy =29 +21Vt

Furthermore, for the Madhavan et al. (1997) model deriva-
tion 1 and 2 in the appendix show that the surprise in order
flow can be written using the first-order autocorrelation of
the order flow p.

Madhavan et al.: E(x|x—1) = px 5)

The post-trade expected value of the security (see Eq.
(1)/(2)) is combined with the transitory component (see Eq.
(3)/(4)) to form the price P, for both models. To estimate
the model parameters, the price changes AP, are calculated
to remove the unobservable fundamental value u,_; (see
derivation 3 for Madhavan et al. (1997)).°

Madhavanetal. AP, =(¢ +0)x,— (¢ +p0)x,_; +u,
AP, = cgAx, + c; A(x,v,) + 29X,

+ 21X,V U

Glosten-Harris

To model the effect of a change in adverse selection due to
MIFID 1II, an additional adverse selection component is in-
cluded after the implementation date. The dummy variable
d, is zero prior to January 3, 2018, and one starting from
this date. Therefore, the combined adverse selection param-
eter include the permanent parameter (6, or 2, ,2; ) and
the assumed event effect (6; or z,%; ;). If not mentioned,

41drop the independent and identically distributed rounding error & with
mean zero for simplicity.

5 To be precise, u, here includes the change in the rounding error A&
instead of £ as in Eq. (3) and (4).
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all following equations will use 6, z, and z; as specified here.

Madhavan et al.:

9 == 90 + Gldt
Glosten-Harris: 20 = 2o + 20,1 dt

21 =210+ 21,14,

Inserting the additional adverse selection components into
the basic models yields the following price changes for the
extended models:

Madhavan etal. AP, = (¢ +6,+ 91dt)xr— ©
(‘75 +p(6 + Qldt))xt—l +u,
AP, = cgAx, + i A(x,v)+
(20,0 +20,1de)x; (7
+ (210 +211d)x, v, +u,

Glosten-Harris

The quoted bid-ask spread s , as difference between bid
and ask price is an easily observable a priori measure for po-
tential transaction cost. The model implied quoted spread is
obtained by calculating the implied quotes, which are con-
ditioned on the trade indicator (see Eq. (1),(3) / (2),(4)).
The Glosten-Harris spreads include trade volume v, and are
therefore time-dependent.

Madhavan et al.

Sqt = 2(Ct + zt) )]

Glosten-Harris

The effective spread s; for a buyer (seller) initiated trade is
defined as twice the difference between the transaction price
(prevailig midquote) and the prevailing midquote (transac-
tion price). It takes into account trading inside the spread
and the effect of large orders going through multiple layers
of the order book. The derivation for the Madhavan et al.
(1997) model spread excluding x = 0 is provided by Theis-
sen and Zehnder (2014). Since trades within the spread are
supposed to execute exactly at the midquote, the effective
spread is zero for x = 0. The resulting expected effective
spreads equal the quoted spreads in Eq. (8) and (9) times
the probability of a trade at the bid or ask.®

sg=2(1—2A)(0+ ¢) (10)
St = 2(1—=2A)(c, +2,) 1D

Madhavan et al.

Glosten-Harris

The realized bid-ask spread s , measures the cost of a round-
trip and takes into account the price impact of the first trans-
action.” Due to the possibility of trading inside the spread,
the realized spreads for both models depend on the trade
indicator in t.° The computations of the expected realized

61 denote A also as the share of trades with x = 0 for the Glosten-Harris
model.

7 Madhavan et al. (1997) call this the effective spread.

8 In their paper, Glosten and Harris (1988) do not allow for trades be-
tween the quotes so the effective spread sg . = 2c; + 2, only depends on the
traded volume.

spreads and the realized spreads conditional on the trade in-
dicator are shown in the appendix (derivation 4 / 5).

sg=(1—-2A)(2¢ +6) 12)
SRt = (1=2)(2c, +2,) (13)

Madhavan et al.

Glosten-Harris

Without the autocorrelation parameter p of Madhavan
et al. (1997) model or the volume dependent components c;
and z; of Glosten and Harris (1988) model, both models are
equivalent to the model proposed by Huang and Stoll (1997)
with a constant adverse selection and a constant transitory
parameter.

2.2. Estimation

For the nonlinear extended Madhavan et al. (1997)
model, the vector of model paramters Bz = (0, A, ¢, 6y, 6;)
is estimated using the generalized method of moments
(GMM). GMM requires exactly identifiable parameters and
an ergodic weakly stationary stochastic process for consistent
parameter estimates, but no additional assumptions about
the underlying data distribution. The main idea of a method
of moments estimator is to choose the estimated parameter
vector /3MRR so that the sample moments match a defined
set of moment equations. When the number of independent
moment conditions m is equal to the number of estimated
parameters k, the model is exactly identified. The unique
solution of the minimization problem sets the difference of
the sample moments and the moment conditions to zero
given a sufficiently large sample (method of moments). For
over-identified models with m > k, such as the extended
Madhavan et al. (1997) model, one can usually only choose
ﬁMRR to closely match sample and population moments.
Hansen (1982) shows that the estimated parameters /3MRR
are still consistent and asympotically normally distributed.
I use iterated GMM with a Newey-West estimator’ of the
covariance matrix of moment conditions S, to obtain [§MRR
and the heteroskedasticity consistent covariance matrix of
parameters. '’

The following 7 moment conditions are used to estimate
the parameter vector f3zz and a constant drift a.

X X1 — pX,
lx,]—=(1—2)
u—a
E= (up — a)x, =0
(uy —a)x,
(u, —a)d,x,
(ue —a)dx,4

with u, = AP, — ((j) +6,+ 91dt)xt+

14
(¢ +p(6 + eldt))xt—l

? The chosen number of lags equals the nearest integer of T%?> with T
as the number of observations (see Greene, 2003, p.142).
10 For a detailed description of the methodology, see Hayashi (2000,
Dpp.204-214, 454-486).
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The first moment equation defines the first-order autocorre-
lation of the order flow, the second one the probability of
trading inside the spread and the third one the constant price
drift. The last four equations state orthogonality of newly
available public information to the regressors x,, x,_;, d, X,
and d,x,_;.

The Glosten-Harris price change in Eq. (7) is estimated
with ordinary least squares, which can be seen as a solved
case of the method of moments method with the orthog-
onality assumptions as moment conditions. While Glosten
and Harris (1988) state that OLS is not efficient because of
round-off errors and a possibly time-dependent variance of
u,, the estimated coefficients /ch will still be consistent and
the white covariance matrix of parameters accounts for het-
eroskedasticity.

The implied model spreads are consistently estimated by
using the estimated model parameters /3 instead of the true
population parameters 3 for the quoted spreads in Eq. (8)
and (9). However, due to a potentially different probabil-
ity of trades inside the spread A before and after MiFID II,
the effective and realized spreads are calculated per observa-
tion instead of using Eq. (10), (11), (12) and (13). For the
Glosten-Harris model, this additionally removes the bias of
possibly correlated trade indicators and volumes.

3. Data

3.1. Source and Selection

The data was scraped from by PhD candidate Johannes
Bleher from the chair of Econometrics, Statistics and Em-
pirical Economics at the University of Tuebingen. The web-
site netfonds.no of the Norwegian Netfonds bank AS (2018)
gives users access to trading on Scandinavian, US and Eu-
ropean exchanges. The stocks in the sample are traded via
the Cboe European Equities exchange ', which is the largest
European stock exchange with 23.14% market share for DAX
stocks (see Cboe European Equities, 2019a, market statistics
by index). The BXE and CXE integrated books are anony-
mous central limit order books with both displayed and hid-
den liquidity for European equities. The main allowed order
types for integrated books are as follows: displayed and non-
displayed limit orders, displayed and non-displayed market
orders within the order price collar (1% of the European
Best Bid and Offer'?), iceberg orders, displayed and non-
displayed pegged orders using the Primary Best Bid and Of-
fer'®, displayed and non-displayed post only orders for mar-
ket making and sweep orders that access both the BXE and
the CXE integrated order book (see Cboe European Equi-
ties, 2019b, pp.23-26). Continuous trading is possible from
9:00am to 5:30pm (CET) with an opening and a closing auc-
tion. Apart from the integrated order books, Cboe European

11 BATS Europe Exchange was rebranded to Cboe European Equities in
2017.

12 The European Best Bid and Offer is the best price available in European
central limit order books of regulated markets.

13 Xetra quotes for German equities.

Equities provides a periodic auction book and a seperate dark
book for non-displayed orders (see Cboe European Equities,
2019b, pp.5-6).

The original sample contains separated integrated order
book and transaction data on 203 German equities from Oc-
tober 2017 to March 2018. Securities with less than 5000
observations from December 2017 to January 2018 were re-
moved. Since higher impacts of the aggregation methods in
Section 3.2 on actively traded assets might bias the results,
the 10 most liquid assets of the sample were also excluded.
Therefore, the sample contains 50 stocks with 5000 to 52000
transactions from December 2017 to January 2018. To com-
pare short- and midterm effects, model estimation is done for
a two months time frame'# (December to January) and a six
months time frame (October to March).

SAS On Demand for Academics 9.4 and SAS University
Edition 9.4 (basic edition) were used for data processing,
model estimation and test implementation.

3.2. Trade Classification and Aggregation

The widely used method for inference of trade direction
proposed by Lee and Ready (1991) requires the price P,, the
best bid Ptb and the best ask P at transaction time t. A trade
is classified as a buy (sell) if the transaction price P, is higher
(lower) than the midquote. If the transaction price is equal
to the midquote, the tick test classifies the trade by tracing
back to the price change: if it was an uptick (downtick), the
trade is classified as a buy (sell).

Since the time variable t is only measured in seconds
for the position and the trade data, time stamps with mul-
tiple quote changes do not allow to determine the prevail-
ing quotes at the transaction time. Due to large changes in
quotes within a second, using the average bid and ask quotes
per second would reduce the accuracy of trade identification.
Therefore, an alternative method is employed based on the
highest observed bid quote P/"™ and the lowest observed
™M during a second. A trade is classified as a

ask quote P,
buy if P"™* is smaller than and P*™" is equal to or smaller
than P,. A trade is classified as sell if P>™* is equal to or
greater than and P™" is greater than P,. The remaining
trades are classified as trades neither buyer nor seller initi-
ated with x = 0. This method should classify most buys and
sells with ordinary order types correctly. Observations that
could be a buy or a sell according to the displayed quotes are
uncertain and therefore signed as neither buyer nor seller ini-
tiated.'®

For multiple transaction within a second, the occurrence
order is uncertain. As large trades are split up into multiple
observations if they go through multiple layers of the order
book, the trade volume v and the first-order serial correlation

14 The time frame contains 20 trading days before and 22 after the imple-
mentation of MiFID II.

15 This method of trade classification was proposed by PhD candidate
Johannes Bleher from the chair of Econometrics, Statistics and Empirical
Economics at the University of Tuebingen.
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of order flow p are biased.'® To correct for this, a major-
ity rule determines the trade indicator and aggregates price
and volume to a single trade observation per second.!” This
method leads to unbiased model estimates if all observations
within a second belong to one transaction and the trade indi-
cators are the same. For multiple transactions within the ob-
servations of the same trade indicator, the Madhavan et al.
autocorrelation coefficient p and the trade-volume depen-
dent Glosten-Harris coefficients ¢; and z; will be downwards-
biased.

Depending on the number of trades for the security, 55-
80% of the trade observations are impacted by quote aggre-
gation and 5-20% are impacted by trade aggregation. 30-
45% of the trades are classified as inside the spread.

Transactions before and after the official trading hours
from 9:00am to 5:30pm (CET) are deleted. Overnight price
changes are removed because the opening auction price
changes typically do not follow the same distribution as price
changes for continuous trading (see Amihud and Mendelson,
1987).

3.3. Descriptives

Table 1 provides average mean, standard deviation, skew-
ness and excess kurtosis for relevant variables before and af-
ter the implementation of MiFID II. Figures 5 to 16 in the
appendix show the distribution of means across securities as
a histogram and a as time series plot. All variables are pos-
itively skewed with positive excess kurtosis'® except for the
trade indicator.

Prices rose in December and fell slightly in January with
similar standard deviation and decreasing kurtosis for price
P and price change AP.'” More buys (sells) than sells (buys)
occurred for the period of increasing (decreasing) prices. The
daily distribution for the trade indicator in Figure 10 in the
appendix shows that the share of buys (sells) varied from
about 40% to 60% of the transactions “°. The Madhavan et
al. assumption of E(x) = 0 might not hold for the time frame
because of a possible correlation of the trade indicator and
short term price movements.

Trade volume v and the number of trades per day tr./day
increased from December to January, which could have vari-
ous reasons such as the inactivity during the Christmas break

16 Trade volume v is underestimated for larger trades. p is overestimated
because one transaction splits up into multiple observations with the same
trade indicator x.

17 The volume-weighed trade indicator for all trades within the second
is calculated. For X >= %, the aggregated indicator x, is set to 1, for % >
x> %, x; =0 and for x <= —% follows x; = —1. For the aggregated trade
observation per second, the accumulated volume and the volume-weighed
average price of all observations with x.; = x, is used. If x, = 0 and no
observation fulfills x, ; = x, then the accumulated volume and the volume-
weighed average price of all observations within the second is used.

18 Excess kurtosis is defined as kurtosis -3. If positive, the distributions
kurtosis is higher than the kurtosis of the normal distribution.

19 The mean price difference cannot be entirely explained by the mean
price change AP because overnight price changes are deleted.

20 This is a simplified interpretation of the trade indicator assuming that
all trades are either buys or sells.

in December or new portfolio allocations and strategies in
the new year. However, the distribution of trade volume v is
highly susceptible to data aggregation (see Section 3.2). The
shift in mean trade volume could be caused by a higher num-
ber of trades which increases the probability of aggregating
multiple trades within a second. This might also explain the
positive skewness and kurtosis of trade volume (see Figure
11 in the appendix). The higher number of trades per day
in January could also be caused by increased attractiveness
of the Cboe trading venue. This may indicate a successful
shift of trading volume to more structured market places as
intended by MiFID II.

Quoted spreads decreased by 1.0 cents from December to
January while effective spreads increased marginally. Stan-
dard deviations fell sharply for both measures. The low ratio
of effective to quoted spread is partly caused by trades in-
side the spread. In addition, the fact that best bid and best
ask vary within a second could lead to more sells (buys) at
higher bid (lower ask) quotes while s, and sz are calculated
using averages. Still, the considerable difference between
quoted and effective spread reduces their validity as observed
measures of transaction cost. The relative spreads rg, ), and
g mq compare the spread to the midquote and are used as a
standardized measure for different security prices. The rela-
tive effective spread r ;o decreased by 3.2% compared to
the 4.0% increase for the effective spread. This indicates
that absolute effective spreads are not proportional to secu-
rity prices.

The same descriptives for the time frame from October
1%, 2017, to March 31%, 2018 are provided in Table 4 in
the appendix. Price movement, trading activity and spread
changes all have the same directions as for the smaller time
frame. Price volatility increased for the period from January
to March and effective spread volatility is constant compared
to the decrease in Table 1.

From January 2" to January 3", tick sizes increased
for 38 securities of the sample and stayed constant for 12
securities due to the introduction of the MiFID II ticksize
regime®'. An increase in minimum tick size generally in-
creases spreads and transaction cost (Verousis et al., 2018).
Boyde et al. (2018) and a paper published by the french fi-
nancial markets regulator Autorite des Marches Financiers
(2018)?? show that the minimum tick size regime of MiFID II
is the main determinant of relative quoted spread changes for
individual securities. Relative quoted spreads for DAX stocks
with an rise in minimum tick size increased by 35.6%, the
overall average increased by 8.9% (see Boyde et al., 2018,
p.6). These findings are not confirmed by the decreasing rel-
ative quoted spreads for the Cboe data. Unequal sample com-
position and trading venues could be one reason for the de-
viant effect. Besides, the discrepancy could be caused by the

21 The minimum tick size for each stock in the sample is determined by
sorting the quotes in ascending order and calculating the smallest difference
between quotes. Taking differences of the minimum tick size on January 3™
and January 2" in 2018 yields the change in minimum tick size for a security
assuming no significant change in price or trading activity.

22 Authors unknown.
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Table 1: Descriptive statistics (Dec. 2017 - Jan. 2018)

Note. This table presents the descriptive statistics for key variables from December 1%, 2017, to January 31, 2018. The mean, standard deviation, skewness
and excess kurtosis of the individual security distributions are reported before and after the implementation of MiFID II. The following variables are included:
price P in Euro, price change between trades AP in cent, trade indicator x, quoted/effective spread s, /sy in cent, volume per trade v in 1000 shares,
transactions per day tr./day, relative quoted/effective spread rq yq /7 mq in basis points.

Mean Std.Dev. Skewness Excess kurtosis

before after before after before after before after
P 72.244  75.48 1.465 1.423 0.498 0.195 13.369 1.191
AP 0.000 -0.008 3.458 3.546 -1.100 -0.498 41.386 37.200
X 0.002 -0.003 0.021 0.022 0.119  0.157 -0.156 -0.121
Y 11.590 12.254 21.194 27.601 1.424 1.415 3.556 5.553
tr./day 502.595 580.671 135.412 136.625 0.347 0.831 0.636  4.903
5 8.070 7.004 7.759 5.979 3.118 3.557 25.446 18.368
Sg 1.346 1.400 4.472 3.036 2.374 2334 32.443 24.310
rQ.MQ 12.060 9.620 11.646 5.091 3.145 3.557 25.654 18.436
EMQ 1.955 1.893 7.076 2.525 2.504 2.320 33.376 25.054

average quoted spread calculation which is not time-weighed
for the Cboe quotes.

For consistent estimation results, weakly stationarity of
price changes is required. The Dickey-Fuller test rejects the
null hypothesis of non-stationary price changes for all secu-
rities on a 1% significance level.

4. Empirical Results

4.1. Parameter Estimates

Table 2 shows summary statistics of the Madhavan et al.
parameter estimates. Autocorrelation of order flow p is pos-
itive as assumed by the model. 39.22% of the trades are
classified as neither buyer nor seller initiated. The transi-
tory parameter estimate ¢; with 0.69 cents is more than twice
as large as the estimated adverse selection parameter before
MiFID II 6, with 0.32 cents. The additional adverse selec-
tion parameter in January, él, is comparable in size to éo,
which leads to a combined adverse selection parameter of
0.62 cents after MiFID II. The drift estimate & is economi-
cally insignificant. Without knowledge of the parameter dis-

tribution, the mean of parameter estimates /i- is still assumed
to be normally distributed, so a t-test on the mean parame-
ter can be conducted. The p-value for this test shows that
all parameters except the drift a are significantly different
from zero on a 1% level. On an individual level, the share
of significant parameters for two-sided and one-sided tests
supports the overall t-test results. The first-order autocor-
relation parameter p, the share of trades inside the spread
A and the transitory parameter ¢ are significantly greater
than zero for all stocks on a 5% significance level. For the
adverse selection parameters 6, and 6;, the null hypothesis
of a parameter value smaller or equal to zero is rejected for

58% and 66% of stocks respectively. After the MiFID II im-
plementation, the combined adverse selection parameter 6
is significantly greater than zero for 47 stocks on a 5% level.

The parameter estimates for the six months estimation
period in Table 7 in the appendix are similar for p, A, 6,
and a. The estimated transitory component ¢3 is 0.08 cents
lower and the MiFID II adverse selection component é1 0.16
cents higher for the longer estimation period. The adverse
selection parameters 6, and 6 are significantly greater than
zero for 76% and 86% of stocks respectively. The combined
adverse selection parameter after MiFID II is significantly
greater than zero for all stocks.

Compared to the Madhavan et al. (1997) estimates for a
sample of 274 NYSE stocks in 1990, the parameters are no-
tably different in size.”> Higher autocorrelation (0.38), less
trades inside the spread (30%) and substantially higher tran-
sitory (4.18) and adverse selection (3.14) parameters for the
NYSE sample signifies a change in market dynamics and ef-
ficiency from 1990 to 2017. Theissen and Zehnder (2014)
use signed transaction and spread data for DAX stocks traded
at XETRA in 2004 to estimate the Madhavan et al. (1997)
model. Their mean estimated transitory parameter ¢; with
0.48 cents is slightly lower than for the Cboe sample, which
could be explained by lower direct transaction costs for the
highly liquid DAX-stocks. While the on average smaller capi-
talized stocks in the Cboe sample are expected to have higher
adverse selection costs (see Frey and Grammig, 2006), 0 is
higher for the DAX sample than for the Cboe sample even af-
ter the MiFID II implementation (0.70 cents to 0.62 cents).
The higher DAX autocorrelation of 0.22 combined with the
Madhavan et al. (1997) estimate of 0.38 supports the idea

23 The parameters are reported over 5 intra-day trading intervals. The
mean of parameters is used for comparison with the German sample.
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Table 2: Parameter estimates (Madhavan et al., Dec. 2017 - Jan. 2018)

Note. The table presents summary statistics of the Madhavan et al. model parameters estimates based on data from December 1%, 2017, to January 31,

2018. The mean of estimated parameters /51- and the mean of estimated parameter standard deviations & 4, are given with i denoting the individual securities.
i

The estimated standard deviation of the mean estimated parameter 6+ is used to compute the p-value for the two-sided t-test on [§i. On a single security

1
level, the share of significant parameters for two-sided and one-sided tests on a 5% level is provided. The parameter mean and standard deviation for ¢, 6,

6, and a are denoted in cent.

all securities

single securities - significant f3;

Bi 6/1 éE P Hy: B;=0 p;>=0 p;<=0
Jo} 0.1087 0.000074 0.0036 <0.01% 100% 0% 100%
A 0.3922 0.000020 0.0042 <0.01% 100% 0% 100%
o} 0.6910 0.000036 0.0765 <0.01% 100% 0% 100%
6, 0.3207 0.000111 0.0966 0.17% 68% 12% 58%
6, 0.3021 0.000154 0.0768 0.03% 74% 10% 66%
a -0.0021 0.000018 0.0048 66.21% 6% 10% 0%

that the trade aggregation process imposes a negative bias
on the autocorrelation parameter p for the Cboe sample (see
Section 3.2).

Table 5 in the appendix presents the Glosten-Harris pa-
rameter estimates for the two month time frame. The mean
constant transitory parameter ¢, with 0.72 cents is signifi-
cantly different from zero, which is supported by the tests
on a single security level. The mean volume-dependent tran-
sitory parameter ¢; per 100 shares is significant according
to the overall t-test, but on the individual level only 40%
of stocks reject the null hypothesis of ¢; = 0. For the aver-
age trade volume of 12000 shares (see Table 1), the volume-
dependent component is 0.08 cents, which is marginal com-
pared to the constant transitory component. Nevertheless,
since trade volume is positively skewed, some securities and
observations will have sizable volume-dependent transitory
components.”* The constant transitory parameters z,, and
%o,1 are both positive and significant according to the overall
t-test. The test results for single stocks are less clear. Only for
68% of the sample the parameters are significantly different
from zero, 68% of individual parameters for 2, ; and 62% for
%o, are significantly greater than zero. The combined con-
stant adverse selection parameter gz, after MiFID II is equal
in size to the constant transitory component and significantly
greater than zero for 96% of the stocks.

The volume-dependent adverse selection parameters
%10 and £, ; are both negative, but £, is statistically and
economically insignificant. For the average trade volume,
the volume-dependent adverse selection component is -0.38
cents which is similar to the base constant adverse selection
parameter £, in absolute value. The combined parameter

2% The upper 5% confidence interval for the daily mean trade volume
in Figure 12 in the appendix is about 45000 shares per transaction, which
would lead to a volume-dependent transitory component of 0.32 cents. A
median volume of about 7000 shares per transaction would lead to a volume-
dependent transitory component of 0.049 cents.

2z, is significantly different from zero for 70% of stocks after
the MIFID II implementation. According to a multiple re-
striction Wald test, the overall adverse selection component
is significantly different from zero for 41 stocks before and
48 stocks after the MiFID II implementation.*

The differences of the Glosten and Harris (1988) esti-
mates for the longer time frame in Table 8 in the appendix
are similar to the differences for the Madhavan et al. (1997)
estimates. The constant transitory parameter ¢, and the
base constant adverse selection parameter £, , are 0.05 cents
lower, the MiFID II constant adverse selection parameter 2
is 0.12 cents higher for the longer estimation period. The
combined volume-dependent adverse selection parameter 2,
is closer to zero before and after MiFID II for the longer time
frame, but the additional MIiFID II parameter £;; is more
relevant. The combined parameter z, after the MiFID II im-
plementation is significantly greater than zero for all stocks.
The overall adverse selection component is significantly dif-
ferent from zero for 48 stocks before and all stocks after the
MIiFID II implementation.

The model specification without ¢; and g, proposed by
Glosten and Harris (1988) is rejected for 41 stocks before
and 48 stocks after the MiFID Il implementation using a Wald
test. The size and direction of the volume-dependent adverse
selection component for the German sample do not support
support the hypothesis of higher trade volumes indicating in-
formed trading. Both the Madhavan et al. and the Glosten-
Harris overall model are significant for all stocks.

Comparing the model parameter estimates, the transi-
tory parameters ¢; an ¢, are almost equal in size. This is
not surprising since they both measure non-persistent effects
and are incorporated in the models in the same way. The
constant adverse selection parameter before MiFID 1I 6, is

% Hy before MiFID II: z 5 = 0, 21 o = 0. Hy after MiFID II: 25 +20 1 =0,
210 +21,1 = 0.
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Table 3: Spread estimates (Madhavan et al., Dec. 2017 - Jan. 2018)

Note. This table presents model-implied estimated Madhavan et al. spreads and spread ratios before and after the implementation of MiFID II from December
1%, 2017, to January 31%, 2018. The mean s; / #’; and the estimator of the variance across the sample G / 6 are reported in cents for the quoted spread

sq and the effective spread sg. The shares of implied to observed spread rq pqtq and rg pq¢q @and the share of implied spread attributable to adverse selection
rady are denoted in percent. P-values for the paired t-test on difference in means before and after the MiFID II implementation are given in percent.

Mean Std.Dey. Paired t-Test
before  after before  after P
5 2.023 2.627 2.094 2.415 0.03%
rq.Data 26.482 37.755 11.442 10.555 <0.01%
Sg 1.261 1.573 1.278 1.501 0.20%
5 pata 90.590 110.013 26.719 22.876 <0.01%
Tadv 17.602 41.751 34.734 16.332 <0.01%

smaller than £, y, which might partly be due to the negative
volume-dependent parameter 2, that has to be compensated.
The assumed MiFID II effect on adverse selection is measured
by 61, z9; and the negligible volume-dependent parameter
z, 1. Constant adverse selection components for both mod-
els are similar in size and significantly positive for two out
of three stocks. For the six months estimation period, the
additional adverse selection parameters are larger and sig-
nificantly positive for five out of six stocks.

4.2. Spread Estimates

The economic implications of the parameter estimates are
assessed by investigating the model implied spreads (see Eq.
(8) to (11)) as measures for transaction cost.

Table 3 presents the Madhavan et al. implied spreads, the
share of implied to observed spread and the share of implied
spread attributable to adverse selection before and after the
application of MiFID II. A paired t-test on difference in means
before and after the implementation date is conducted and
indicates a significant change in means for all variables and
both models. The required normal distribution of differences
plotted in Figures 3 and 4 in the appendix is unlikely to hold
for all variables. Therefore, the significance of the changes
in means according to the paired t-test should be evaluated
with caution.

From December to January, the implied quoted spread s,
increased from 2.02 cents to 2.63 cents, which is caused by
the positive additional adverse selection parameter él. The
observed quoted spread is highly underestimated as shown
by the low share of implied to observed quoted spread rq g, -
The observed quoted spread decreased after the MiFID II im-
plementation whereas the implied quoted spread increased.
Madhavan et al. (1997) argue that their systematic underes-
timation of the quoted spread by a third might be caused by
a higher probability of midquote transactions when spreads
are large.

The implied effective spread s; is 0.31 cents higher af-
ter the MiFID II implementation while the observed spread
marginally increases by 0.05 cents. Using Eq. (12), the

approximated implied change in realized spread sz from
December to January is 0.18 cents (= (1 — i)§1).26 Increas-
ing transaction cost measured by sy and sz is attributed to
a higher adverse selection component of the spread. The
model implied effective spread underestimates the observed
effective spread by 9.6% before and overestimates it by
10.0% after the implementation. In comparison to the 1.26
cents (before MiFID II) or 1.573 cents (after MiFID II), Theis-
sen and Zehnder (2014) report average effective spreads of
2.36 cents for the DAX sample without trades inside the
spread. Furthermore, Theissen and Zehnder (2014) provide
evidence for a 20% downwards bias of implied spreads of
trade indicator models caused by negative serial correlation
of new public information and the trade indicator. This bias
cannot be found for the Cboe sample. Adding the fact of
reasonable parameter estimates for the Cboe sample when
compared to the results of Theissen and Zehnder (2014) sup-
ports the assumption that the aggregated observed effective
spreads are probably inaccurate (see Sections 3.2 and 3.3).

For the six months time frame, the assumed adverse selec-
tion effect is larger with 0.88 cents for s, and 0.51 cents for
sg compared to the 0.60 cents and 0.31 cents for two months
(see Table 9 in the appendix). The Glosten-Harris spread es-
timates in Tables 6 and 10 in the appendix are comparable
in size for the estimates before and after the MiFID II imple-
mentation.

5. Impact Evaluation

The validity of the measured MiFID II effect on adverse se-
lection depends upon the capability of the chosen microstruc-
ture models to quantify adverse selection, the data quality
and the ability to attribute the effect to the MiFID II changes.

26 This simplified calculation of sy relies on the expected realized spread
in Eq. (12) rather than the conditional realized spread per observation. If
A differs in the time before and after the MiFID II implementation, the two
methods do not yield the same result.
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Ness et al. (2001) state that the adverse selection mea-
sures of Madhavan et al. (1997) and Glosten and Harris
(1988) are related to volatility and the share of informed
traders at the market, but not correlated with other adverse
selection measures. Both models focus on the information
content of the order flow while for instance neglecting the
information revealed by the open limit order book. The
Glosten and Harris (1988) idea of higher trade volume re-
vealing private information is not supported by the results for
the Cboe sample. The distribution of the volume-dependent
parameter in Figure 24 in the appendix suggests that most
stocks display a negative volume-dependent effect, though
there is no clear direction of the effect for all stocks. This re-
sult can partly be attributed to the use of algorithms or order
types such as iceberg orders that can split up large orders to
reduce price impacts. The negative effect could be caused by
uninformed traders who are required to move large volumes
to meet their required portfolio composition or risk tolerance
level without having the time or the resources to minimize
price impacts. Moreover, the impact of aggregating trade
volume on the measured effect (see Section 3.2) is hard to
assess as it might depend on individual stock characteristics
such as trading activity, price and / or volatility. The Madha-
van et al. (1997) assumption of a positive serial correlation
of the order flow holds for the Cboe sample. Although the as-
sumed quote revision due to surprise in order flow px seems
low with 0.03 cents before and 0.07 cents after MiFID II for
x # 0, Section 4.1 provides an indication of the downwards-
biased autocorrelation. Furthermore, the ability to estimate
adverse selection with serially correlated trade indicators is
an advantage compared to the Glosten and Harris (1988)
model. Hence, the Madhavan et al. (1997) results might be
more appropriate as an adverse selection measure for the
Cboe sample than the Glosten and Harris (1988) results.

The discrepancies in model implied spreads and observed
spreads shown in Section 4.2 are a sign of poor model per-
formance. However, the high share of quote observations
affected by aggregation increases uncertainty of the quoted
observed spread and the midquote which is used to deter-
mine the observed effective spread. Although the transac-
tions used for the model estimation are signed by using quote
data, the sign rule in Section 3.2 declares uncertain trades
as inside the spread. Even if the trade aggregation process
weakens the estimated effect size of serial correlation and
trade volume, the models still incorporate the basic Huang
and Stoll (1997) idea that order flow is informative. As a
consequence, the model implied spreads based on transac-
tion data might be more suitable to determine the prevailing
spread at the time of the transaction than the aggregated ob-
served spreads. Additionally, implied and observed effective
spreads are similar and the assumed MiFID II change is pos-
itive for both.

The Madhavan et al. (1997) model parameter él of
0.3021 cents implies 0.31 cents higher effective spreads and
approximately 0.18 cents higher realized spreads in January
2018 than in December 2017. For the six months estimation
period, él with 0.4385 cents implies 0.51 cents higher effec-

tive and approximately 0.27 cents higher realized spreads for
January to March 2018 than for October to December 2017.
The direction of the measured effect is not as expected for the
MIFID II regulations, which are supposed to increase mar-
ket transparency and therefore reduce the adverse selection
component of transaction cost.

Indeed, it cannot be followed that the measured change
in adverse selection is attributable to the implementation of
MIFID II on January 3", 2018. Other events in the estimation
time frame after January 3*¢ might have also caused adverse
selection to rise. To further evaluate this, the Madhavan et al.
(1997) and Glosten and Harris (1988) extended models are
estimated for event dates from November 2017 to February
2018 with a rolling estimation window of two months. The
event date is the date for the activation of the additional ad-
verse selection parameter/s.

Figures 1, 2 and 17 to 26 in the appendix show the rolling
parameter estimates for both models. The mean rolling pa-
rameter estimate for the additional adverse selection param-
eter 0, in Figure 1 rises from 0.0 cents in mid-November to
0.3 cents for the last days of December and the first days
of January. After that, él steadily decreases to 0.1 cents at
the start of February, then drops down to -0.1 cents. The
adverse selection parameter for the whole estimation time
frame éo in Figure 2 remains about constant for November
and December. Logically, it increases from the start of Jan-
uary 2018 to mid-February from 0.32 cents to 0.8 cents be-
cause the dropped out additional parameter 6; has to be ex-
plained by 6, before the event. Figures 21 and 22 in the ap-
pendix show a similar relationship for the constant adverse
selection parameters £, ; and %, for the Glosten and Harris
(1988) model. The volume-dependent additional parameter
£, gradually increases from mid-December with -0.1 cents
per 10000 shares to 0.0 cents at the year change to a high of
over 0.1 cents in the last third of January and falls down to
-0.1 cents afterwards.

On the one hand, the peak of the additional adverse se-
lection parameters at the turn of the year provides evidence
for a relevant change in adverse selection during that time.
Positive falling parameters for the month of January imply
the interpretation of long-term effects rather than additional
events. Although many events at the start of January 2018
possibly impact information asymmetries for stocks, MiFID
IT fundamentally changes transparency and functionality of
financial markets as a whole. Therefore, MiFID II is presum-
ably the main event impacting changes in information asym-
metry.

On the other hand, if only the MiFID II implementation
influenced adverse selection at that time, the rise of the addi-
tional adverse selection effect would start in early December,
not in mid-November. This observation could be explained by
early adaptations of market participants to the regulations.
Seasonality or other unrelated changes in volatility of newly
available public information, share of informed traders and
trading activity are likely to impact adverse selection. For
instance, the approaching release of annual financial state-
ments and new strategic announcements are plausible rea-
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Figure 1: Rolling parameter estimate él

Note. This figure plots the mean estimated Madhavan et al. (1997) parameter él for event dates from November to February with a two months estimation
time frame. Starting from the event date, the additional adverse selection parameter is active. The vertical line displays the MiFID II implementation date.
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Figure 2: Rolling parameter estimate éo

Note. This figure plots the mean estimated Madhavan et al. (1997) parameter éo for event dates from November to February with a two months estimation
time frame. Starting from the event date, the additional adverse selection parameter is active. The vertical line displays the MiFID II implementation date.
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sons for increased information asymmetry at the start of the
year. The length of the estimation time frame does not allow
to detect and control for these patterns. Additionally, effects
of most regulations are unlikely to show immediately at the
implementation date.?” The drop of the additional adverse
selection parameter él shown in Figure 1 at the start of Febru-
ary could be a long-term event effect. In the case of MiFID II,
published transparency data was incomplete at first as not all
market participants were prepared to fulfill the reporting re-
quirements. For example the Double Volume Cap publication
on dark pool trading volumes was delayed to March 7™ by
the European Securities and Markets Authority due to insuf-
ficient quality of the collected data (see European Securities
and Market Authority, 2019). Also, adverse selection effects
could persist longer than the actual information asymmetry
since market participants cannot instantly incorporate newly
available information into their trading behavior.

Collectively, despite evidence for higher adverse selection
right after the MiFID II implementation, a reduction of ad-
verse selection due to MiFID II in the long-run is more plau-
sible than an immediate effect and cannot be rejected by the
empirical results.

6. Conclusion

I evaluate the impact of the Markets in Financial In-
struments Directive II (MiFID II) regulation on information
asymmetries. The microstructure models of Madhavan et al.
(1997) and Glosten and Harris (1988) are extended to mea-
sure the additional adverse selection effect after the MiFID
II implementation date. A sample of 50 German equities
traded at the Cboe European Equities exchange is used to
estimate the models.

While the MIFID II transparency rules are expected to
reduce information asymmetries, the results show more ad-
verse selection after the regulation came into force on Jan-
uary 3", 2018. Estimated effective spreads are 0.31 cents
higher in January 2018 than in December 2017. Rolling
model estimation indicates a possible long-term reduction in
adverse selection. I discuss the attribution of the adverse se-
lection changes to MiFID II.

Further investigation of MiFID II effects could use meth-
ods to identify Granger causal effects of the MiFID II imple-
mentation. Additionally, a larger estimation time frame and
increase in sample size could be valuable to detect more re-
silient long-run effects on adverse selection. Similarly, the
change in inventory holding and direct transaction cost may
be evaluated. Potential stock characteristics that determine
the size of the estimated effects could be identified. Further-
more, the proposed extended microstructure models allow to

27 The tick size band introduced by MiFID II is an exception because it was
implemented at January 3™ and directly impacted the price formation pro-
cess. The increasing sample mean transitory parameters ¢ and c until the
end of January imply higher inventory holding and direct transaction costs
(see Figures 17 and 25 in the appendix). This is consistent with the increased
minimum tick size for the majority of stocks at the MiFID II implementation
date, which is included in the transitory parameter.

examine effects of other events impacting information asym-
metries on financial markets.



208 E. Senn / Junior Management Science 5(2) (2020) 197-208

References

Amihud, Y. and Mendelson, H. Trading Mechanisms and Stock Returns: An
Empirical Investigation. Journal of Finance, 42(3):533-53, 1987.

Autorite des Marches Financiers. MiFID II: Impacts of the new Tick Size
Regime. Autorite des Marches Financiers: Risk and Trends, 2018.

Boyde, L., Yang, S., Campbell, T., and Naidoo, N. Order Book Liquidity on
Primary Markets post MiFID II. Deutsche Bank, 2018.

Cboe European Equities. Cboe European Equities Website. https://market
s.cboe.com/europe/equities/overview/, 2019a. Accessed: 2019-
01-04.

Cboe European Equities. Cboe European Equities Participant Manual
Draft March 2019. https://cdn.cboe.com/resources/participant
_resources/CboeEE_EU_ParticipantManual.pdf, 2019b. Accessed:
2019-01-04.

European Parliament and Council of the European Union. DIRECTIVE
2014/65/EU on Markets in Financial Instruments. Official Journal of the
European Union, https://eur-1lex.europa.eu/legal-content/EN/
TXT/PDF/7uri=CELEX:32014L0065&from=DE, 2014. Accessed: 2019-
01-04.

European Securities and Market Authority. European Securities and Market
Authority Website. https://www.esma.europa.eu/policy-rules/m
ifid-ii-and-mifir, 2019. Accessed: 2019-01-04.

Frey, S. and Grammig, J. Liquidity supply and adverse selection in a pure
limit order book market. Empirical Economics, 30(4):1007-1033, 2006.

Glosten, L. R. and Harris, L. E. Estimating the components of the bid/ask
spread. Journal of Financial Economics, 21(1):123 — 142, 1988.

Greene, W. Econometric Analysis. NJ, Upper Saddle River, Prentice Hall,
2003.

Hansen, L. Large Sample Properties of Generalized Method of Moments
Estimators. Econometrica, 50(4):1029-54, 1982.

Hayashi, E Econometrics. NJ, Princeton, Princeton Univ. Press, Princeton, NJ
[u.a.], 2000.

Huang, R. D. and Stoll, H. The Components of the Bid-Ask Spread: A General
Approach. Review of Financial Studies, 10(4):995-1034, 1997.

Lee, C. and Ready, M. Inferring Trade Direction from Intraday Data. Journal
of Finance, 46(2):733-46, 1991.

Madhavan, A., Richardson, M., and Roomans, M. Why Do Security Prices
Change? A Transaction-Level Analysis of NYSE Stocks. The Review of
Financial Studies, 10(4):1035-1064, 1997.

Ness, B. E V, Ness, R. A. V, and Warr, R. S. How Well Do Adverse Selection
Components Measure Adverse Selection? Financial Management, 30(3):
77-98, 2001.

Netfonds. Netfonds website. https://www.netfonds.no/, 2018. Ac-
cessed: 2018-11-05.

Roll, R. A Simple Implicit Measure of the Effective Bid-Ask Spread in an
Efficient Market. Journal of Finance, 39(4):1127-39, 1984.

Theissen, E. and Zehnder, L. S. Estimation of trading costs: Trade indicator
models revisited. CFR Working Paper 14-09, Cologne, 2014.

Verousis, A., Perotti, P, and Sermpinis, G. One Size Fits All? High Frequency
Trading, Tick Size Changes and the Implications for Exchanges: Market
Quality and Market Structure Considerations. Review of Quantitative Fi-
nance and Accounting, 50(2):353-392, 2 2018.


https://markets.cboe.com/europe/equities/overview/
https://markets.cboe.com/europe/equities/overview/
https://cdn.cboe.com/resources/participant_resources/CboeEE_EU_ParticipantManual.pdf
https://cdn.cboe.com/resources/participant_resources/CboeEE_EU_ParticipantManual.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014L0065&from=DE
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32014L0065&from=DE
https://www.esma.europa.eu/policy-rules/mifid-ii-and-mifir
https://www.esma.europa.eu/policy-rules/mifid-ii-and-mifir
https://www.netfonds.no/

	Introduction
	Microstructure Models
	Model Description
	Estimation

	Data
	Source and Selection
	Trade Classification and Aggregation
	Descriptives

	Empirical Results
	Parameter Estimates
	Spread Estimates

	Impact Evaluation
	Conclusion

