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Stochastic Optimization of Bioreactor Control Policies Using a Markov Decision
Process Model

Quirin Stockinger

Technische Universität München

Abstract

Biopharmaceuticals are the fastest-growing segment of the pharmaceutical industry. Their manufacture is complicated by
the uncertainty exhibited therein. Scholars have studied the planning and operation of such production systems under some
uncertainties, but the simultaneous consideration of fermentation and resin yield uncertainty is lacking so-far. To study the
optimal operation of biopharmaceutical production and purification systems under these uncertainties, a stochastic, dynamic
approach is necessary. This thesis provides such a model by extending an existing discrete state-space, infinite horizon Markov
decision process model of upstream fermentation.

Tissue Plasminogen Activator fermentation and chromatography was implemented. This example was used to discuss the
optimal policy for operating different fermentation setups. The average per-cycle operating profit of a serial setup was 1,272
$; the parallel setup produced negative average rewards. Managerial insights were derived from a comparison to a basic, titer
maximizing policy and process sensitivities. In conclusion, the integrated stochastic optimization of biopharma production
and purification control aids decision making. However, the model assumptions pose room for further studies.

Keywords: Markov decision process; biopharmaceuticals production; fermentation uncertainty; chromatography resin;
stochastic performance decay.

1. Introduction

There are currently 316 active biopharmaceutical ingre-
dients available on the market (Walsh, 2018). Within the
pharmaceutical industry, so-called biopharmaceuticals repre-
sent the fastest-growing segment, generating more than 160
bn€ in annual revenue (Otto et al., 2014). These biophar-
maceuticals are not the result of chemical synthesizing, but
their manufacture involves the fermentation of bacterial or
mammalian cells. To capture the produced proteins, the fer-
mentation is followed by a process of purification. However,
the control of biopharmaceutical production and purification
systems is highly complex because of the inherent technical
uncertainties (Farid et al., 2005). This contribution studies
the optimal, simultaneous control of biopharmaceutical fer-
mentation and purification processes.

Biopharma production, on a high level, is a two-stage
process: during the upstream process (USP), a cell culture
is grown in sequential, volume-increasing bioreactor media
wherein the fermentation environment is most commonly
controlled by way of feeding substrates such as nutrients into
the reactors (fed-batch fermentation) and changing the tem-

perature, pressure, and pH-value. The culture’s protein pro-
duction is induced in the final bioreactor of the sequence,
i.e., the “production reactor,” by changing the nutrient con-
centration in the medium accordingly. When enough product
has been fermented, the protein of interest must be separated
from the medium during the downstream process (DSP). The
most common technique of purification is chromatography
(Liu et al., 2014), but it is also the “most expensive part of the
downstream process” (Nweke et al., 2018, p. 992). Because
chromatography resins’ capacity to bind proteins is uncertain
(Farid et al., 2005) and deteriorates over time (Jiang et al.,
2009), the exchange of spent chromatography resin consti-
tutes operational complexity in the DSP. While there may be
additional filtration steps and intermediate storage steps, the
upstream and downstream processes are highly interdepen-
dent, and their simultaneous control poses significant room
for research.

The need for optimization of biopharmaceutical produc-
tion is an ongoing topic of discussion in practice. A recent re-
port by consultancy McKinsey & Company, for example, cites
“finding ways to improve the performance of the production
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process” as one of the critical operational considerations that
biopharmaceutical manufacturers must ponder to succeed in
the face of adverse market realities such as changing payor
behavior and competition from biosimilars (Otto et al., 2014,
p. 6). Even though small scheduling errors can already lead
to huge financial downside from lost batches due to the high
value of proteins (Schmidt, 1996), operations research tech-
niques are still only sparsely adopted in the industry (Marta-
gan et al., 2018).

Nevertheless, academic interest in the study of control-
ling biopharmaceutical production has been highly active.
The planning of up- and downstream capacities and pro-
cesses, for example, has been discussed in literature, in-
cluding chromatography column sizing (Allmendinger et al.,
2014), maintenance of spent resins (Liu et al., 2014), pro-
duction under chromatography yield (Liu et al., 2016) and
product titer uncertainties (Lakhdar et al., 2006), and pu-
rification capacities (Siganporia et al., 2014). The control of
upstream fermentation has largely focused on maximizing
product concentration in a single bioreactor (Banga et al.,
1997; Pandian and Noel, 2018; Peroni et al., 2005;Rocha
et al., 2014; Saucedo and Karim, 1997). While these en-
deavors model cell-level kinetics, they often do not consider
the financial trade-offs of system-level decision making, i.e.,
integrated decisions across all involved process steps. How-
ever, as early as 1996 (Schmidt, 1996), and more recently
(Martagan et al., Accepted/In press; Martagan et al., 2016;
Martagan et al., 2018), the literature on the system-level
control of production and purification equipment has aimed
at filling this void. Some scholars argue that purely maxi-
mizing the protein concentration during fermentation may
not yield economically optimal results when considering the
associated operating and purification costs (Martagan et al.,
2018).

While Martagan et al. (Accepted/In press) studied simul-
taneous system-level control of protein production and pu-
rification processes, they abstracted upstream decision mak-
ing to a single decision of how much protein to produce.
Furthermore, they did not consider the issue of chromatog-
raphy resin performance decay, as introduced by Liu et al.
(2014). Nevertheless, its consideration is relevant for prac-
tice because resin material is a major driver of downstream
operating costs (Farid, 2007). To the best of my knowledge,
no existing paper has simultaneously considered the biophar-
maceutical fermentation and optimal resin exchange sched-
ule sub-problems under uncertain fermentation and stochas-
tic performance decay. Existing literature, therefore, doesn’t
conclusively answer some outstanding questions about the
influence of the aforementioned uncertainties. What is the
optimal, simultaneous control policy for the USP and DSP?
When is chromatography resin exchanged under stochastic
decay? When under different minimum allowed resin capac-
ities and different resin costs? How does the consideration of
two parallel production reactors change the optimal policy?

This work provides a dynamic stochastic model spanning
both upstream and downstream operations which is used to
answer these questions. Using this dynamic program, this

contribution analyzes a practice-representative production
and purification process using the example of the recombi-
nant protein Tissue Plasminogen Activator (TPA), a promi-
nent product of the early biopharma industry (Datar et al.,
1993) which is still relevant today (Johnston, 2010). On a
system-level, decisions about the production of TPA and its
purification must be made simultaneously. During the USP,
decisions about how long to grow the culture before convert-
ing it into its protein-producing state and when to harvest
the TPA from the medium are considered. A linear accumu-
lation of TPA in the production medium and possible batch
failure due to contamination are assumed. The states of the
observed production reactors are assumed to represent physi-
ological states during the culture’s lifecycle, e.g., growth, pro-
duction, and decay, but cell-level kinetics are not modeled.
Because there is no intermediate storage, and both process
steps are highly interdependent, harvesting of TPA consti-
tutes two necessarily simultaneous decisions: to harvest the
production medium and to accept the medium into the first
chromatography step. For the purification of a single batch,
five purification cycles in the first chromatography column
are assumed to take place within one decision epoch. After
each purified batch, the performance of the resin, i.e., what
fraction of the TPA in the medium it can bind, deteriorates
stochastically. This gives rise to the need for maintenance
actions related to the exchange of spent resin. Maintenance
activities are assumed to take one decision epoch due to their
short duration. Because the first chromatography column can
be regarded as the bottleneck of a multi-step chromatography
process, only the first chromatography step is considered in
the presented model. Analogously, only the production re-
actor of a seed-train is considered as its bottleneck. To test
hypotheses about the parallelization of production, the pro-
vided model is extended by a second, parallel production re-
actor in the same seed-train and scenarios are analyzed. Sets
of states for which the same control actions are optimal are
discussed because of the approach’s demonstrated value in
previous research (Martagan et al., 2018).

By building on the theoretical foundations of Schmidt
(1996), this work contributes a framework for the system-
level study of simultaneous decision making in the USP and
DSP under uncertainty. Contrary to existing models, it allows
for the study of the optimal operation of parallel production
reactors and chromatography resin maintenance. Further-
more, it explicitly models protein accumulation during pro-
duction. This thesis also contributes optimal control poli-
cies for the production and purification of TPA. By study-
ing resin exchange policies under varying process conditions,
this thesis builds on Liu et al. (2014) understanding of what
influences the carrying out of costly maintenance activities.
Furthermore, this thesis argues for the business case of the
stochastic optimization of integrated production and purifi-
cation control compared to simple upstream titer maximiza-
tion. The derived decision spaces aid managerial and oper-
ational decision making under the uncertain environment of
biopharmaceutical production.

The remainder of this thesis is organized as follows:
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Chapter 2 reviews the problem context and surveys exist-
ing literature on biopharmaceutical production. Chapter 3
details the problem characteristics and this work’s research
questions. Chapter 4 outlines Markov decision processes
(MDPs) as the solution approach and introduces the case
study of TPA production. Chapter 5 describes the developed
model and Chapter 6 the results of the numerical case study.
Chapter 7 concludes this work and provides an outlook for
future research endeavors.

2. Review of Literature and Research

To the best of my knowledge, no existing paper studies
the simultaneous, system-level control of upstream fed-batch
fermentation and downstream resin exchange. In this chap-
ter, existing literature and research on the optimization of
biopharmaceutical production schedules in the light of un-
certainty are reviewed. First, an introduction to the bio-
pharmaceutical production process and their academic and
economic relevance are provided and the literature review
methodology summarized (Section 2.1). Next, the control of
fed-batch fermentation processes based on cell-level kinetics
is reviewed (Section 2.2). This is extended by a survey of the
issue of planning biopharma production capacities and activ-
ities, with a focus on the inherent stochasticity of the process
(Section 2.3). In Section 2.4, the middle ground between the
two prior abstraction levels, optimal control policies of inte-
grated production systems under biological uncertainties, is
reviewed. Concluding this literature overview, the concrete
research gaps in existing research are identified and this the-
sis is motivated (Section 2.5).

2.1. Context of literature research
This section provides a brief overview of the biopharma-

ceutical market and defines common production processes.
Additionally, the methodology of the literature review is de-
scribed.

2.1.1. Biopharmaceutical production
Since the first biopharmaceutical drug being commercial-

ized in 1982, the market has continuously grown (Figure 1).
Between 2014 and 2018 alone, 129 distinct biopharmaceuti-
cals have been commercialized across the United States and
European Union. Taking the 58 withdrawn active ingredients
into account, currently, 316 biopharmaceutical active ingre-
dients are available (Walsh, 2018).

Regardless of the topic’s academic and commercial rel-
evance, the lack of a uniform definition of terms has been
lamented (Rader, 2005). Within the pharmaceutical indus-
try, two terms need to be distinctly defined to allow for a
concise discussion of the topic. Ordinary “drugs” are manu-
factured by “chemical (non-biological) means and involving
small molecules”, whereas “biopharmaceuticals” are “man-
ufactured by biotechnology methods and involving complex
biological molecules” (Rader, 2005). Biopharmaceuticals
may be “produced from cultures of eukaryotic or prokaryotic

cells, isolated from natural sources, or made by synthetic
methods” (Jagschies et al., 2018, p. 59).

The production process of biopharmaceuticals, on a high
level, is separated into two sequential, highly interdepen-
dent phases: an upstream process (USP) and a downstream
process (DSP). During the USP, the active pharmaceutical in-
gredient (API) is synthesized by cultivating the living cells un-
der controlled nutrient conditions, i.e., fermentation. Upon
reaching the required API quantity, recovery and filtration
of the API must take place in the DSP before packaging and
shipping of final products (Jagschies et al., 2018, p. 76).
This is necessary because of impurities produced alongside
the API during fermentation. The purification can directly
follow the fermentation process or be postponed (Sigan-
poria et al., 2014). One of the most common yet highly
cost-intensive process steps during product recovery is chro-
matography (Jiang et al., 2009; Liu et al., 2014). During
chromatography, the product of interest is separated from
the medium and impurities based on their physiological dif-
ferences. For this task, so-called chromatography columns
hold resins which either bind the product of interest or the
impurities (Martagan et al., Accepted/In press). Additional
steps between USP and DSP, like intermediate storage and
filtration, are possible. However, these are not in-scope for
this contribution.

Each phase may consist of a series of bioreactors and
chromatography steps, respectively. During the USP, biore-
actors of increasing volumes may be used to grow an ini-
tially small amount of cell culture to commercial production
scale. Such a “train” of sequentially interconnected bioreac-
tors may be referred to as a “seed train” (Jagschies et al.,
2018, p. 632). During the DSP, between two and six sequen-
tial chromatography steps may be required to meet the pu-
rity demands of the desired product (Martagan et al., 2018).
A schematic of a biopharmaceutical production process us-
ing a single seed-train of three bioreactors of increasing vol-
umes and three sequential chromatography steps is provided
in Figure 2. To improve the utilization of the purification
equipment, different process set-ups are possible. Appendix
1, for example, shows two serial upstream seed-trains feed-
ing into one downstream process. It may, however, be more
capacity- and cost-feasible to inoculate multiple parallel pro-
duction reactors from one seed-train (Jagschies et al., 2018,
653f), visualized in Appendix 2.

Bioreactors can be operated in two modes: batch pro-
cessing and continuous processing. Batch processing allows
distinct production periods and lot sizes while continuous
production allows continuous harvesting (Siganporia et al.,
2014). Within the batch process category, two prominent
operating modes exist: fermenters-batch and fed-batch. Of
these, fed-batch fermentation has been the most popular
mode historically. Under this production paradigm, batches
of high-value products such as APIs are fermented in biore-
actors under a controlled environment while being continu-
ously fed nutrients (Banga et al., 1997). Contrasting contin-
uous production, the product is harvested at the end of the
fed-batch production (Siganporia et al., 2014)(Siganporia
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Figure 1: The number of newly approved biopharmaceutical drugs, including those with identical ingredients, in the EU and
the US shows a positive, historical growth trend (Walsh, 2014; Walsh, 2018)

Figure 2: Schematic view of a biopharmaceutical production process with a singular serial seed-train and three sequential
chromatography columns

et al., 2014). While continuous fermentation processes are
regarded as more economical in some cases, the pharmaceu-
tical, biotechnology, and food industries predominantly use
batch processes. Especially for the production of Monoclonal
Antibodies (MABs), one of the fastest growing product cat-
egory in biopharma (Liu et al., 2016), fed-batch has been
established as the most prolific production paradigm (Sigan-
poria et al., 2014). Its popularity is mainly due to its lower
process complexity, recent increases in production titer sizes,
avoidance of over-feeding and high levels of sterility (Freitas
et al., 2017; Rani and Rao, 1999; Siganporia et al., 2014).

2.1.2. Methodology of the literature survey
Determining optimal control of fed-batch fermentation

has been the subject of academic research for at least twenty
years (Lee et al., 1999; Rani and Rao, 1999). For the pur-
pose of this contribution’s merit, only literature published in
or accepted to be published in peer-reviewed journals and
conference proceedings with at least 2nd quartile Scimago
or A Jourqual3 rankings were reviewed. Primary sources

for collecting relevant literature were references in seminal
papers (such as Liu et al. (2014); Martagan et al. (2016);
and Schmidt (1996)), Web of Science, EBSCO Host Busi-
ness Source Complete, and Google Scholar. Databases were
searched based on keywords from the most relevant papers.
Based on the context described above (Chapter 1), existing
literature was categorized along the following five character-
istics:

• Planning level: The level of abstraction with which the
biopharmaceutical production process is studied.

• Decision space: How the locus of decision-making is
defined, i.e., what the set of necessary decisions is.

• Uncertainties: The process-specific uncertainties and
their implications which are considered.

• Solution method: The mathematical approach to mod-
eling and, finally, solving the identified problem.
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• Financial trade-offs: Whether the financial value of de-
cision making along the production process is consid-
ered.

These criteria allow the precise discussion of the existing
academic literature and, later on, the proposed approach of
this work. Among existing literature, three abstraction levels
were identified on which fed-batch biopharmaceutical pro-
duction is generally studied: (1) biomass kinetics within one
bioreactor, (2) scheduling and capacity planning on facility-
level, and (3) operating an integrated system of bioreac-
tors and chromatography steps. Following this motivation
of the biopharmaceutical production control problem and its
study, the next three sections will review the existing litera-
ture along the three introduced planning levels: Bioreactor
control (Section 2.2), Production and capacity planning (Sec-
tion 2.3), Production system operations (Section 2.4). Across
these levels, problem characteristics will be discussed and, fi-
nally, a worthwhile gap in the academic conversation will be
concluded.

2.2. Biorreactor control
A large amount of uncertainty during the production of

biopharmaceutical products stems from the unpredictability
of living organisms’ behavior. Cell growth, production rate,
and contamination are highly non-linear in nature (Pandian
and Noel, 2018). It is therefore paramount to control biore-
actors effectively by taking the optimal decision in each situa-
tion, i.e., adhering to an optimal policy. In this section, exist-
ing literature on fed-batch bioreactor modeling and determi-
nation of control policies is surveyed. The non-linear nature
of biopharmaceutical production processes rules out conser-
vative linear models (Pandian and Noel, 2018). Control mod-
els used for this task are consequently based on Dynamic Pro-
gramming (DP) (Rocha et al., 2014). DP, as defined by Bell-
man (1957b), models a dynamic problem as a set of consec-
utive transitions from state to state. Therefore, bioreactor
control researchers have described fed-batch fermentation
processes predominantly as control problems, e.g., open loop
control (Rani and Rao, 1999). These control problems are of-
ten constrained by differential equations modeling the physi-
ological kinetics of the biomass within a reactor (Banga et al.,
1997). Models of biomass kinetics can be either structured,
i.e., “explicitly describe intracellular processes,” or unstruc-
tured, i.e., rely on “concentrations of nutrients and metabo-
lites” (Xing et al., 2010, p. 208). Unstructured models of-
ten incorporate Monod-type bacterial growth models (Xing
et al., 2010). Under the lens of process control, the most com-
mon control objective is to find the nutrient feed rate policy
which maximizes product concentration at the terminal time
or overall reactor productivity. Consequentially, the decision
space is often limited to the feed rate of nutrients over the
course of fermentation making it a singular control problem.
Banga et al. (1997) and Banga et al. (2005), for example,
formulate open-loop control problems, modeling the kinet-
ics of one fed-batch fermenter with the goal to maximize the

yield of penicillin and ethanol, respectively, by way of con-
trolling the substrate feed-rate. Ponte et al. (2018) describe
fed-batch production of the recombinant fungus ROL and ob-
tain optimal feeding trajectories. Skolpap et al. (2004) and
Skolpap et al. (2008) model the control of the Monod-type
kinetics of α-amylase in a fed-batch fermenter, and include
the switching time from batch-mode to fed-batch mode as
a decision variable. Peroni et al. (2005) propose an approxi-
mate dynamic program to determine the feed-rate profile and
the fermentation end time in invertase production of Saccha-
romyces Cerevisiae.

Due to the computational challenge of determining the
control parameters in higher order differential equations,
stochastic optimization routines have gained popularity for
solving these control problems. While Xing et al. (2010);
Skolpap et al. (2004); and Skolpap et al. (2008) use Markov
chain Monte Carlo simulation, Banga et al. (2005) implement
control vector parameterization, stochastic approaches, such
as random search, genetic algorithms, and differential evo-
lution, as well as dynamic hill climbing, to estimate kinetic
model parameters. Other stochastic heuristics include model
predictive control using evolutionary computation (Ashoori
et al., 2009; Freitas et al., 2017), particle swarm optimization
(Liu et al., 2013), and, more recently, reinforcement learning
(Pandian and Noel, 2018). Peroni et al. (2005) use a neural
network for the implementation of an initial approximation
and iterative improvements thereof. Earlier, a feedforward
neural network was used by Chaudhuri and Modak (1998)
to model the same problem.

In general, most surveyed models are deterministic and
don’t consider process uncertainties such as variable produc-
tion rates and spontaneous cell death due to contamination.
Delvigne et al. (2006), however, propose a Markov chain
model of the concentration gradients to complement a deter-
ministic kinetic model. Attempts to include stochastic cell be-
havior in dynamic control problems have also been made, for
example, by Saucedo and Karim (1998); Saucedo and Karim
(1997), who propose an MDP for modeling the concentration
of ethanol produced by way of an optimal feed-rate policy.

Process engineering works towards the optimal utiliza-
tion of existing process capabilities (Rocha et al., 2014).
Therefore, maximum productivity of the reactor, rather than
economically-optimal operation is a common objective (Per-
oni et al., 2005). However, some scholars even at the biore-
actor control level, tie optimization to a financial tradeoff
between the value of a maximized product concentration
and the cost of nutrients fed into the reactor (Ponte et al.,
2018; Saucedo and Karim, 1998).

Process control of batch and fed-batch biopharmaceuti-
cal production to achieve maximum productivity has been
an area of active academic discussion. However, maximizing
production titers during the upstream process is only one way
of optimizing production. Biopharmaceutical production, as
discussed above, is an interconnected system of upstream fer-
mentation and downstream purification. Given the high costs
of all involved process steps, maximizing protein production
in the USP may not be an optimal policy for an economically



Q. Stockinger / Junior Management Science 5(1) (2020) 50-80 55

incentivized decision maker. The next section deals with ca-
pacity and production planning literature on the facility-level
which allows the consideration of downstream processes in
decision making.

2.3. Production and capacity planning
The novelty and complexity of the biopharmaceutical in-

dustry, combined with the incumbent focus on spreadsheet-
based planning, led to unrealized savings from more sophis-
ticated planning models (Lakhdar and Papageorgiou, 2008).
Recently, mathematical optimization of production and ca-
pacity planning has been subject to rigorous academic re-
search spanning both up- and downstream processes (Liu
et al., 2016). This section reviews past research on this ab-
straction level that deals with biopharmaceutical production,
it is summarized in Table 1.

Due to the high level of abstraction in medium-term plan-
ning, earlier work on biopharmaceutical production planning
often considered the production process as a black box with
decisions focusing on production schedules irrespective of
downstream operations. Gatica et al. (2003) and Lakhdar
et al. (2006), for example, determined production quantities
and campaign durations for a not closer specified biopharma
production process. More recently, decision making has ex-
panded to include purification operations as well. Siganporia
et al. (2014) modeled capacity decisions in sequential up-
stream production and downstream purification. Liu et al.
(2014), building on Lakhdar et al. (2005), studied produc-
tion and maintenance planning covering both the USP and
DSP, with a special focus on the issue of downstream main-
tenance work, i.e., when decayed chromatography resins are
scheduled to be replaced. Therein, chromatography resins
deteriorate after each purified batch, leading to the resin
binding less of the available product from the medium in
following batches. To restore the performance of the chro-
matography process, maintenance activities related to the
exchange of the used resin are necessary. Liu et al. (2016)
expanded their prior work to include sizing and sequencing
decisions in both process steps for MAB production. Focus-
ing on a DSP decision space, chromatography capacities and
their operations were studied by Allmendinger et al. (2014).
Furthermore, Allmendinger et al. (2014); Liu et al. (2014),
and Liu et al. (2016) simulated scenarios with parallel pro-
duction setups being harvested into one or more purification
suites.

Due to the inherently uncertain nature of biopharma-
ceutical production, a stream of literature has specifically
focused on dealing with this. Gatica et al. (2003), for
example, modeled clinical trial success scenarios in their
Mixed Integer Linear Program (MILP) determining capacity
plans. Lakhdar et al. (2006) and Lakhdar and Papageorgiou
(2008) expanded previous work on multi-period planning
and scheduling (Lakhdar et al., 2005) by considering uncer-
tain production titers. Liu et al. (2016), in a modification of
their previously deterministic MILP (Liu et al., 2014), consid-
ered uncertainties in both the production titer and the resin

yield during chromatography purification by means of trian-
gularly distributed stochastic parameters when determining
production plans. The impact of uncertain production titer
on chromatography decisions was also considered by All-
mendinger et al. (2014).

For planning problems under uncertainty, literature has
mostly focused on stochastic programming approaches such
as 2-stage programming (Lakhdar and Papageorgiou, 2008),
Chance-Constrained Programming (CCP) (Lakhdar et al.,
2006, Liu et al., 2016), and scenario-based programs (Gat-
ica et al., 2003). Allmendinger et al. (2014) formulated
the closed-loop control of a process economic model which
was optimized using evolutionary algorithms. Determinis-
tic planning problems are generally modeled as MILPs and
solved using standard approaches (Lakhdar et al., 2005; Liu
et al., 2014; Siganporia et al., 2014).

As optimal decision making regarding the use of finan-
cial and capital assets is one of the principal goals in produc-
tion and capacity planning, it’s no surprise that this is also
true in biopharmaceuticals planning. In this stream of plan-
ning research, the financial trade-offs consider (1) maximiz-
ing sales revenue while incurring minimum capacity invest-
ments and operating costs or (2) minimizing costs per sold
product. Gatica et al. (2003) and Siganporia et al. (2014),
for example, studied a capacity planning problem’s trade-off
between capacity investments and operating costs and rev-
enues generated from selling the produced amount. Lakhdar
et al. (2005); Lakhdar et al. (2006), and Lakhdar and Pa-
pageorgiou (2008) studied the classic production planning
conundrum of satisfying demand under operating profit max-
imization. Liu et al. (2014), on the other hand, studied the
financial trade-offs of production and maintenance simulta-
neously. They specifically focus on the trade-off between re-
duced purification yield from reusing the same resin and in-
curring costly resin maintenance. Liu et al. (2016) focused on
the trade-off between sales revenues and operating costs un-
der consideration of uncertain titers and purification yields,
minimizing the total costs of goods. In the latter category
of financial trade-offs, Allmendinger et al. (2014) aimed at
minimizing the cost of goods per gram of sold product.

In conclusion, biopharmaceutical production planning lit-
erature seems to be playing catch-up regarding considera-
tion of operational uncertainty. Due to the high economic
impact of resin maintenance, performance decay and the re-
lated scheduling of resin exchanges constitute a further need
for academic attention. Furthermore, a priori planning and
scheduling policies, are not able to guide ad-hoc operations
of systems of bioreactors and chromatography columns es-
pecially under the influence of biopharmaceutical process
uncertainties. The next two sections focus on existing ap-
proaches which aim at closing this gap and conclude with
the still remaining gap as the focus of this work.

2.4. Production system operations
Recently, academia’s widespread focus on concentration

maximization within singular bioreactors and its disregard
of uncertainties and downstream process implications have
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Table 1: Biopharma planning literature

Reference Decision space Uncertainties Model

Lakhdar et al. (2005) Campaign sequence and duration,
production quantities

n/a MILP

Siganporia et al. (2014) Capacity plans, out-sourcing deci-
sions

n/a MILP

Liu et al. (2014) Maintenance and production
plans

n/a MILP

Gatica et al. (2003) Product portfolio, capacity plan-
ning

Clinical trial out-come Scenario-based MILP

Lakhdar et al. (2006) Production plans Production titer CCP MILP
Lakhdar and Papageor-
giou (2008)

Production plans, sales and back-
log profiles

Production titer 2-Stage MILP

Allmendinger et al.
(2014)

Capacity plans, chromatography
operations

Production titer Closed-loop control

Liu et al. (2016) Sequencing and sizing, production
plans

Production titer, resin
yield

CCP MILP

been questioned by management scholars, such as Martagan
et al. (2016). They argue for the need for harvesting policies
maximizing discounted financial profit under the considera-
tion of system-level operations. This section surveys existing
literature on system-level approaches to the optimization of
biopharmaceuticals production.

The decision space in system-level biopharmaceutical
production optimization has expanded. Originally, decision
making was exclusively concerned with the operations of
an upstream seed-train under a known average downstream
protein yield (Schmidt, 1996). Schmidt studied the opti-
mal scale-up and harvest policy on a seed-train consisting
of sequential, in volume increasing bioreactors. Therefore,
the model allowed actions involved in the inoculation of a
prepared bioreactor, the feeding of nutrients to grow the
culture, the transfer of the medium from a smaller reac-
tor to the next larger one, and the facilitation of protein
production and harvesting. 20 years later, Martagan et al.
(2016) researched upstream harvesting decisions under ex-
plicit purification dynamics. In their model, a decision maker
chooses between continuing fermentation and harvesting
the protein produced thus far. Later, they studied deci-
sions about chromatography pooling windows under explicit
knowledge about upstream product yield (Martagan et al.,
2018. Therein, they studied optimal chromatography pool-
ing. Their model aimed at determining which chromatogra-
phy “lanes”, i.e., the amount of protein and impurity flowing
through the column per time unit, to “pool”, i.e., which lanes
to capture from the chromatographic separation, under the
consideration of the trade-off between impurity levels and
product yield. Most recently, Martagan et al. (Accepted/In
press) integrated the simultaneous determination of the up-
stream production quantity and downstream technology and
pooling window. Herein, they modeled a decision maker’s
interdependent choice about which chromatography tech-
nique to use at a given time, which chromatography lanes

to pool, and how much protein to ferment. It is interesting
to note the level of abstraction to which decisions in the
different process steps are studied. While Schmidt (1996)
modeled detailed production process operations, excluding
downstream decision making, Martagan et al. (2016) only
modeled two different actions at each time interval (con-
tinue or harvest) and Martagan et al. (Accepted/In press)
reduced upstream decisions to the selection of what amount
of protein to produce.

Due to the stochastic nature of the dynamic control bio-
pharmaceutical manufacturing, literature at the system ab-
straction level has exclusively modeled decision making us-
ing MDPs. However, the considered uncertainties differ.
Schmidt (1996) accounted for the stochasticity of protein
production through living organisms. Continuation of cul-
ture growth and protein production was assumed not deter-
ministic but subject to random upsets such as contamination.
Martagan et al. (2016) considered the uncertainty in the ac-
cumulation of MABs and impurities, as well as the arrival
of random shocks, such as sudden failure or increased im-
purity accumulation, during production. Martagan et al.
(2018) and Martagan et al. (Accepted/In press) studied the
uncertainty of how much protein and impurity remain in
the medium at the beginning of each chromatography step.
Each piece of literature on system-level decision making in
biopharmaceutical production considers the financial trade-
off of the decision maker’s actions. Schmidt (1996) model,
for example, was aimed at aiding process change decisions.
Therefore, he modeled the financial impact of harvesting
and continuing fermentation. On the one hand, operating
revenues were based on an average protein concentration
per harvested liter of medium and an average purification
yield. On the other hand, each undertaken action incurred
a volume-dependent cost for the fed nutrients and a fixed
cost. By studying average operating profits, Schmidt (1996)
was able to deduct the financial impact of process parameter
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changes, such as a reduction of the contamination risk or an
increase of the productive phase of the culture, for exam-
ple, due to investment in process improvements. Similarly,
Martagan et al. (2016) considered the financial trade-off be-
tween incurring operating costs for continuing fermentation
to increase the potential payoff from selling the accumulated
MABs and realizing the potential profits by harvesting before
batch failure occurs. Martagan et al. (2018) studied protein
yield and product purity. Inherent therein is the financial
trade-off between the fixed revenue earned from satisfying
customer orders and the costs incurred at each chromatog-
raphy step. In their model, fixed revenue is earned if at
least as much product as the customer’s yield requirement is
delivered, otherwise a yield penalty cost is incurred, given
that purity requirements are met. In their most recent work,
Martagan et al. (Accepted/In press) integrate both considera-
tions (costs of continued fermentation and profits associated
with chosen chromatography operations) into a simultane-
ously considered financial trade-off.

Research on the system-operations abstraction level and
on all other discussed levels is summarized in the following
section. It is also there, where the gap is identified which this
contribution aims at closing.

2.5. Concluding remarks and identified research gap
After an introduction to the biopharmaceutical produc-

tion industry in Section 2.1, Section 2.2 reviewed control the-
ory literature on fermentation reactor control constrained by
culture kinetics. Existing research on this topic has often fo-
cused on the maximization of fermentation productivity with
little regard for the financial trade-offs between costly fer-
mentation and associated purification operations. Section
2.3 introduced planning level considerations and the notion
of chromatography resin performance decay in the work of
Liu et al. (2014). This linear, deterministic planning model,
among other decisions, determined maintenance schedules
for the replacement of spent chromatography resins. While
Liu et al. (2016) model did not consider resin decay, it mod-
eled the uncertainty of the resin’s yield. Uncertain, decaying
resin yield, however, has not yet been considered.

Section 2.4 reviewed existing literature on the control of
fermentation and purification systems. Although research
has explored the control problem of interconnected fermen-
tation and purification systems (Martagan et al., Accepted/In
press), a paucity of further study of the problem appears to
exist. Existing academic work on the topic seems to either
overly simplify fermentation operations (Martagan et al., Ac-
cepted/In press; Martagan et al., 2016) or exclude control of
purification processes (Schmidt, 1996). Furthermore, when
to incur chromatography raw material costs, i.e., when to ex-
change spent resin, has not yet been considered on the system
abstraction-level.

Due to the interdependence of up- and downstream de-
cision making in the complex production of highly valuable
products, optimal policies for simultaneous operation of pro-
tein production and chromatography maintenance under fer-
mentation and resin decay uncertainties constitute a worth-

while endeavor for academia and practice. This contribution,
therefore, aims at closing this gap by providing optimal deci-
sion policies for the control of an integrated biopharmaceu-
tical production system. The next chapter summarizes the
concrete characteristics of this identified problem and intro-
duces the research questions of this contribution.

3. Problem Statement & Research Questions

Following a summary of the setting of the problem stud-
ied in this contribution (Section 3.1), this chapter introduces
the research questions this contribution aims at answering
(Section 3.2).

3.1. Problem context
As per the identified gap in biopharmaceutical produc-

tion control literature, this contribution aims at the simulta-
neous optimization of two interconnected sub-problems, i.e.,
the upstream fermentation policy and the downstream resin
exchange schedule. Building on existing literature (see Sec-
tions 2.2-2.4), the following problem setting is considered:

Uncertainties: Both, product fermentation and purifica-
tion are stochastic in nature. These uncertainties are hy-
pothesized to play a critical role in the optimal control of a
biopharmaceutical production system. Due to the inherently
non-linear nature of the living organisms used in biopharma-
ceutical production, the physiological states of the observed
fermentation culture are highly uncertain. Although fed-
batch fermentation is argued to be highly sterile, a risk of
batch failure, e.g., due to contamination, persists and is hy-
pothesized to influence optimal decision making (Martagan
et al., 2016; Schmidt, 1996). As the performance decay of
chromatography resins has thus far only been assumed to be
deterministic (Liu et al., 2014) but resin yields constitute a
relevant uncertainty (Farid et al., 2005), maintenance deci-
sions under stochastic performance decay are studied.

Planning level: The identified problem is examined on
a system-level. The optimal control of the production reac-
tor(s) depends on the state of the fermentation process as
observed by a hypothetical production operator. While these
states are informed by culture physiologies (Martagan et al.,
2016; Schmidt, 1996); explicit culture kinetics are not in-
scope for this work. Such approximations are considered
“sufficient to describe the evolution of the [fermentation] sys-
tem through time” (Schmidt, 1996, p. 607). Analogously, the
operation of the product purification, while depending on the
physiological details of the chromatography technique, are
not considered herein.

Decision space: The decision space of interest is the si-
multaneous control of the highly coupled USP and DSP. The
control of the production reactors in a predetermined up-
stream seed-train configuration to produce a predetermined
protein, including decisions regarding the preparation of the
reactors, the culture’s growth, continuation of production or
harvesting the accumulated product are studied in this con-
tribution as these realistically constitute the object of daily
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decision making for production operators. This contribu-
tion considers only the production reactor of a predetermined
USP. For one, it’s mainly interested in the production phase
and harvesting decisions, and these take place in the pro-
duction reactor, rather than during the volume-scale up from
inoculum flasks to the production volume across the preced-
ing seed-train. As a second argument for this decision, the
production reactors of a seed-train can be considered as the
bottleneck of that seed-train. For multiple parallel produc-
tion reactors, the USP decision space consequently spans all
bottleneck reactors. The parallel production reactors are con-
sidered the bottleneck of parallel production because their
operation limits the batch throughput; furthermore, paral-
lel production reactors inoculated by a single seed-train are
considered more economical than entire parallel seed-trains
(Jagschies et al., 2018, p. 653). The control of the purifi-
cation process, on the other hand, focuses on the first chro-
matography step for simplicity, in line with previous work
(Liu et al., 2014). Consequently, policies for the first chro-
matography column with a predetermined resin and capacity
must be determined. Decisions include accepting the harvest
from the upstream process and exchanging used resin to re-
store chromatography performance.

Financial trade-offs: The financial trade-off of both sub-
problems are integrated and considered simultaneously. Dur-
ing the USP, the financial trade-off between continuing fer-
mentation by incurring operational costs and “locking in”
value by harvesting before the whole batch is lost due to
sudden failure from contamination has been identified as
the most relevant (Martagan et al., 2016; Schmidt, 1996).
Downstream decisions about resin maintenance are made in
the face of the financial trade-off between scheduling the
costly chromatography resin exchange and postponing the
exchange, thus accepting a lower financial payoff from the
next harvest. On the system-level, a controller, therefore,
must integrate the decisions of both sub-problems. This inte-
gration considers the financial trade-off of when to “lock in”
the revenue from already produced protein before losing the
whole batch and the implied cost of reducing the resin per-
formance by purifying a harvested batch. On the one hand,
accepting a harvest for purification secures the revenue from
the fermented protein but, on the other hand, also acceler-
ates the necessity of costly resin exchange. Meaning, when-
ever a batch is purified, the need for exchanging the resin is
moved closer to the present.

These problem characteristics, compared to existing liter-
ature, are summarized in Appendix 3. A formal statement of
the problem is provided in Appendix 4.

3.2. Research questions
This contribution poses several questions which existing

literature has yet to address but which could contribute to
academia’s and practice’s understanding of this complex en-
vironment. This section derives these questions from the
identified gaps.

Schmidt (1996) modeled the simultaneous control of
sequential upstream bioreactors and Martagan et al. (Ac-

cepted/In press) considered both up- and downstream oper-
ations but reduced protein production to a single decision.
Because of the benefit of simultaneously optimizing up- and
downstream operations demonstrated by Martagan et al.
(Accepted/In press), there exists paucity to answer the fol-
lowing research question.

RQ1: What is the optimal, simultaneous control
policy for the USP and DSP?

Furthermore, while Liu et al. (2014) determined optimal
resin maintenance schedules, only deterministic decay was
considered, even though resin yields constitute a source of
uncertainty (Allmendinger et al., 2014; Farid et al., 2005;
Liu et al., 2016). However, maintenance decisions under un-
certain remaining resin capacities, haven’t been considered.
They can constitute a relevant endeavor for practical decision
making because of the high financial impact of chromatogra-
phy material (Farid, 2007).

RQ2: When is the chromatography resin ex-
changed under stochastic decay?

RQ3: What is the influence of changes to process
parameters such as the resin cost and the mini-
mum viable capacity on the optimal policy?

Lastly, because parallel fermentation can increase the
batch throughput of a biopharmaceutical production process,
seed-trains may be set up to inoculate multiple parallel pro-
duction reactors to increase utilization of purification equip-
ment (Jagschies et al., 2018, p. 652). While Allmendinger
et al. (2014) and Liu et al. (2016) modeled different ra-
tio setups between upstream seed-trains and downstream
purification, the operations-level implications of multiple
parallel production reactors have yet to be studied, giving
the following research question interest and relevance.

RQ4: How does the consideration of two paral-
lel production reactors change the optimal policy
from RQ1?

The related, non-directional hypotheses are summarized
in Appendix 5. How this contribution aims at answering
these questions is described in the following chapter (Chapter
3). Afterward, the respective analyses are carried out (Chap-
ter 4).

4. Solution Approach

In this thesis, a stochastic dynamic programming ap-
proach is developed which allows the study of simultane-
ous decision making regarding the fed-batch fermentation
process, the timing of harvesting, and the maintenance of
chromatography resin.

This chapter argues for the use of stochastic dynamic pro-
gramming over purely stochastic approaches to study the
bioreactor system control problem (Section 4.1), reviews the
theoretical background of Markov decision processes (Sec-
tion 4.2), and introduces the numerical case study used to
study the identified problem (Section 4.3).
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4.1. Dynamic vs. stochastic programming
After reviewing the problem characteristics in the previ-

ous chapter (Section 3.1), the curious reader may ponder the
question: “under which mathematical framework could one
study such a complex environment?” This section argues for
MDP as the most fitting modeling technique in this context.

Before discussing possible approaches, the model require-
ments of the proposed context are reviewed. From the prob-
lem context, one can derive the following three requirements
of the model approach:

• Regular observation: The model must allow regular ob-
servation of a complex system under uncertainties. A
hypothetical production system controller must be able
to observe the production and purification processes
and the cell cultures, periodically.

• Decisions based on state: To study optimal decision
making in the control of biopharmaceutical production
and purification systems, the model must allow a hypo-
thetical system controller to form a decision based on
their observed information. In other words, one obser-
vation must provide enough information for the choice
of the next decision.

• Required optimality: Due to the significant financial
trade-off underlying decisions during biopharmaceuti-
cal production and purification, the model should pro-
vide an optimal prescription on what actions to take.

Two mathematical modeling techniques may constitute
candidates for studying the research questions this contribu-
tion poses: stochastic programming and dynamic program-
ming.

Stochastic programming deals with decision problems
which can be formulated as follows: “Some decisions must
be made today, but important information will not be avail-
able until after the decision is made” (King and Wallace,
2012, p. 2). In principle, the problem studied in this the-
sis can be formulated to fit this description. However, two
arguments discourage the use of stochastic programming in
this context. Firstly, as Powell (2014) notes, stochastic pro-
grams are practically restricted to two decisions instances,
so-called two-stage approximations. In two-stage programs,
a decision x t in time t under uncertainty is made, followed
by scenario information becoming known and a second de-
cision instance in which decisions for all following epochs
are made x t+1 · · · xT (Powell, 2014). Due to the high dimen-
sionality of scenario trees, which must capture all historical
information up to the current decision epoch, stochastic pro-
grams are virtually only applicable for problems which can
be approximated as two-stage problems. Because biophar-
maceutical production systems are monitored and operated
in discrete time intervals (Martagan et al., 2016) over some-
times week-long production campaigns (Schmidt, 1996), it
seems evident that a two-stage approximation is not feasi-
ble. Secondly, as multi-stage stochastic programs (two-stage
programs included) are approximations, Powell (2014, p.

111) further postulates that the optimal solution to such an
approximation is “(with rare exceptions) not an optimal pol-
icy.” As this work is interested in finding an optimal policy to
study its research questions, stochastic programming can be
eliminated as a viable candidate for modeling the identified
problem.

Dynamic programs, on the other hand, can be argued to
fit the requirements of the presented problem context. Firstly,
dynamic programs deal with sequential decision problems
and, therefore, allow the study of multi-stage decision mak-
ing. Due to their dynamic nature, these problems don’t
approximate multi-stage problems using scenarios but allow
modeling them stage-by-stage. Secondly, properly modeled
dynamic programs are Markovian (Powell, 2014) and, there-
fore, aren’t history dependent. These first two characteristics
allow the modeling of a decision problem, in which an ob-
server sequentially takes in information about the controlled
system and can inform a control decision solely based on
the last available state description. Thirdly, for subclasses of
dynamic programs, it can be shown that an optimal policy
exists. For example, using the Banach fixed-point theorem,
it can be shown that an optimal policy exists for the to-
tal discounted reward problem of an infinite horizon MDPs
(Saucedo and Karim, 1997) and relative value iteration con-
verges to the optimal value function of the average cost prob-
lem of an infinite horizon MDP (Gupta et al., 2015). Markov
decision processes are dynamic programs with stochastic
state transitions. Section 4.2 provides more detail on their
theoretical background.

This section concludes that dynamic programming meets
the requirements of the problem identified in this thesis and,
furthermore, MDPs, as a special case of dynamic programs,
provide optimal policies for the control of stochastic systems.

4.2. Markov decision processes
This section introduces the notion of Markov decision

processes, stochastic dynamic programs which are commonly
used to model the control of a complex system which evolves
according to a controlled Markov process.

MDPs are tools for analyzing dynamic systems in which
state transitions are stochastic and can be influenced by the
actions taken by a controller. As such, MDPs combine char-
acteristics of DP and Markov chains (Tijms, 2003, p. 233).
The theoretical foundations of MDPs lie in Bellman (1957a)
and Howard (1960) for the interested reader.

An MDP is a partly controlled Markov process, i.e., a pro-
cess following the Markov property (cf. Markov (1954)), in
which the transition probability to the next state is solely de-
pendent on the process’s current state and the controller’s
chosen action. Puterman (2014, p. 17–20) mathematically
formulates such a process in terms of the 5-tuple (T ,S , A ,
P , R):

• a set of N decision epochs T , over which the system
evolves. If N is a finite number, the MDP is referred to
as a finite horizon MDP, otherwise as an infinite horizon
MDP.
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• a set of possible statesS , which the system may occupy
at any epoch t ∈ T

• a set of actions A , which the controller of the system
can choose. In any given state s ∈ S , only a subset
As ⊆A may be permissible. Therefore,A =

⋃

s∈S As

• a set of transition probabilities P of dimension |S | ×
|S |×|A |, which determines the probabilities p(s, s′, a)
of the system progressing to state s′ after choosing ac-
tion a ∈As in state s

• a rewards function R which mapsS ×A → R. In addi-
tion to progressing the system into its next state, taking
an action a ∈ As in state s results in an immediate re-
ward r(s, a) for the controller. Depending on the sign
of the reward, this may be interpreted as an income (if
positive) or a cost (if negative) (Saucedo and Karim,
1998).

Generally, the output of an MDP is a policyπ, i.e., the con-
tingency plan determining the action to take in every state of
the system in a specified decision epoch. A policy πis there-
fore a sequence of decision rules (d1, d2, · · · , dN−1) where
dt ∈ D, ∀t ∈ (1, 2, · · · , N − 1) for N ≤ ∞. Such a policy
is called stationary, if dt = d, ∀t ∈ T , if all decisions are
independent of the current decision epoch. Stationary poli-
cies are integral to interpreting infinite-horizon MDPs (Put-
erman, 2014). An optimal action optimizes a predetermined
performance index. Mainly two optimality criteria exist for
the solution of MDPs: maximum total expected discounted
rewards and average expected rewards. In the case of the
total discounted rewards problem of an infinite horizon MDP,
the function νπ

λ
(s), which maps a value to any given state s

under policy π and the discount factor λ, takes the form of
the Bellman’s equation

νπλ(s)≡ sup
a∈As

¨

r(s, a) +
∑

s′∈S

λ(s, s′, a)ν(s′)

«

(1)

which recursively determines the discounted, expected
reward of choosing the optimal action for any given state s.
Therefore, the optimal policy π∗ for a given discount rate λ
can be determined by solving the following equation:

νπ
∗

λ (s)≡ sup
π∈Π
νπλ(s) (2)

An optimal policy regarding the total expected reward
criterion consequently maximizes the total expected reward,
whereas an optimal policy under the average reward crite-
rion maximizes the average reward. Extending Bellman’s
work in which these MDPs were to be solved backward itera-
tively by value iteration, Howard (1960) proposed the policy
iteration algorithm for solving infinite horizon MDPs. MDPs
allow modeling the control of complex systems which evolve
over time following a Markov process. As such, Boucherie
and van Dijk (2017) provide examples of MDPs’ application
in highly complex industries, such as healthcare, transporta-
tion, and financial modeling.

A prerequisite of the applicability of MDPs to a given prob-
lem, however, is the definition of a state space such that
all relevant information is captured in each state and the
stochastic process over them becomes Markovian. A Marko-
vian process’s state in the epoch epoch t + 1 solely depends
on its state in epoch t, i.e. the process is path-independent or
memory-less. As the state of a bioreactor can be described by
the biological and thermodynamic characteristics of its con-
tent, and these characteristics are path-independent, it has
been argued that the process of a bioreactor is Markovian
(Schmidt, 1996). A respective assumption is reasonable for
the dynamics of chromatography resins performance decay
(Liu et al., 2014). Therefore, the requirements of a Markov
decision process in this context are met.

4.3. TPA production and purification
To study the research questions introduced in Section 3.2,

this contribution analyses the case study of recombinant Tis-
sue Plasminogen Activator (TPA) production and purifica-
tion. This section argues for this decision and introduces
the numerical case study. To draw managerial conclusions
on the determined optimal policies, their sensitivity to pro-
cess changes is analyzed and they are compared to a basic,
upstream titer maximizing policy.

TPA is a recombinant protein with medical applications
in the dissolution of blood clots. It was considered a “flag-
ship product of the young biotechnology production indus-
try” (Datar et al., 1993, p. 349), but remains an important
protein today (Johnston, 2010). TPA can be produced by
mammalian, i.e., Chinese hamster ovary, cells or bacterial,
i.e., E.coli, cells (Datar et al., 1993).

The case study of TPA was chosen due to two reasons.
Firstly, its importance led to wide coverage in academic lit-
erature. Because reliability and availability of specific nu-
merical information are scarce in a secretive industry such
as biopharmaceuticals (Schmidt, 1996), being able to rely
on previously peer-reviewed publications provides a level of
data validity. Secondly, TPA is an economically and curatively
important product of the biopharma industry to this day. It
generates yearly revenues of c.22 m€ in the US and its use
adds 0.75 quality-adjusted life years by reducing disability
after ischemic strokes (Johnston, 2010).

Schmidt (1996) summarizes the production of TPA as fol-
lows: mammalian cells are attached to inexpensive microcar-
riers (0 $/g) in a medium which includes the costly nutrient
Fetal Calf Serum (FCS), because TPA exhibits anchorage-
dependent growth. Furthermore, TPA production only starts
after the culture has finished growing, because TPA exhibits
non-growth dependent production. Therefore, a protein
producing phase is induced following a growth phase. The
medium required for the continuation of the growth phase
(12.8 $/L) is more expensive than that which is used during
protein production (2 $/L) because of the higher FCS con-
centration of the former. The medium is exchanged every
12 hours and a growing culture is switched into its TPA pro-
ducing state by exchanging growth for production medium.
Schmidt (1996) assumed that exchanging the medium is
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equivalent to harvesting all TPA from the medium. By doing
this, however, his model is constrained to considering an
average TPA concentration of 15 mg/L instead of the time-
dependent accumulation of up to 33.5 mg/L of TPA reviewed
by Datar et al. (1993).

This thesis models fed-batch dynamics in which the
medium is only harvested at the end of the batch. After
each cycle, the spent medium in the bioreactor is exchanged
with new medium without reducing the TPA concentration,
i.e., new medium is added to the reactor while the TPA
concentration is growing continuously. In practice, this can
be accomplished, for example, feeding new FCS into the
spent medium or by separating the spent medium from the
TPA without harvesting. The production reactor of a three-
reactor seed-train can have a volume of c.160 L and the value
of TPA is c.24,000 $/g (Schmidt (1996)). As the weekly con-
tamination risk in TPA production is between 5 and 10 % and
a week has 14 12-hour production cycles, Schmidt (1996)
assumes the probability of a successful state transition of a
bioreactor to be 99.3 % for all non-zero and non-one proba-
bilities.

After reaching an economical concentration of TPA in
the production medium, the protein is separated from the
medium without intermediate storage. Lin et al (1993), for
example, described a process of affinity purification during
which an anti-TPA MAB is used to ease the binding of TPA
during chromatography. In Liu et al. (2014) numerical case
study, the cost of chromatography maintenance was assumed
to be equivalent to three-quarters of the revenue from one
sold production batch. Because the value of a full batch of
TPA, i.e., 5.36 g of pure TPA, is c.128,640 $, and resin mate-
rial is the main driver of these maintenance costs, chromatog-
raphy resin is assumed to cost c.96,480 $. This aligns with the
magnitude of reported per resin L-prices and necessary resin
volumes for chromatography resins by Allmendinger et al.
(2014) and Liu et al. (2016). Every action is assumed to in-
cur 100 $ of fixed costs, mainly due to labor costs.

5. Mathematical Model Formulation

This chapter presents a stochastic dynamic program to
study the system-level control of biopharmaceutical produc-
tion and purification under fermentation and chromatogra-
phy performance decay uncertainty. The presented model
aims at finding simultaneous optimal policies for fermenta-
tion control and purification to maximize average expected
operating profit. Section 5.1 provides an overview of the
used nomenclature. Section 5.2 introduces the proposed dis-
crete state space, infinite time horizon MDP. Section 5.3 and
5.4 consider two peculiarities of the proposed model: the ac-
cumulation of protein in the medium and the decay of the
chromatography resin. Section 5.5 introduces the objective
function of the model.

5.1. Nomenclature
5.2. MDP formulation

The model proposed in this contribution extends Schmidt
(1996) upstream model by a downstream component. Fur-
thermore, it allows for multiple parallel production reactors
being harvested into a single downstream process to test the
presented hypotheses about the implications of the purifica-
tion process on optimal policies in the USP seed-train and
vice versa (see Section 3.2).

The presented framework consists of the two sub-problems
described above and is mathematically formulated in terms
of the 5-tuple (T ,S , A , P , R) using the notation intro-
duced in Section 4.2:

Decision epochs: In accordance with Schmidt (1996),
this contribution proposes a discrete-time, infinite time hori-
zon Markov decision process. Let T = {0,1, 2 · · · , N} be
the set of discrete, equidistant decision epochs with an in-
finite N. Each decision epoch t ∈ T represents represents
an observation of the system. A discrete time representation
was chosen as it best represents industry practice. Indus-
try practice for biopharmaceutical production is seldom real
time monitoring. While real-time, on-line, monitoring of cul-
ture physiologies is the topic of ongoing academic discussion
(e.g., Abu-Absi et al. (2011), Wechselberger et al. (2013)),
on-line monitoring is often high-priced or limited in practi-
cality and functionality (Lourenço et al., 2012). In practice,
therefore, monitoring of biomass physiologies is often car-
ried out off-line (Lourenço et al., 2012). Thereby, samples
are either taken automatically or manually from the bioreac-
tor and transferred to a laboratory for analysis. Because this
is a time-intensive process, a discrete-time representation of
the modeled process makes sense. Martagan et al. (2016),
for example, observe measurement intervals of two to three
days in practice.

An infinite horizon is modeled to allow for the study of
stationary policies.

State space: During upstream production, multiple se-
quential bioreactors may be used to scale-up a cell culture to
production volume. As described above, this work focuses
only on the production reactors as the bottleneck of the pro-
cess. The state space of the upstream fermentation policy
problem for one production reactor consists of approxima-
tions of the culture’s thermodynamic properties and was de-
fined by Schmidt (1996). Let

S U = {empty, ready, growthi , production j , upset :

∀i, j ∈ N,∀i, j ≤ ng , np}
(3)

define the set of feasible states of a production reactor. Let
ng , np be the predetermined, finite number of periods in
which the culture exhibits cell growth and protein produc-
tion, respectively. The indices i and j, therefore, represent
the number of cycles since the start of the respective phase.
For example, production30 is the beginning of the 30th pro-
duction cycle, i.e., the culture has traversed 29 cycles since
it entered the protein production phase. The state sU ∈ S U ,
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Table 2: Nomenclature used in the presented Markov decision process model

Superscripts

k Process component, k ∈K

Indices

i Growth cycle, 1≤ i ≤ ng
j Production cycle, 1≤ j ≤ np
l Parallel upstream production reactor, 1≤ l ≤ nU
m Number of the next purified batch, 1≤ m≤MaxBatch

Sets

T Decision epochs
S State space of the MDP
S k State space of process component k
A Action space of the MDP
A k Action space of process component k
As Feasible actions in state s
A k

sk Feasible actions in the k-th process component in state sk

P Transition probabilities of the MDP
P k Transition probabilities of process component k
K Process componentsK =U ∪D, whereU are the parallel upstream

reactors and D is the first downstream chromatography step
U Set of nU parallel upstream production reactors, U =

{U1, . . . , Ul , . . . , UnU
}

Gp Production-competent growth states which can be converted into
production states within one decision epoch

Functions

R Rewards function, S ×A → R
π Policy function, S →A
π∗ Optimal policy function, which maximizes the objective criterion
V π(s) Value function for policy π, S → R

Parameters

N Number of decision epochs
t Decision epoch, element of T
nU Number of parallel upstream production reactors, nU = |U |
ng , np Number of growth and production cycles, respectively
∆ Resin state, in which no further harvests can take place and the resin

must be exchanged
capacitym Remaining capacity of the resin to bind protein in the m-th harvested

batch,%
MaxBatch Maximum number of batches purifiable using the same chromatog-

raphy resin, before it must be exchanged
p(sk, s′k, ak) Probability of the k-th process component transitioning from its state

sk in a decision epoch to s′k in the following decision epoch, if action
ak is taken in it

p(s, s′, a) Probability of the system transitioning from state s in a decision epoch
to s′ in the following decision epoch, if action a is taken

r(sk, ak) Reward obtained from choosing action ak in state sk in the k-th pro-
cess component

r(s, a) Reward obtained from choosing action a in state s

(Continued)
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Table 2—continued

Parameters

V Volume of a production reactor, L
cg , cp Cost of a liter of growth and production medium, respectively, $/L
cb Cost of a gram of microcarriers, $/g
fixed(ak) Fixed cost of carrying out action ak in the k-th process component, $
vg Value of a liter of growth medium, $/L
vp Value of a gram of protein, $/g
x j Concentration of protein in the production medium in the j-th pro-

duction cycle, g/L
xmax Maximum possible concentration of protein in the production

medium by the end of the production phase, g/L
cresin Material cost of exchanging spent resin, $

therefore, describes a bioreactor in terms of its readiness to
be used and the physiology of the contained culture. Accord-
ingly, a reactor may be empty, sanitized and ready for inocu-
lation, its culture may traverse states of growth and states of
protein production. Out-of-the-ordinary states such as con-
tamination are summarized as upset. In growth-independent
production cultures, an ordered set of production-competent
growth states Gp exists. In these states, the culture exhibits
kinetics which allow its conversion into a protein producing
state within one cycle. For nU parallel seed-trains, the state
of the upstream sub-problem is represented by the vector
sU = (sU1 , · · · , sUl , · · · , sUnU ) ∈ S U1 × · · · × S Ul × · · · × S UnU .
For simplicity, the assertion

S U = S Ul ,∀Ul ∈ U (4)

is made, where S Ul is the state space of the l-th in the
set U of all nU parallel production reactors.

The state space of the downstream resin exchange sched-
ule problem consists of the remaining performance of the
resin in the chromatography column, i.e., what percentage
of the protein in the medium can successfully be bound by the
resin during purification. The performance of the resin used
during chromatography decays after each purified batch.
Based on research on resin performance for the industry-
standard Protein A chromatography by Jiang et al. (2009),
research by Liu et al. (2014) assumed a small number of
batches purified at full performance, followed by a linear
performance decay to a minimum viable resin performance.
This work formulates Liu et al. (2014) resin decay pattern as
the state space of the downstream sub-problem. Let

S D = {capacitym : m ∈ N, 1≤ m≤MaxBatch}∪∆ (5)

define the set of feasible states of a downstream chromatog-
raphy column. Therein, MaxBatch is the finite, maximum
number of batches which can be purified using the same resin
before it must be exchanged. For MaxBatch = 10, the capac-
ity of the resin may start at full capacity before the first batch

is purified, i.e., capacity1=100%, and deteriorate over pre-
defined, intermediate steps to its minimum viable capacity,
i.e., capacity10, before purification of the tenth batch. If the
resin is used at its minimum capacity, capacityMaxBatch, it de-
teriorates to a state in which it must be replaced, ∆. The
state sD ∈ S D, therefore, is a rational, non-negative num-
ber in [100%, capacityMaxBatch], describing the remaining pro-
tein binding capacity of the resin at the start of each decision
epoch, or ∆.

The state space of a production system with nU parallel
bioreactors and one chromatography column is, therefore,
defined as S = S U1 × · · · × S UnU × SD, with the vector
s(t) = (sU1 , · · · , sUnU , sD) ∈ S identifying the state of the sys-
tem at the beginning of epoch t. The vector (empty,100%),
for example, describes a system with a single production re-
actor in a state, wherein the reactor is empty, and the chro-
matography resin is at its full performance.

Assumption 1: The state space is finite. There-
fore, |S |<∞.

Action space: Let A U be the set of feasible actions in
a production reactor as part of the upstream fermentation
sub-problem. The system operator choses an action aUl (sUl )
from the set A Ul

sUl
⊆A Ul of feasible actions to take for the l-

th parallel upstream reactor in state sUl . The upstream action
space,A U , is then the union ∪s,lA

Ul

sUl
of all feasible actions in

all possible upstream reactor states. Schmidt (1996) action
space is adapted to fit the proposed model. As this contribu-
tion only considers the production reactors and, therefore,
abstracts from the scaling-up of the culture medium from
small-scale reactors to the production reactor, actions related
to these activities are omitted. The goal of the upstream fer-
mentation control is the production of the optimal amount
of protein by way of scheduling the culture growth and pro-
duction phases within a production reactor. This leads to an
action set available for the control of the production reactor
which modifies the model of the growth-independent pro-
duction of TPA by Schmidt (1996). The operator controls a
reactor to grow a cell culture and facilitate protein produc-
tion. To this end, they sanitize an empty reactor for inocula-
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tion (prep), feed nutrients into the reactor to grow the culture
(addgm), feed a different mix of nutrients into the reactor to
convert the growing culture into producing culture and con-
tinue this production (addpm), or extract the medium from
the bioreactor for harvesting (harvest). In a state of non-
production, e.g., upset or growth, harvest is equivalent to
dumping the contents of the reactor out. In line with the flex-
ibility allowed by Schmidt (1996), the presented model also
includes the combination of harvesting/ dumping and prepa-
ration as one action (hprep). The action set is summarized in
Table 3. However, not all actions are feasible in every state of
a production reactor. Adding production medium, for exam-
ple, is only feasible for production-competent growth states
(thus, inducing production) and all but the final production
state (thus, continuing production). Adding growth medium
is only feasible in a ready state (thus, inducing growth) and
during the growth phase of the culture except for the final
growth state.

Let aU =(aU1 , · · · , aUl , · · · , aUnU )∈A U1 ×· · ·×A Ul ×· · ·×
A UnU be the vector of actions taken in an upstream process
of nU parallel production reactors. Again, for simplicity, the
following assertion is made for the action spaces of each pro-
duction reactor:

A U =A Ul ,∀Ul ∈ U (6)

Consequently, let AD be the set of feasible actions in the
downstream resin exchange schedule sub-problem. This con-
tribution incorporates Liu et al. (2014) notion of the mainte-
nance activity required to replace deteriorated resin into the
action space of a biopharmaceutical production system op-
erator. At any given state of the chromatography resin, the
actions A D

sD ⊆ A D are feasible and aD(sD) ∈ A D
sD denotes

the action chosen in the downstream sub-problem. Equiva-
lently to the upstream sub-problem, the action space of the
downstream sub-problem, A D, is the union ∪D

s )A
D

sD of the
feasible actions in all states of the chromatography resin.
An operator must choose between doing nothing (none), ac-
cepting the harvest from the upstream process (accept) or
exchanging the resin to restore full chromatography perfor-
mance (exresin). The action space of this sub-problem is
summarized in Table 4. Whenever the resin capacity dete-
riorates past the predetermined minimum viable threshold,
capacityMaxBatch, it must be exchanged, therefore, only action
3 is feasible in the state sD =∆.

The action space of the simultaneous USP and DSP con-
trol problem presented herein is defined as the set of actions
A = AU1 × · · · × AUnU × AD from which the controller of the
production system can choose at the beginning of each deci-
sion epoch. Let a(s) ∈ As denote the vector of actions taken
in system state s representing the joint decision made by the
operator. Therein, As is the set of feasible actions in states
s. The action vector (addpm,exresin) or (3,3), for example,
indicates that, in a system of a single production reactor and
one DSP, production medium is added to the production reac-
tor and the resin of the chromatography column is exchanged
in the same decision epoch.

As introduced earlier, the simultaneous control of the en-
tire production system is complicated by the inter-dependencies
between the up- and the downstream part of the process. Be-
cause both processes are assumed to be coupled, i.e., there
is no intermediate storage of harvested medium, harvesting
a production reactor (harvest or hprep) is only feasible if the
chromatography step chooses to accept the medium for pu-
rification (accept) in the same decision epoch. Furthermore,
in a system of multiple parallel reactors, only one can be
harvested at a time.

Transitions: The observed production and purification
system evolves over time from state to state, i.e., along the
path {s(t0), s(t1), · · · , s(tN )}, with s(t) ∈ S ,∀t ∈ T . As de-
scribed above, the states which a reactor in the upstream
fermentation sub-problem occupies over time are defined by
approximations of the culture’s cell concentrations, thermo-
dynamic quantities and time passed since the start of either
growth or production (Schmidt, 1996). A production reac-
tor, therefore, evolves over time according to the physiologi-
cal rules which govern cell cultures (as captured by cell-level
models in Section 2.2) and the actions taken by the controller.
In the highly uncertain environment of living cell cultures,
however, this evolution is not deterministic.

Let

p(sUl , s′Ul , aUl ) =

P
�

sUl (t + 1) = s′Ul |sUl (t) = sUl , aUl (t) = aUl
�

,

∀sUl , s′Ul ∈ S U ,∀aUl ∈A Ul

sUl
,

∀Ul ∈ U ,∀t ∈ T

(7)

determine the probability of the l-th production reactor to
evolve from state sUl in one decision epoch t to state s′Ul in
the next, t+1, if action aUl is chosen. While this model allows
for transition probabilities in the bioreactor to be set one for
one, a simplification is made to reduce the number of nec-
essary process parameters: every non-zero, non-one proba-
bility is identical for every production reactor Ul . However,
in line with Schmidt (1996), the cell culture decline towards
the end of its lifecycle manifests by transition probabilities
decreasing over the last sixth of the production phase. Using
the state and action schemas defined above, Table 5 summa-
rizes the transition probabilities of the upstream fermenta-
tion sub-problem.

The transitions of the chromatography step introduce un-
certainties to the downstream resin exchange schedule sub-
problem. The state of the chromatography step evolves over
the predefined set of remaining capacities the resin can have.
As studied by Jiang et al. (2009), chromatography resins
decay with increased usage and their capacity to bind pro-
teins of interest deteriorates. Accepting a harvest from the
upstream part has two consequences: Firstly, an amount of
protein is yielded depending on the remaining capacity of
the resin and, secondly, the resin’s capacity deteriorates to
the next capacity step in the following epoch. As the pu-
rification of a batch in the first chromatography step is as-
sumed to take five cycles (Liu et al., 2014) and within six to
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Table 3: Action space of the control of a production reactor

Action Abbreviation code

Do nothing none 1
Add growth medium addgm 2
Add production medium addpm 3
Harvest or dump harvest 4
Prepare prep 5
Harvest or dump and prepare hprep 6

Table 4: Action space for the control of the first chromatography step

Action Abbreviation code

Do nothing none None 1
Accept a harvest for purification accept 2
Exchange resin exresin 3

Table 5: Non-zero transition probabilities of an upstream sub-problem, adapted from Schmidt (1996)

sUl 1 index2(sUl , s′Ul ,aUl )

e none p(e, e, 1)
prep p(e, r, 5), p(e, u, 5) = 1− p(e, r, 1)

r none p(r, u, 5) = 1
harvest p(r, e, 4) = 1
hprep p(r, r, 6) = p(e, r, 5), p(r, u, 6) = 1− p(e, r, 5)

gi 1..ng none p(gi , u, 1) = 1
1..ng − 1 addgm p(gi , g(i + 1), 2), p(gi , u, 2) = 1− p(gi , g(i + 1), 2)
i ∈ Gp addpm p(gi , p1, 3), p(gi , u, 3) = 1− p(gi , p1, 3)
1..ng harvest p(gi , e, 4) = 1
1..ng hprep p(gi , r, 6) = p(e, r, 5), p(gi , u, 6) = 1− p(e, r, 5)

p j 1..np none p(p j , u, 1) = 1
1..np − 1 addpm p(p j , p( j + 1), 3), p(p j , u, 3) = 1− p(p j , p( j + 1), 3)
1..np harvest p(p j , e, 4), p(p j , u, 4) = 1− p(p j , e, 4)
1..np hprep p(p j , r, 6) = p(e, r, 5), p(p j , u, 6) = p(e, u, 5)

u none p(u, u, 1) = 1
harvest p(u, e, 4) = 1
hprep p(u, r, 6) = p(e, r, 5), p(u, u, 6) = p(e, u, 5)

eight hours (Martagan et al., 2018), harvests aren’t blocked
by ongoing purification. Yields from chromatography, how-
ever, have been considered a source of uncertainty, e.g., by
Liu et al. (2016) Therefore, the model proposed in this con-
tribution allows for stochasticity in the performance decay
of the chromatography step. Let p(sD, s′D, aD) be the proba-
bility of the resin in state sD decaying to its new state s′D,
if action aD is taken. This allows modeling of uncertain
deterioration: after a purification cycle, resin performance
may, for example, reduce to the next lower step, remain at
the same performance level or deteriorate by more than one
step. Whenever the resin is exchanged, the performance is
deterministically restored to the resin’s original value, i.e.,
p(sD, cap1, 3) = 1, ∀sD ∈ SD. Maintenance activities are not
time-intensive (Liu et al., 2014) and are, therefore, assumed
to be feasible in one decision epoch. Furthermore, the resin

must be exchanged when it deteriorates past its minimum al-
lowed capacity. These dynamics are detailed in Section 5.4.
Table 6 details the non-zero transition probabilities.

Transition probabilities within bioreactors (Schmidt,
1996) and within chromatography resins are assumed to
be independent. Therefore, let

p(s, s′, a) =
∏

k∈K

p(sk, s′k, ak) (8)

define the probability of the system evolving from state s
in decision epoch t to state s′ in t+1, whereK is the set of the

1State descriptions have been shortened for readability, i.e., empty to e,
ready to r, growth to g, production to p, and upset to u

2Index range, in which action aUl is feasible
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biopharmaceutical process “components”, i.e., all production
reactors and the chromatography column.

Assumption 2: Transition probabilities are sta-
tionary, i.e., do not vary with time. Therefore,
p(s, s′, a) = p(s(t), s(t + 1), a(t)), ∀t ∈ T .

Let P constitute the set of all transition probabilities
p(s, s′, a).

Rewards: Production and purification system operations
deal with the financial trade-off between operating costs,
caused by continued fermentation and chromatography resin
exchange, and revenue from purified protein. The rewards
obtained from a USP reactor in the state sUl by choosing
the action a(Ul) are denoted r(sUl , aUl ). In line with Schmidt
(1996), actions incur small fixed costs and volume dependent
variable costs or revenues. The cost of adding new growth
medium (addgm) is, therefore, the sum of the cost of the
growth medium and a fixed cost for carrying out the action.
The former is dependent on the two parameters: the volume
of the reactor (V in L) and the cost of the growth medium
per volume (cg in $/L): r(sUl ,addgm)= −cg V -fixed(addgm).
Therein, cg depends on the concentration of FCS in the
growth medium and its cost. Consequently, r(sUl ,addpm)=
−cp V -fixed(addpm) is the cost of inducing or continuing
the production by adding nutrients into the spent medium
up to a production medium concentration, where cp is the
per-liter-cost of the production medium, depending on its
FCS concentration. Preparing an empty reactor (prep) with
a growth medium incurs costs for the used growth medium
and microcarriers allowing for anchorage-dependent cul-
ture growth. Because both costs are volume-dependent,
r(sUl ,prep) = −(cg + cb) V -fixed(prep) defines the cost of
this action, where cb is the cost of the microcarrier (in $/L).
If the medium is dumped during the growth phase (harvest,
hprep), salvage revenue from the spent growth medium is
earned. Let, therefore,

r(sUl , aUl , ) =

¨

vg V − fixed(harvest) if aUl = harvest

(vg − (cg + cb))Vfixed(hprep) if aUl = hprep

(9)

where sUl ∈ {growthi : 1 ≤ i ≤ ng}. If a batch is lost
due to doing nothing, negative reward in the amount of the
opportunity costs are earned. Let

r(sUl , none) =

¨

−vg V if sU ∈ {growthi : 1≤ i ≤ ng}
−vp x jV if sU ∈ {productioni : 1≤ i ≤ np}

(10)

determine the opportunity costs of losing a batch due to
doing nothing, where vg is the value of the growth medium
in $/L, vp is the value of TPA in $/g, x j the concentration of
TPA in the production medium at the time of losing the batch
in g/L, and V the volume of the reactor in L. Rewards from

harvesting production medium (harvest, hprep) are only ob-
tained after purification, therefore, these are included in the
rewards function of the DSP sub-problem.

Equivalently, the rewards obtained from operating the
chromatography step in state sD by choosing action aD are
denoted r(sD, aD), which is defined for all aD ∈ S D and all
sD ∈ S D. The material cost of chromatography resin is signif-
icant (Allmendinger et al., 2014; Farid, 2007), therefore the
cost of maintenance activities mainly depends on the mate-
rial costs. Let r(sD, exresin) = −cresin − f i xed(exresin) de-
scribe the cost of exchanging the chromatography resin. The
revenue obtained from purified product depends on the vol-
ume of TPA in the medium at the point of harvesting and the
remaining binding capacity of the resin. Let

r(sUl , accept) =















−vp x jV capacitym − fixed(harvest)

if ∃!Ul ∈ U : aUl = harvest

−vp x jV capacitym − fixed(hprep)

if ∃!Ul ∈ U : aUl = hprep

(11)

define the operating profit obtained from accepting a har-
vest from exactly one production reactor which depends on
the value of the production medium at the time of harvesting
and what percentage of that value is captured during purifi-
cation (capacitym in %). While Schmidt (1996) implies har-
vesting every time spent production medium is exchanged for
new medium in the reactor (addpm), the presented model
only allows harvesting as an action distinct from continuing
fermentation which returns the bioreactor to an empty state,
to better model the practical realities of fed-batch fermenta-
tion as presented by Martagan et al. (2016).

Let the aggregate rewards function

R(s, a) =
∑

k∈K

r(sk, ak) (12)

denote the sum of costs/ revenues of carrying out each
action in the action vector a in system state s on their respec-
tive reactor/ chromatography column.

Assumption 3: Like transition probabilities, re-
wards are stationary and bounded. Therefore,
r(s, a) = r(s(t), a(t)), ∀t ∈ T and|r(s, a)| ≤
M <∞, ∀s ∈ S ,∀a ∈A (s).

By assumption, the reward obtained from harvesting the
medium depends strongly on the amount of protein in the
medium and the yield performance of the chromatography
resin. As these variables constitute important aspects of the
presented model, special consideration should be given to
their modeling. The following two sections are aimed at this.

5.3. TPA accumulation during production
Protein production in living cell organisms most promi-

nently follows one of two patterns: growth related or non-
growth related (Schmidt, 1996). In growth related protein
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Table 6: Non-zero transition probabilities of the downstream sub-problem

sD 3 index 4 aD p(sD, s′D, aD)

capm 1..MaxBatch− 1 none p(capm, capm, 1) = 1
1..MaxBatch− 1 accept

∑

0≤s≤1 p(capm, capm+s, 2)+
p(capm,∆, 2) = 1
p(capm, capm, 2)

MaxBatch accept p(capm, capm, 2), p(capm,∆, 2) =
1− p(capm, capm, 2)

1..MaxBatch exresin p(capm, cap1, 3) = 1

formation, the product is produced as a by-product of culture
growth, i.e., during growth states. In non-growth-related
protein accumulation, however, proteins are produced only
after the cell culture has finished growing and started pro-
ducing, i.e., during production states. Figure 3 illustrates
this difference. Towards the end of their life, cell cultures ex-
hibit decline (Schmidt, 1996)(Schmidt, 1996). This is mod-
elled by the probabilities of a successful transition decreas-
ing over the last sixth of the production phase: p(p30, p31, 3),
· · · , p(p35, p36, 3) have the values 0.84, 0.67, 0.5, 0.34, 0.17,
0.05, which were adapted from Schmidt (1996). TPA, the
subject of this work’s numerical study, is produced in a non-
growth-related pattern.

Assumption 4: The protein concentration x j
monotonically increases in j. Therefore, x j ≤
x( j + 1), ∀ j : 1≤ j ≤ np.

Although stochastic formulations of protein accumulation
exist (Martagan et al. (2016)), one may sensibly approximate
protein accumulation as a linear relationship as illustrated in
Figure 3. Therefore, the proposed model describes a linear
growth of TPA in the production medium starting in the first
production state and ending with a maximum concentration
xmax in the final production state. Let the concentration at the
beginning the production cycle j be defined by the equation

x j =
xmax

np − 1
× ( j − 1), ∀ j : 1≤ j ≤ np, ∀np > 1 (13)

The product of concentration (in g/L) and bioreactor vol-
ume (in L), therefore, describes the amount of protein in the
reactor (in g).

5.4. Resin performance decay
Chromatography resins decay due to being repeatedly

exposed to process conditions; their decay is most commonly
monitored based on product yield (Nweke et al., 2018).
The implied financial trade-off between reduced revenues
from harvesting fermented product and the scheduling of
costly resin exchange activities is studied in this contribution.

3capaci t ym has been shortened to capm for readability
4Index range, in which action aD

t is feasible

Therefore, modeling resin decay is given special considera-
tion in this section.

The notion of maintenance actions related to resin per-
formance decay is based on Liu et al. (2014), who expanded
on prior work with a focus on downstream planning (All-
mendinger et al., 2014). Liu et al. (2014) further built on
Jiang et al. (2009) study of resin performance decay. They
assume that each chromatography step, i.e., the purification
of a batch in one chromatography column, takes five cycles.
Therefore, they aggregate Jiang et al. (2009) experimental
results of resin decay over multiple chromatography cycles
to a per-batch decay pattern in their first numerical exam-
ple. Similar to Liu et al. (2014), this work assumes a resin
deterioration over 11 batches, with each batch taking five
chromatography cycles. After the eleventh purified batch, the
resin must be exchanged. Therefore, after four batches puri-
fied at full performance, the resin starts to deteriorate until
its minimum capacity is reached before batch 11 (see Figure
4). This decay, however, was previously only deterministic in
nature. In practice, this may not be the case and constitute an
additional source of uncertainty and operational complexity.
Because resin yield is one of the uncertainties which have an
impact on production cost and delivery (Farid et al., 2005),
Liu et al. (2016) considered the notion of uncertain resin in
capacity planning. They modeled resin yield deviations fol-
lowing a triangular distribution. In their numerical case, they
assume that resin yields deviate at most 5 % from their stan-
dard value depending on the type of resin.

However, because the model in this contribution has a fi-
nite, discrete state space, assumptions about the evolution of
the resin capacity must be made. The performance decay in
this model follows a similar pattern as in the Liu et al. (2014)
model but introduces an element of uncertainty by assuming
the decay steps to be stochastic rather than deterministic.

Assumption 5: After a batch is purified, the resin
either doesn’t decay, decays as expected after one
purification, or decays as if two batches were pu-
rified. Therefore,

∑

0≤s≤2 p(capm, capm+s, 2) =
1, ∀m < MaxBatch and p(capm, capm+1, 2) +
p(capm,∆, 2) = 1, if m=MaxBatch

The fifth assumption introduces stochasticity in the resin
yields. As indicated in Table 6, after the purification of one
batch, the yield capacity of the resin may stay the same, dete-
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Figure 3: Comparison of non-growth related and growth-related production patterns, adopted from Schmidt (1996)

riorate by one step, or deteriorate by two steps. For example,
a resin that yielded 95 % of the product in batch five, may
also yield 95 % of batch six, or, more likely, only yield 90 %
or even only 85 % of batch six (see some scenarios in Figure
4). In a worst-case scenario (double deterioration after every
batch), this resin could reach its minimum capacity of 65%
after only two more batches rather than six. For the edge case
of the resin being one decay step away from its minimum ca-
pacity where a decay by two steps is not feasible, this work
assumes that only one decay step is possible. Because of their
short duration (Liu et al., 2014), maintenance activities re-
lated to restoring the resin capacity take only one decision
epoch.

5.5. Optimality objective and optimization
The Markov decision process defined herein aims at de-

termining the optimal stationary policy for operating up-
stream fermentation, harvesting, and downstream resin ex-
change. As argued by Martagan et al. (2016), discounting
future rewards too strongly on this operations-planning hori-
zon could bias the results. Therefore, the presented prob-
lem is studied under average rewards. To achieve this, the
model’s objective is to maximize the average reward over an
infinite time horizon. Contrasting Equation 1, let the average
expected reward criterion

ν(s,π)≡ lim
N→∞

1
N
Eπs

¨

N
∑

t=1

r(s(t), aπ(t))

«

(14)

be defined for all starting states s ∈ S and all π ∈ Π
where Π is the set of all possible policies. Therein, Esπ is the
expected value under policy π of starting in state s, depen-
dent on the reward r(s(t),aπ(t)) of choosing the action aπ(t)
in the state s(t) as prescribed by policy π. Therein, the objec-
tive is to find V ∗(s,π∗)≡ supπ∈ΠV (s,π). The average reward
criterion problem is solved using the relative value iteration
algorithm as implemented by Chades et al. (2014) in Mat-
Lab (The MathWorks Inc., 2018). While the standard value
iteration algorithm does not converge to the optimal value
function for average reward problems, the relative value it-
eration does so (Gupta et al., 2015). For robustness, the total

expected discounted reward problem with a discount factor
λ close to one is also solved to optimality. In line with Equa-
tion 1, let the total expected discounted reward criterion

νπλ(s)≡ supa∈As

¨

r(s, a) +
∑

s′∈S

λp(s, s′, a)ν(s′)

«

(15)

be defined for all s ∈ S. The optimal policy π∗ optimizes the
objective V ∗

λ
(s,π∗) ≡ supπ∈ΠV πλ (s,π). For this, the policy it-

eration algorithm, also implemented by Chades et al. (2014),
is used. All model code is provided in Appendix 7 - Appendix
9.

6. Case Study Results

To investigate the posed research questions, a numerical
case study of TPA production and purification, as introduced
in Section 4.3, was implemented. To test specific hypothe-
ses, sensitivity analyses were run; the resulting policies were
critically analyzed and compared.

This task is complicated by the presented research ques-
tions pertaining to two different process setups, or USP to
DSP ratios, i.e., how many parallel production reactors are
harvested into one downstream process. A basic “1:1” model
with one USP production reactor and one DSP, where K =
{U , D}, and a “2:1” model with two parallel production reac-
tors and one DSP, whereK = {U1, U2, D} were implemented
based on the formulation in Section 5.1. Section 6.1 dis-
cusses the optimal control of the 1:1 process setup. Sec-
tion 6.2 extends Section 6.1 by adding a second parallel pro-
duction reactor in a 2:1 process setup and the implications
thereof are discussed. All case study data is provided in Ap-
pendix 12 - Appendix 16.

6.1. Optimal, simultaneous control of a serial USP and the
DSP

In this section, the 1:1 setup of one production reactor
and one chromatography step is studied. In answering RQ1
and RQ2, the average per-cycle operating profit maximiz-
ing policy is presented and discussed. Furthermore, man-
agerial insights are derived from the optimal reward’s sen-
sitivity to process parameter changes. Conclusions are also
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Figure 4: Deterministic performance decay pattern of a candidate chromatography resin over 11 purified batches, with se-
lected stochastic decay scenarios starting after the fifth batch, adapted from Liu et al. (2014)

checked for robustness using a total expected discounted re-
ward problem formulation and a formulation with longer
decision epochs (36 instead of 12 hours). First, the result-
ing optimal policy is described in sub-section 6.1.1 before its
theoretical and managerial implications are discussed (sub-
section 6.1.2) and further insights are derived from analyzing
sensitivities (sub-section 6.1.3).

6.1.1. Optimal harvesting and resin exchange control
The average reward-maximizing policy for the simultane-

ous control of a single USP production reactor and the first
chromatography step is depicted in Table 7.

The visualization of the optimal policies in this work is
based on the format used by Schmidt (1996). As such, the
rows in Table 7 represent the state of the production reactor;
the columns represent the state of the chromatography col-
umn. Areas represent “decision zones” of states in which the
optimal action vector is identical. The number pairs within
each decision zone of the table represent the optimal ac-
tion vector in those states of the system, in accordance with
the coding scheme introduced earlier (Table 3 and Table 4).
Thereby, the first digit of the ordered tuple is the optimal
action to be taken in the production reactor, and the sec-
ond digit is the optimal action in the chromatography col-
umn. For example, if the production reactor is within the
last seven cycles of the production phase, and the resin has
at least 75 % remaining capacity, it is optimal to harvest the
production medium, return the production reactor to a ready
state, and purify the harvested TPA, i.e., action vector (6,2)
or (hprep, accept). The average reward of the optimal pol-
icy is V π

∗
= 1, 272$ of operating profit per 12-hour cycle,

leading to the following observation.

Observation 1: The maximum average per cycle
operating profit is positive. Therefore, it may be
economically feasible to operate the serial 1:1
production system under the assumed process
parameters.

Should the system start with a chromatography resin at
full performance, e.g., (empty,100 %), the optimal contin-

gency plan (given no contamination) is to prepare the reactor
for inoculation (prep), to grow the culture over five cycles,
or 2.5 days, (addgm), to convert the growing culture into a
TPA-producing culture by lowering its FCS-concentration in
its first production-competent state, g6, (addpm) and to con-
tinue TPA-production for 29 cycles, or 14.5 days, (addpm)
before harvesting in the 30th cycle and preparing the biore-
actor for the next batch (hprep).

For almost all USP states, it is optimal to exchange the
chromatography resin only when it is completely depleted
(state ∆), i.e., only sometimes is it optimal to prematurely
incur resin exchange costs. Between the 27th and 29th pro-
duction cycle of the USP reactor, for example, resin exchange
is optimal even though it’s still at as much as 80 % of its full
performance. In these cycles, the value of the TPA batch lies
between 95,561 $ and 102,912 $, but if only 80 % of the
TPA were bound, it would be worth only between 76,449 $
and 82,330 $. At this point, it is, therefore, optimal to ex-
change the resin (thus, incurring 96,480 $ material net of
fixed costs) and continue production until the 30th produc-
tion cycle, where 100 % of the then c.4.4 g of TPA can be
purified, realizing 106,587 $ of operating revenue.

Observation 2: Premature resin exchange seems
to be optimal only sometimes. Robustly, it is op-
timal for resin performances under 85 %, before
the culture reaches the optimal harvesting deci-
sion zone.

Policy-related insights remained robust under longer de-
cision epochs and total expected discounted reward maxi-
mization. For the total expected discounted reward maximiz-
ing policy, policy iteration with a discount factor close to one
(λ = 0.99) was used. The optimal total discounted reward
function in the initial state V ∗(sU = empty, sD = 100%) =
117, 395$ was obtained. Observations 1 and 2 remained ro-
bust with two exceptions: (1) given remaining resin perfor-
mance of 65% (70%), cultures in their first to fifth (first and
second) growth cycle were dumped and the reactor prepared
to start a new batch, and (2) resin exchange seemed more
risk-seeking, i.e., premature resin exchange was postponed
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Table 7: Average reward maximizing policy for the operation of one TPA production reactor

100% 100% 100% 100% 95% 90% 85% 80% 75% 70% 65% ∆
e 51

53
Prepare reactor for inoculation

r
21

Add growth medium to continue culture growth phase
g1
. . . 23
g5
g6
g7
g8
p1
. . .
p4
p5
p6
. . . 31
p17 Add production medium to convert

production-competent growth states,
or to continue TPA production

p18
p19
. . .
p26
p27 33
p28 Add growth medium in reactor,

exchange chromatography resinp29
p30 62
p31
. . . Harvest production medium and prepare reactor for next batch 13
p36
u 61 Dump upset medium out 63

to the 65% remaining performance and production cycles 29
and 30. The optimal policies of the respective robustness
checks are visualized in Appendix 10 and Appendix 11.

Following this description of the case study results, their
theoretical and managerial implications are discussed in the
next sub-section.

6.1.2. Theoretical and practical contributions
Fed-batch fermentation and purification of TPA under the

assumed process parameters is economically feasible, yield-
ing a positive average operating profit (see Observation 1).
This is in line with the findings of Schmidt (1996). The av-
erage reward of the presented model, however, is c.88 %
smaller than Schmidt’s result. This may seem counterintu-
itive because of the presented model’s support for increas-
ing the TPA concentrations up to 33.5 mg/L and higher pu-
rification yields. However, because the presented model in-
corporates batch-ending harvesting dynamics and substan-
tial resin material costs, the lower average reward is reason-
able. To offset continuously incurred operating costs, rev-
enues can only be realized at two points in a batch’s lifecy-
cle: scrapping it during growth (at its salvage value) or ter-
minating fermentation by harvesting the TPA produced up
to that point. Furthermore, harvesting seems to be optimal

in the states just before the culture enters decline. The pro-
duction medium is harvested in the 30th cycle already, given
at least 75% resin capacity (Table 7). If the batch was not
harvested in this state, the probability of successfully contin-
uing would be reduced to 84%. This observation holds ro-
bust under total expected discounted reward maximization.
Furthermore, it corroborates the findings of Martagan et al.
(2016). In their study of IgG1 harvesting decisions under
uncertain fermentation dynamics, they observe the counter-
intuitive optimality of harvesting before the culture decline
phase at the end of the fermentation time. However, they
attribute this to the costs associated with the additionally
produced by-products. In the presented study, impurities
are not explicitly modeled, yet we observe a similar pattern.
During advanced cycles of the production phase, resin ex-
changes are optimal before the minimum allowed capacity
is reached whether resin decay is deterministic or uncertain.
The earliest resin exchange is carried out after seven batches
have been purified and the resin’s performance has deterio-
rated to 80 %, i.e., in the state (p18, 80 %) and the latest
after the eleventh purified batch (Table 7). This is even ear-
lier than previously reported under deterministic resin decay.
Liu et al. (2014) found in their numerical study of fermenta-
tion and purification schedules that at most ten batches are
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purified (leaving capacity at 65 %) before the chromatogra-
phy resin is exchanged if the maintenance costs are equiva-
lent to three-quarters of a full production batch. Comparing
the scenario of stochastic decay to that of deterministic de-
cay, the resin is exchanged after the same number of purified
batches in both cases. Under deterministic resin decay5 i.e.,
p(capm, capm+1, 2) = 1,∀m : 1 ≤ m ≤ MaxBatch − 1 and
p(capMaxBatch,∆, 2) = 1, we find that the resin is exchanged
the earliest after the seventh batch has been purified, i.e., in
the state (p29, 80%).

While the effect of stochasticity on the timing of ex-
changes was limited, it had an effect on the optimal average
operating profit obtained under stochastic decay compared
to under deterministic decay. The potential downside of a
decay by two steps seems to outweigh the potential upside of
the resin not decaying, in terms of average operating profits.
The sensitivity of the optimal average reward, V ∗, and the
total expected discounted reward in the initial state, V ∗ (e,
100%), are compared to the proposed stochastic resin decay
in Table 8. Moving from the proposed stochastic decay to a
deterministic decay, ceteris paribus, yielded a 3% reduction
in V ∗, whereas V ∗ (e,100%) remained virtually constant. In
addition to its theoretical contributions, this case study also
provides relevant managerial insights.

Biopharmaceuticals producers seem to benefit from the
stochastic optimization of the integrated control of up- and
downstream processes. We can compare the optimal policy
to a primitive, production titer maximizing policy, πMaxTiter,
which might be used in biopharmaceutical manufacturing
without decision support systems integrating system-level
trade-offs in a worst-case scenario. From this comparison,
the value of the presented optimal policy can be quantified.
πMaxTiter is provided in Appendix 18. Compared to πMaxTiter,
the optimal policy obtained from the presented model out-
performs by a wide margin. Titer maximizing production
under the assumed process parameters leads to a negative
optimal total discounted rewards value function in the initial
state, Vπ

∗
(sU = empt y, sD = 100%) = −76,311$. Therefore,

while titer maximizing production may sound reasonable un-
der consideration of only the upstream process, it may not
be economically feasible on a system-level. The presented
optimal policies, on the other hand, provide a business case
for profitable production on a system-level.

Furthermore, by studying the sensitivity of average oper-
ating profits to changes in the fermentation reliability, man-
agerial implications about the business case of reliability in-
vestments can be derived. While a reduction of the per-cycle
probability of a successful transition has a negative effect on
average and total discounted rewards, an increase in reliabil-
ity by 0.2 percentage points (from 99.3% to 99.5%) has the
potential to increase average and total discounted rewards
by 6% and 7%, respectively (Table 9). The present value of
this average operating profit increase in perpetuity is at least

5The average reward maximizing policy under deterministic decay is pro-
vided in Appendix 17

c.1.4 m€ (10% p.a. discount rate, 730 yearly cycles). There-
fore, investments aimed at increasing process reliability, e.g.,
in newer fermentation equipment, are economically feasible
up to this amount. The effect of further probability increases,
however, showed opposite effects between the two measures.
Their managerial interpretation should, therefore, be subject
to further validation.

This work’s answers to RQ1 and RQ2 extend academia’s
and practice’s understanding of fed-batch fermentation con-
trol and harvesting decisions under simultaneous considera-
tion of downstream purification and maintenance operations.
The presented Markov decision process provides a dynamic
framework for the stochastic optimization of biopharmaceu-
tical operations. Furthermore, it corroborates existing re-
search on the optimal harvesting decisions under fermenta-
tion uncertainties (Martagan et al., 2016; Schmidt, 1996),
extends the literature on the timing of resin exchange activi-
ties (Liu et al., 2014), and aids practical decision making on
an operational- and financial-level.

6.1.3. Sensitivity to varying resin exchange-related parame-
ters

This sub-section answers RQ3 by discussing the optimal
policy’s sensitivity to process parameter variations relating
to the chromatography resin economics. To this end, the 1:1
model analyzed above was run with different parameter sets
and the effects were studied.

Because of its high economic impact, the timing of resin
exchange, i.e., how long this costly activity is at least post-
poned, is particularly interesting for academia and prac-
tice. Decisions regarding the timing are mainly driven by
the trade-off between the expected higher payoff of future
harvests and the incurring of high material costs. This sub-
section, therefore, analyses the sensitivity of the timing of
the earliest exchange activity to changes in related parame-
ters, such as resin exchange costs and minimum viable resin
capacities. The “earliness” of resin exchanges in a policy
is operationalized as the least number of batches purified
before any resin exchange. Visually, this is the upper-left-
most occurrence of the downstream sub-problem action 3
in the optimal policy as pictured in Table 7. In this specific
case, that occurrence is in the state (p18, 80%), meaning
four batches have been purified at 100% and one batch each
at 95, 90, and 85%. It can be found by traversing the op-
timal policy column-wise, starting from the upper left state
(e, 100%). The optimal average reward was analyzed as a
second important Key Performance Indicator (KPI).

Observation 3: Higher resin material cost neg-
atively influenced both monitored KPIs; higher
minimum resin capacities led to higher average
rewards.

Resin material cost had a negative impact on both the op-
timal average rewards and earliness of the resin exchanges.
The rest of this thesis considers resin material costs, cresin,
equivalent to 0.75 times the value of a full TPA batch, i.e.,
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Table 8: Sensitivity of the optimal average reward and total expected discounted reward functions to changes in the resin
decay probabilities in the DSP

Probability scenarios V ∗ V ∗(e, 100%)

No decay by one step by two steps
Base case 5% 90% 5% 1.00 1.00
Deterministic case 0% 100% 0% 0.97 1.00

Table 9: Sensitivity of the optimal average reward and total expected discounted reward functions to changes in the probability
of a successful transition in the USP

Probability scenarios V ∗6 V ∗(e, 100%)7

Base casep(sU
t , st+1−U , aU

t+1) = 99.3% 1.00 1.00

90% 0.40 0.40
99% 0.90 0.89
99.5% 1.06 1.07
99.8% 1.01 1.19
99.9% 0.76 1.23

96,480$. For this analysis, cresin is varied in the range
[192,960$, 189,0220$ ..0$], where 192, 960$ is equiva-
lent to one and a half times the value of a full TPA batch.
Figure 5 visualizes the negative correlation of more expen-
sive resin exchanges and earliness of the exchange. For
increasing resin costs, it becomes optimal to postpone the
earliest exchange further. If the resin material were free,
it can be optimal to exchange the chromatography resin as
early as after four batches, i.e., when 100% of the produced
TPA could be purified for the last time.

On the other extreme end of the range, for material costs
of at least one and a half times the value of a full TPA batch,
resin exchange is postponed until nine batches have been pu-
rified and the performance of the resin has decayed to 75%.
Furthermore, the negative correlation of higher resin costs
and the maximum achievable average operating profit is ap-
parent in Figure 5. This relationship should not surprise. As
the cost of replacing spent resin increases, resin exchanges
are postponed further and further. This puts negative pres-
sure on the average operating profit from three directions:
(1) when resin exchange is carried out, higher one-time costs
are incurred, (2) because the exchange is postponed, more
batches are harvested at lower relative purification yields,
and (3) because more batches are harvested before the resin
is exchanged, operating costs from ongoing fermentation are
incurred for longer. While the minimum allowed resin ca-
pacity had a strong negative impact on the earliness of the
resin exchanges, its effect on the optimal average reward
was modestly positive. Values for capacityMaxBatch were var-
ied in the interval [100%,98% ..0%]. However, the maxi-
mum number of batches purified before the resin must be
exchanged, MaxBatch, was not altered. Therefore, lower val-

6Average reward maximizing value function (normalized)
7Total expected discounted reward value function in the initial system

state (normalized)

ues of capacityMaxBatch imply a steeper decay profile after the
fourth batch. Increasing minimum resin capacities showed
a strong negative correlation with the earliness of resin ex-
change activities, as visualized in Figure 6. For higher mini-
mum allowed purification yield and, therefore, a flatter resin
decay pattern, more batches are purified before the earliest
optimal resin exchange. For capacityMaxBatch ≥ 90%, a pre-
mature exchange is no longer optimal. In these cases, the
resin is always fully depleted and only exchanged in its fi-
nal unusable state. In contrast to the effect which increasing
resin costs had on the optimal average reward, higher mini-
mum resin capacities led to slightly higher average operating
profits (Figure 6). This positive correlation could be driven
by the comparatively higher number of batches which can be
purified at close to full yield due to the flatter slope of the
resin’s performance decline.

In providing an answer to RQ3, this contribution extends
the existing literature on the scheduling of chromatography
resin maintenance activities by a consideration of its system-
level operational implications. Additional theoretical contri-
butions are made by considering stochastic decay and dif-
ferent resin costs. The analyses in this work provide an un-
derstanding of the sensitivity of optimal maintenance timing
and average profitability to these process parameter changes.
The discussed sensitivities also aid managerial decision mak-
ing under the uncertainties of biopharmaceutical production.
The next section discusses the 2:1 case of two parallel pro-
duction reactors being harvested into one chromatography
step.

6.2. Optimal control of two parallel USPs and chromatogra-
phy

In this section, the scenario of two parallel production
reactors being harvested into one chromatography step in
a 2:1 ratio is studied to answer RQ4. After describing the
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Figure 5: Sensitivity of the optimal average reward and the lateness of the first scheduled exchange to changes of the chro-
matography resin’s material cost

Figure 6: Sensitivity of the optimal average reward and the lateness of the first scheduled exchange to changes of the minimum
allowed chromatography resin capacity

necessary adjustments to the model (sub-section 6.2.1), the
optimal control policy is discussed (sub-section 6.2.2) and
its sensitivity to process parameter changes analyzed (sub-
section 6.2.3).

6.2.1. Model adjustment for the 2:1 case
This sub-section introduces the adjustments to the pro-

posed model which were necessary to study parallel produc-
tion reactors. Both production reactors are inoculated by a
single seed-train (see Appendix 2). For this to be feasible, the

following equation must hold

NPR =
46× 1

max(T )
≥ 2 (16)

Therein, NPR is the number of parallel production reactors
which can be inoculated by a single seed-train, 1+1+8+36=
46 is the number of 12-hour cycles in a production reactor
from an empty reactor to the culture’s first growth state until
the latest possible time of harvesting the batch (see optimal
policy in Table 7), 1 is the number of seed-trains feeding into
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the production reactors, and max(T ) is the maximum seed-
train occupancy time (Jagschies et al., 2018, p. 654). For
max(T ) ≤ 23, i.e., at most 23 12-hour cycles or 11.5 days,
it is feasible for a single seed-train to inoculate two produc-
tion reactors. Because seed-train dynamics are not explicitly
discussed in this contribution, this is assumed to be given.

Due to the exponential growth of the state space from
adding a second reactor, the original model had to be scaled
down to make computation feasible. This process is de-
scribed in the following paragraph before the analysis of
RQ4 commences.

Both parallel production reactors and the first chromatog-
raphy step must be represented to study RQ4. However,
the addition of a second, identical production reactor to the
model drastically increased the state space from |S | = (1+
1+ 8+ 36+ 1)× 12 = 564 states to |S | = (1+ 1+ 8+ 36+
1)2 × 12= 26,508

The resulting transition matrix had c.12.6 billion entries,
which made the calculation of optimal policies infeasible on
available equipment. Therefore, to reduce the state space of
the MDP and escape the curse of dimensionality, the number
of decision epochs was scaled down linearly by a factor of
three. Each decision epoch, therefore, represented 36 hours,
compared to 12 hours in the basic model. This reduced the
growth phase from eight epochs to three, and the production
phase from 36 to twelve epochs. Additional repercussions on
some process dynamics include: the culture decline phase at
the end of the production phase was reduced to two transi-
tions (a sixth of the now 12 production states) with proba-
bilities 84% and 34%, respectively, and Gp only included the
last growth state. The size of the resulting state space was
|S|= 3888 and a transition matrix with c.272 million entries.
The reduced scale made optimization of the 2:1 model feasi-
ble while holding the model robust (see robustness check for
longer decision periods in the single reactor case above). Fur-
thermore, the probability of a successful state transition had
to be adjusted for the reduced number of cycles per week.
Following Schmidt (1996) argumentation of a weekly con-
tamination probability of 5% to 10% and the number of cy-
cles per week scaled-down to from 14 to c.4.67, the proba-
bility of a successful cycle transition, p(sUl , s′Ul , aUl ), was as-
sumed to be 97.8%.

6.2.2. Optimal control of the parallel reactors and the DSP
This sub-section discusses the optimal policy obtained

during this variation of the TPA case study.
The optimal policy for the two production reactors if the

chromatography resin is yet unused is presented in Table 10.
Following the visualization scheme introduced in Section 6.1,
the rows and columns represent the states of the two produc-
tion reactors, respectively, while the remaining performance
of the chromatography resin is held constant. The ordered
triplets within each section prescribe the optimal action to
take in the first reactor (represented by the rows), the sec-
ond reactor (represented by the columns), and in the chro-
matography column. Average reward maximizing policies for

all other resin capacities are provided in Appendix 19 - Ap-
pendix 23. Policy-related insights remain robust under total
expected discounted reward maximization, although slight
individual differences in the optimal policies exist.

We can’t robustly conclude the economic feasibility of
producing TPA in two parallel production reactors under the
assumed process parameters. The average reward maximiz-
ing policy for the control of two parallel production reactors
and one chromatography column is V ∗ = −24,122$ per deci-
sion epoch. However, under the total expected discounted re-
ward criterion, the optimal value function in the initial state
is V ∗(e, e, 100%) = 827,959$, and, therefore, strongly posi-
tive.

The decision zones of both production reactors are fairly
symmetric, independent of the remaining resin performance.
We can deduct this visually. For example, regard the state
pair (p10, p12) in Table 10, i.e., reactor one is in its tenth pro-
duction cycle and reactor two is in its twelfth. The optimal ac-
tion is (3,6,2), i.e., to add production medium in the first re-
actor and harvest the second reactor. Conversely, in the state
(p12, p10), the optimal actions are mirrored: (6,3,2). This
symmetry holds for all USP reactor-state pairs except those
in which both reactors are in the same state within the last
third of their production phase, i.e., (sU1 , sU1) ∈ {(p j , p j) : 9≤
j ≤ 12}. In these states, both reactors have a TPA concentra-
tion of at least 24.4 mg/L (batch value of at least 93, 556$).

This symmetry should not surprise the attentive reader.
Contrary to a serial set-up, such as the one modeled by
Schmidt (1996) where intra-reactor transfers between se-
quentially operating bioreactors are possible, interdepen-
dencies between parallel reactors only come into play in
harvesting decisions. As described earlier (Section 5.2),
both reactors can’t be harvested simultaneously. Addition-
ally, because purification only takes one decision epoch (by
assumption, as discussed in Section 5.4), purification of one
reactor’s medium never blocks the other reactor.

Observation 4: The decision zones of two paral-
lel production reactors exhibit strong symmetry
due to limited interdependency between the re-
actors them.

For the optimal average financial reward, both reactors
are operated in a “staggered” fashion. Following the first
harvested batch, one reactor is delayed from the other by
one cycle. Regard the optimal path of a system with two par-
allel bioreactors and one DSP, starting from its initial state
(e, e, 100%), in Table 11. Because simultaneous harvesting
is not feasible, reactor two is harvested prematurely by one
production cycle (in p9) and a new batch started, followed
by harvesting reactor one in the next decision epoch. This
leads to reactor two being one cycle further in its process
than reactor one because the chromatography step only takes
one decision epoch. This allows harvesting future batches of
both reactors in the optimal tenth production cycle. For all
subsequent batches until the tenth, it is optimal to harvest in
their tenth production cycle, i.e., p10, or on the 13th produc-
tion phase day. These yield revenues of 105,251$, 105, 251$,
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Table 10: Optimal policy for the operation of two parallel bioreactors into a single chromatography column, before the first
and second purified batch

e r g1 g2 p10 p1 . . . p8 p9 p10 p11 p12 u
e 551 521 531 562 561
r

251 221 231 262 261g1
g2
p10

351 321 331

362
Continue production

in reactor one,
harvest reactor two

361
p1
. . .
p8
p9

652 622 632 662
p10
p11
p12 162
u 651 621 631 662 661

105,251$, 99, 988$, 95,726$ , 89, 463$, 84,201$, 78, 938$,
73,676$, respectively. The eleventh batch is then purified in
its eleventh production cycle, generating 76,015 $ of operat-
ing revenue. Afterward, the resin is exchanged for the first
time.

Furthermore, in states where the resin is already de-
pleted to its minimum capacity, one batch is repeatedly
dumped while the other is continued. Regard the sequence
(r, g1, 65%), (g1, g2, 65%), (r, g3, 65%), (g1, p1, 65%) in Table
11. Because the resin is at its minimum capacity, operating
costs are spent on producing only one batch (in reactor two)
while the other (in reactor one) is repeatedly dumped (re-
alizing its salvage value) and restarted in the first growth
cycle.

6.2.3. Sensitivity to process parameter changes
Finally, this sub-section analyzes the optimal policy’s sen-

sitivity to process parameter changes.

Observation 5: Both optimal average rewards
and earliness of resin exchange were strongly
sensitive to changes in the cost of resin material
and the minimum allowed resin capacity.

Decreases in the cost of resin material, on the one hand,
led to decreasingly increasing optimal average rewards. Be-
low resin costs equivalent to half of the value of a full TPA
batch, they led to almost linearly earlier resin exchanges.
Firstly, cheaper resins are necessary for the profitable pro-
duction and purification of TPA under the proposed process
parameters. The average operating profit was negative for
resin material costs of 0.75 times the value of a full TPA batch.
While the single production reactor setup was profitable for
all resin costs, the system of two parallel reactors only breaks
even for reductions at least past 51, 193$ (c.0.24x) (Figure
7). However, reductions past 31, 503$(c.0.3x), show only
small marginal profit improvements. Marginal gains per
additional 4,000$ cost reductions diminish to under 10%.
Therefore, even if resin material were free, only a maximum

of 937$ of average operating profit per 36 hour-cycle would
be earned. Additionally, the cheaper the resin material is, the
earlier is its earliest exchange optimal. Figure 7 visualizes
this correlation. Below the break-even point, the number of
batches before the earliest resin exchange decreases almost
linearly in resin cost decreases. On the other hand, both
optimal average rewards and earliness of resin exchanges
were decreasing in minimum allowed resin capacities. This
contrasts with the single production reactor setup.

While delaying the earliest optimal resin exchange does
not surprise, the decrease of the maximum average operat-
ing profit seems counterintuitive. Increasing the minimum
allowed resin capacity flattens the decay profile and a higher
number of batches can be harvested at relatively higher resin
yields. Therefore, resin exchange becomes necessary later
and later. Intuitively, harvesting more batches at almost full
resin yield should also increase average rewards. This is not
what we observe.

Per-cycle average fermentation operating costs surge in
adding a second, parallel production reactor. It seems logi-
cal to conclude that the comparatively higher revenues from
harvested batches can’t fully compensate for this downward
pressure on average profits. With the flatter decay curve, av-
erage revenues from harvested batches increase (for same
protein concentrations at the time of harvesting). This leads
to postponing the earliest resin exchange. Because more
batches are purified before the resin is exchanged, fermen-
tation operating costs are incurred longer – an effect which
the higher average revenues observably don’t fully counter.

Nevertheless, if minimum allowed resin performances
are reduced below c.16%, thereby reducing the number of
batches before the earliest resin exchange, operating the par-
allel production reactor setup turns profitable. At best, how-
ever, an average operating profit of only c.294 $ is achieved.
In answering RQ4, this section discussed the model adjust-
ments necessary to study the simultaneous control of two
parallel production reactors, discussed the optimal policies,
and analyzed their sensitivity to process parameter changes.
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Table 11: Optimal path of a 2:1 system, given no upsets

Path of system state left to right, starting at (e, e, 100%)

(e, e, 100%), (r, r, 100%), (g1, g1, 100%), . . . (p9, p9, 100%),
(p10, r, 100%), (r, g1, 100%), . . . (g2, g3, 100%), (g3, p1, 100%),
. . . (p9, p10, 100%), (p10, r, 100%), (r, g1, 100%), . . .
(g2, g3, 100%), (g3, p1, 100%), (p9, p10, 100%), (p10, r, 95%), (r, g1, 95%),
. . . (p9, p10, 95%), (p10, r, 90%), (r, g1, 85%), . . .
(p9, p10, 85%), (p10, r, 80%), (r, g1, 75%), . . . (p9, p10, 75%),
(p10, r, 70%), (r, g1, 65%), (g1, g2, 65%), (r, g3, 65%), (g1, p1, 65%),
(r, p2,65%), (g1, p3, 65%), . . . (p6, p11, 65%), (p7, r,∆),
(p8, g1, 100%), (p9, g2, 100%), (r, g3, 100%), . . .

Figure 7: Sensitivity of the optimal average reward to changes of the chromatography resin’s material cost

Figure 8: Sensitivity of the optimal average reward to changes of the minimum allowed chromatography resin capacity

In conclusion, the production and fermentation of TPA may
not be economically feasible under the proposed setup, how-
ever, we were able to generate insights related to the stag-
gered operation of the reactors and necessary parameter
changes to make the setup profitable. The next chapter con-
cludes this thesis and provides directions for future research
endeavors on the topic.

7. Conclusions & Outlook

Producing biopharmaceutical products is a complex en-
deavor due to the high stochasticity of the living organisms
used in fermentation and uncertainties about purification
yields. Due to the high economic and curative value of
biopharmaceutical APIs, optimal decision making during
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their manufacture is especially important. Currently, oper-
ations research methods are under-appreciated in practice,
even though, the academic discussion on the topic has been
growing since the advent of biopharmaceutical production
processes.

Academia has produced contributions on three different
abstraction levels: single bioreactor control, capacity and op-
erations planning, and the system-level control of integrated
production processes. Literature on the bioreactor-level has
dealt mostly with the maximization of protein concentrations
constrained by dynamic models of cell-level kinetics. The
capacity planning-level considers scheduling interdependen-
cies between up- and downstream operations and the notion
of uncertain or decaying chromatography resin yield. Fur-
thermore, it introduced maintenance activities related to the
exchange of spent chromatography resin. System-level liter-
ature, on the other hand, has modeled the dynamic control of
entire production systems. However, it lacks work which con-
siders integrated fermentation and purification control under
relevant process uncertainties.

This work, therefore, was motivated by the paucity of lit-
erature examining the system-level control of interdependent
up- and downstream processes under stochastic fermenta-
tion and resin decay. Thus far, no paper has simultaneously
considered the upstream fermentation and downstream resin
exchange control-problems. In the former sub-problem, de-
cisions about growing the culture, its conversion into the
protein-producing phase, and when to harvest the protein
from one or multiple parallel production reactors must be
made under the risk of costly batch failure due to contamina-
tion. After each purified batch, the capacity of the used chro-
matography resin to bind the protein of future harvests de-
teriorates stochastically. In the resin exchange sub-problem,
therefore, decisions must be made under the trade-off be-
tween potentially reduced yields from future harvests and
costly maintenance activities to restore the resin to its full
performance.

This thesis aimed at answering the following four re-
search questions. What is the optimal, simultaneous control
policy for the USP and DSP? When is chromatography resin
exchanged under stochastic decay? When under different
minimum allowed resin capacities and different resin costs?
How does the consideration of two parallel production reac-
tors change the optimal policy?

To this end, an infinite horizon MDP with a discrete state
space was proposed. The model allows for a single produc-
tion reactor in the USP coupled with a single DSP, or, to de-
pict common production realities, parallel USP production
reactors coupled with a single DSP. It models the evolution of
the production reactors over states, representing the cell cul-
ture lifecycle (growth, production, decline). Every decision
epoch, the system controller decides whether to do nothing,
prepare the empty bioreactor, add growth medium to facili-
tate culture growth, add production medium to start or con-
tinue protein production, or harvest the produced protein.
When harvested, the production medium must be accepted
into the chromatography column because intermediate stor-

age is not assumed. At some point, the spent chromatography
resin is exchanged for fresh resin to restore full chromatog-
raphy performance.

Furthermore, the case study of TPA fermentation and
purification was analyzed and optimal policies interpreted.
Both production setups with one production reactor and two
parallel reactors were implemented and the sensitivity of
critical process parameters was analyzed. The case study re-
sults were already summarized in their respective sections in
Chapter 6. Here they are synthesized to answer the research
questions of this work.

In answering RQ1, we thusly postulate three takeaways:
Firstly, the state of the downstream process influences opti-
mal upstream decision making and vice versa. This extends
the existing research on system level control in which only
one process part was considered in detail while the other was
strongly abstracted or omitted. Secondly, batches should op-
timally be harvested before the culture enters decline. This
corroborates prior findings (Martagan et al., 2016) and aids
operative decision making. Lastly, a business case for the si-
multaneous stochastic optimization of up- and downstream
decision making exists compared to a rudimentary policy fo-
cusing only on the output of the upstream process.

For RQ2, we conclude that premature resin exchanges be-
come optimal under stochastic decay. The timings are even
earlier than existing findings under deterministic decay (Liu
et al., 2014).

The findings support the hypotheses related to RQ3.
Thusly, resin-related parameters affect the profitability and
resin exchange timing as expected, aiding managerial deci-
sion making and capacity planners.

By considering two parallel production reactors in study-
ing RQ4, we gained the following four insights: For one, the
simultaneous operation of two parallel reactors was only in-
terdependent at the point of harvesting, therefore exhibiting
strong symmetry in their respective decision zones. Secondly,
the financial results cause doubt over this production setup’s
financial viability. Because the parallelization of production
reactors is a common practice, managers must critically ex-
amine their production lines for profitability. This corrob-
orates findings on increasing costs of goods in the case of
parallel USPs (Liu et al., 2016). Thirdly, parallel production
reactors should be operated in a staggered fashion to com-
pensate for the time it takes to harvest one batch. Lastly,
contrasting the findings under RQ3, the results fail to sup-
port the hypothesis of how flatter resin decay affects financial
results of parallel operation.

Nevertheless, generalizability of the presented research
has some limitations and warrants future research on the
topic.

The presented model incorporates a linear protein accu-
mulation pattern, i.e., the amount of the API of interest in
the production medium is linearly dependent on the number
of passed production phase cycles. Martagan et al. (2016),
however, argue for stochastic accumulation of protein during
fermentation based on probability distributions from fermen-
tation experiments. Future research, therefore, could extend
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the presented discrete state space formulation into a contin-
uous state space, allowing the modeling of stochastic accu-
mulation based on experimentally derived probability distri-
butions.

The model presented in this contribution makes some sig-
nificant assumptions about the purification process. This con-
tribution abstracts the purification decision space to whether
to accept a harvest for chromatography. In reality, purifica-
tion decisions are more intricate. Martagan et al. (2018), for
example, model the practically relevant decision about which
chromatography lanes to pool. Future research on the simul-
taneous control of fermentation and purification operations
should include this level of complexity to better aid practical
decision making.

This contribution studied the TPA production case study,
which Schmidt (1996) proposed. While the argument for
choosing this numerical exercise has been made, corrobora-
tion of the presented academic and managerial insights re-
quires the study of additional cases. Future research could,
for example, model the fermentation of an MAB, a class of
biopharmaceuticals of high commercial prominence.

Furthermore, due to the lack of high-grade literature on
the topic of stochastic chromatography performance decay,
model assumptions regarding the decay probabilities should
be validated in future experimental research.

Lastly, future research on the topic should draw a more
concrete picture of the fermentation process by including ad-
ditional process variables in the state description, such as
nutrient concentration, pressure, pH, and oxygen, instead
of merely state approximations. Furthermore, future mod-
els could consider more concrete control actions such as the
substrate feed-rate to even better aid operations.

Ultimately, academia’s progress in modeling bioprocesses
continues to be hindered by our limited understanding of liv-
ing organisms’ complexities (Jagschies et al., 2018, p. 98).
However, this contribution aids practice and academia in in-
creasing their understanding of controlling production sys-
tems considering the presented complexities and argues for
the simultaneous optimization of up- and downstream oper-
ations.
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