
Junior Management Science 4(1) (2019) 35-62

Junior Management Science

journal homepage: www.jums.academy

Advisory Editorial Board:
DOMINIK VAN AAKEN
FREDERIK AHLEMANN

CHRISTOPH BODE
ROLF BRÜHL

JOACHIM BÜSCHKEN
LEONHARD DOBUSCH

RALF ELSAS
DAVID FLORYSIAK
GUNTHER FRIEDL

WOLFGANG GÜTTEL
CHRISTIAN HOFMANN

KATJA HUTTER
LUTZ JOHANNING
STEPHAN KAISER

ALFRED KIESER
NATALIA KLIEWER

DODO ZU KNYPHAUSEN-AUFSEß
SABINE T. KÖSZEGI

ARJAN KOZICA
TOBIAS KRETSCHMER

HANS-ULRICH KÜPPER
REINER LEIDL

ANTON MEYER
MICHAEL MEYER

GORDON MÜLLER-SEITZ
J. PETER MURMANN

BURKHARD PEDELL
MARCEL PROKOPCZUK

TANJA RABL
SASCHA RAITHEL
ASTRID REICHEL

KATJA ROST
MARKO SARSTEDT
DEBORAH SCHANZ

ANDREAS G. SCHERER
STEFAN SCHMID

UTE SCHMIEL
CHRISTIAN SCHMITZ

PHILIPP SCHRECK
GEORG SCHREYÖGG

LARS SCHWEIZER
DAVID SEIDL

THORSTEN SELLHORN
ANDREAS SUCHANEK

ORESTIS TERZIDIS
ANJA TUSCHKE
SABINE URNIK

STEPHAN WAGNER
BARBARA E. WEIßENBERGER

ISABELL M. WELPE
HANNES WINNER

CLAUDIA B. WÖHLE
THOMAS WRONA

THOMAS ZWICK

Volume 4, Issue 1, March 2019

JUNIOR
MANAGEMENT
SCIENCE
Layla Martin, Extending Kolkata Paise Restaurant Problem

to Dynamic Matching in Mobility Markets

Estevan Vilar, Word Embedding, Neural Networks and
Text Classification: What is the State-of-the-Art?

Nicholas Herold, The Tax System and Corporate Payout
Policies

Frédéric Herold, Measuring Corporate Tax Avoidance –
An Analysis of Different Measures

Christiane Czech, Living is Easy with Eyes Closed –
Strategische Unwissenheit und eigennütziges
Verhalten

Silie Homayon Nawabi, The Effect of ECB’s Corporate
Sector Purchase Programme on CDS Premia – An
Empirical Analysis

1

35

63

81

101

123

Published by Junior Management Science e. V.

Word embedding, neural networks and text classification: what is the state-of-the-art?

Estevan Vilar

ESCP Europe

Abstract

In this bachelor thesis, I first introduce the machine learning methodology of text classification with the goal to describe
the functioning of neural networks. Then, I identify and discuss the current development of Convolutional Neural Networks
and Recurrent Neural Networks from a text classification perspective and compare both models. Furthermore, I introduce
different techniques used to translate textual information in a language comprehensible by the computer, which ultimately
serve as inputs for the models previously discussed. From there, I propose a method for the models to cope with words absent
from a training corpus. This first part has also the goal to facilitate the access to the machine learning world to a broader
audience than computer science students and experts.

To test the proposal, I implement and compare two state-of-the-art models and eight different word representations us-
ing pre-trained vectors on a dataset given by LogMeIn and on a common benchmark. I find that, with my configuration,
Convolutional Neural Networks are easier to train and are also yielding better results. Nevertheless, I highlight that models
that combine both architectures can potentially have a better performance, but need more work on identifying appropriate
hyperparameters for training. Finally, I find that the efficacy of word embedding methods depends not only on the dataset but
also on the model used to tackle the subsequent task. In my context, they can boost performance by up to 10.2% compared
to a random initialization. However, further investigations are necessary to evaluate the value of my proposal with a corpus
that contains a greater ratio of unknown relevant words.

Keywords: neural networks; machine learning; word embedding; text classification; business analytics

1. Introduction

“Innovation is hard. It really is. Because most
people don’t get it. Remember, the automobile,
the airplane, the telephone, these were all con-
sidered toys at their introduction because they
had no constituency. They were too new.” Nolan
Kay Bushnell

1.1. Data availability
Data has been called by The Economist the “new oil”

(Economist, 2017) as they are now “abundant, ubiquitous
and far more valuable [than before]”. Internet, social media,
sensors, and smartphones have all contributed to the pro-
duction of electronic information whether structured or not.
Daily, 2.5 quintillion bytes of data are created (IBM, 2018).
With this increasing amount of data, a need to accurately ex-
tract, integrate and classify these resources has appeared in
the last two decades.

Among this electronic information, a plethora of textual
resources such as tweets, reviews, comments, emails or news
but also scanned documents or handwritten notes are pro-
duced, and therefore techniques in the field of Natural Lan-
guage Processing (NLP) and machine learning have been de-
veloped to get meaningful knowledge from this information.

The first goal of this bachelor thesis in collaboration with
the company LogMeIn Inc.1 is to evaluate the current state-
of-the-art of classification techniques with neural networks,
select the appropriate algorithms and subsequently tackle the
automated classification and performance analysis. These
tasks will be performed to pinpoint the most effective method
to sort textual reviews of customers about the use of Go-
ToMeeting2 - an online meeting, desktop sharing and video
conferencing software - by subject (audio, non-audio).

Second, this work is also exploratory as a new method
to deal with out-of-vocabulary words is tested and compared

1https://www.logmein.com/
2https://www.gotomeeting.com/

DOI: https://doi.org/10.5282/jums/v4i1pp35-62

www.jums.academy
https://doi.org/10.5282/jums/v4i1pp35-62

E. Vilar / Junior Management Science 4(1) (2019) 35-6236

with the state-of-the-art. The goal is to improve the gener-
alization power of classification methods, without deep and
heavy implementations.

1.2. Feedback loops
Part of the agile methodology, experimentation is favoured

over elaborate planning and so is customer feedback over in-
tuition (Rahimian and Ramsin, 2008). As a consequence,
one component of the methodology is to enter quickly what
is commonly called feedback loops. It consists of building
a minimum viable product, getting customers’ feedback and
used it to improve the product. In that context, many online
tools have been developed to conduct surveys, but also many
applications such as AirBnB3 or Uber4 include reviews as
part of their product to gain the trust of their users. If these
tools allow developers and managers to collect a signifi-
cant amount of data, there is, however, a need to efficiently
analyse these data to perform qualitative analysis and in-
fer where resources should be allocated. The third goal of
this thesis is, therefore, to present tools that managers or
entrepreneurs can leverage to build better products faster.
As a consequence, this thesis has been written with a goal
in mind to facilitate the access to modern tools for analysis,
more specifically neural networks, to add a new card in the
hands of managers to understand their customer concerns
better.

In Section 2, I introduce the theoretical background and
different concepts necessary to understand the functioning
of neural networks. I describe two commonly used archi-
tectures namely Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) and compare their per-
formance when it comes to classification tasks. In Section 3,
I discuss the conversion of textual information in a format
recognisable by computers. I introduce three techniques to
extract information from texts: GloVe, Word2Vec, and Fast-
Text. I also propose a method to deal with words that are
not present in the training data. In Section 4, I describe the
benchmark to compare the models introduced in Section 2
and techniques mentioned in Section 3. Section 5 includes
the results and discussions following the experiment and Sec-
tion 6 is the concluding part of this thesis.

2. Text Classification and Machine Learning

“Science is the systematic classification of expe-
rience” George Henry Lewes

Text Classification (TC) (also called text categorisation
or topic spotting) refers to the identification and labelling
of themes or topics of a sentence or document (Sebastiani,
2002). An example would be to label a comment based on
the topic it covers like “audio”, “screen” and “video”. In the
early 90’s, the emergence of digital data, and the growing

3https://www.airbnb.com/
4https://www.uber.com/en-MX/

computational power of machines contributed to the devel-
opment of the field. Also, the broad applicability of the task in
activities such as spam detection, metadata generation or or-
ganisation of documents attracted the interest of technologi-
cal companies. Before that time, techniques involved knowl-
edge engineering (KE) which consists of classifying a tex-
tual document based on knowledge encoded in a set of rules
manually defined (Faraz, 2015). However, in the 90’s the
machine learning (ML) paradigm shifted the attention of re-
searchers away from KE. Rather than imposing classification
rules to machines, researchers started to build solutions that
let the computer deduce the attributes that will lead to effi-
cient classification. From a pre-classified set of documents,
the machine would thus learn the characteristics of interests
to build an automated classifier.

Formally, TC tasks assign a Boolean value to each pair
〈d j , c j〉 ∈ D × C , with D being a training set of documents
and C = {c1..., cn} a set of predefined categories. The goal is
to approximate the target function f: D×C → [T, F] where T
indicates that d j must be classified under ci whereas F indi-
cates that d j must not be classified under ci . As f is unknown,
the function g: D×C → [T, F] that approximate f - also called
classifier (or model, or rule) - is used. Then, the effectiveness
of the classifier - or accuracy - refers to the degree to which
f and g coincide. Ultimately, classifying a document D under
C = [c1, ..., ci , ..., cn] with i=1. . . ,n can be seen as n indepen-
dent problems with fi : D → [T, F] as an unknown target
function for ci and gi : D → [T, F] a classifier for ci (Sebas-
tiani, 2002).

The first challenge lies in the so-called inter-indexed in-
consistency based on the first law of Jesse H. Shera (Clever-
don, 1984). It states that “No cataloguer will accept the
work of any other cataloguer”. This law highlights the sub-
jectivism of classification tasks and therefore points to the
non-existence of a deterministic solution - a function f - for
the classification problem. Nevertheless, in the last decades,
researchers have been looking for an optimal function g to
solve specific classification problems.

In ML, building a classifier relies on the availability of a
pre-classified corpus from which to deduce the relevant char-
acteristics i.e., a corpus on which the values of every pair
〈d j , c j〉 ∈ D × C are known. Besides, to evaluate the effec-
tiveness of the classifier, it is common practice to split this
pre-classified corpus between a training- set - used to build
the classifier - and a test set - to assess the effectiveness of
the classifier. Once the classifier is built, each d j from the
test set are used as input which produces a corresponding ci .
The effectiveness is measured by how often the pairs 〈d j , ci〉
matches the values of the pre-classified corpus while testing.

Since the beginning of machine learning techniques for
TC, a broad range of model including rule induction, naïve-
bays, decisions trees, K-nearest neighbours (KNN), support
vector machines (SVM) and neural networks have been used
to build classifiers. A comparative study of the techniques is
available in (Kaur and Kaur, 2017; Khan et al., 2010; Nikam,
2015). As pointed out in (Young et al., 2018), deep learning
architecture such as deep neural networks have increasingly

E. Vilar / Junior Management Science 4(1) (2019) 35-62 37

Figure 1: Percentage of deep learning papers in ACL, EMNLP, EACL, NAACL over the last six years; Source: (Young et al.,
2018)

attracted the attention of researchers as shown in Figure 1.
For that reason; this work is focusing on neural networks for
TC tasks.

2.1. Neural Networks for text classification
Artificial neural networks as defined by Dr. Robert Hecht-

Nielsen quoted in Neural Network Primer: Part 1 is:

“a computing system made up of a number of
simple, highly interconnected processing el-
ements, which process information by their
dynamic state response to external inputs.“
(Caudill, 1986).

If the essential components of neural networks remain the
same, their architecture can change a lot. For this section,
I aim to identify the state-of-the-art model for TC among
Convolutional Neural Networks (CNN) and Recurrent Neu-
ral Network (RNN). First, I describe the functioning of a
multilayer perceptron (MLP), a feed-forward neural network,
which represents one of the most straightforward architec-
tures of neural networks5. It is done to introduce the funda-
mental concepts necessary to understand the CNN and RNN.
I describe the models and their most up-to-date applications
for TC tasks.

2.2. Feed-forward neural networks
The definition mentioned previously encompasses the

essential components of modern neural networks. Hecht-
Nielsen refers to what are today called neurons with the
word “processing elements”. This computational unit re-
ceives a set of scalar x i or vector x as input, (1) multiplies

5The simplest one is a single layer perceptron

them by their importance - their weights wi-, (2) and apply
a function f such as summation or max operation. Finally,
(3) it applies a non-linear function g - also called activation
function - on the result, which represents the output - a single
scalar y or vector y as shown in Figure 2.

Artificial neural networks are made out of a multitude of
neurons that are interconnected in different layers as illus-
trated in Figure 3.

They have the power to approximate any Borel func-
tions from a finite dimensional space to another as shown
in (Hornik et al., 1989), a category under which classifiers
defined in the previous paragraph fall.

In mathematical notations, the feed-forward neural net-
work represented in Figure 3 with two hidden layers would
be expressed as follow6:

NN2(x) = g2(g1(xW 1)W 2)W 3

with x ∈ Rinput an input vector (dimension of the Fig-
ure is 3), W 1 ∈ Rinput × Routput is the weight matrix from
the input to the first hidden layer, W 2 ∈ Rinput × Routput is
the weight matrix from the first hidden layer to the sec-
ond hidden layer W 3 ∈ Rinput × Routput is the weight ma-
trix from the second layer to the output layer, g1() is the
activation function in the first layer and g2() is the acti-
vation function of the second layer. In Figure 3, W 1, W 2,
and W 3 are of dimension 3x3, 3x2 and 2x4 respectively.

6Some feed-forward neural networks include a bias term in some layer,
which is a neuron that is not connected with the previous layer. Figure 3 does
not have any bias and therefore the bias in not included in the mathematical
notation.

E. Vilar / Junior Management Science 4(1) (2019) 35-6238

Figure 2: Illustration of the tasks performed in a neuron; Source: Author’s own representation

Figure 3: Feed-forward neural network with two hidden layers; Source: Author’s own representation

Alternatively, the hidden layers could be expressed as:

h1 = g1(xW 1) for the first layer

h2 = g2(h1W 2) for the second layer

This gives us:

NN2(x) = h2W 3

The collection of matrices W 1,W 2,W 3 is referred in the

literature as the parameters θ of the neural network. In clas-
sification problems, feed-forward neural networks are often
designed such as each element in the output layer is positive
and that they sum to 1. The output vector can, therefore,
be interpreted as a probability distribution over the different
classes [c1..., cn]. This final transformation is often performed
with a softmax function7.

7so f tmax(x i) =
exi
∑k

j=1 ex j
for x = x1...xk

E. Vilar / Junior Management Science 4(1) (2019) 35-62 39

Table 1: Summary of the most commonly used activation functions and their first derivative; Source: Compiled by author

Name f(x) f’(x)

Sigmoid 1
1+ex p(−x) si gmoid(x)(1− si gmoid(x))

Tanh ex−e−x

ex+e−x
d

d x tanh(x) = 1− tanh(x)2

ReLu max(0, x)

¨

0, x < 0

1, x ≥ 0

ELU

¨

α(ex p(x)− 1), x < 0

x , x ≥ 0

¨

α(ex p(x)− 1), x < 0

1, x ≥ 0

Swish x ∗ si gmoid(β x) βswich(x) + si gmoid(β x)(1− β(swich(x))

2.2.1. Input layer
The input of the neural network is usually a vector x =

(x1...xk). For TC problems, this vector is the result of a trans-
formation of textual data to a vector representation. It is
often referred as an embedding layer. I discuss the vector
representation of text in paragraph 3.1.

2.2.2. Activation functions
In the machine learning literature, many activation func-

tions including sigmoid, Rectified Linear Units (ReLu) (Hahn-
loser et al., 2000), Exponential Linear Unit (ELU)(Clevert
et al., 2015) and tanh have been considered yielding differ-
ent results. In its paper, Alcantara (2017) provides a com-
parison of different activation functions and concludes that
ELU performs the best with ReLu nevertheless yielding great
results. However, in the recent work of Ramachandran et al.,
2017, the authors claimed that no other function had been
more adopted than ReLu thanks to its simplicity and effec-
tiveness. It is also concluded that Swish, a function similar
to the Sigmoid-weighted Linear Unit (SiL) (Elfwing et al.,
2018) performed better than ReLu. As far as I know, no com-
parison between Swish and ELU has been made and it is still
an open-question to determine which one performs best. A
summary of common activation functions is available in Ta-
ble 1. Also, plots of these functions are available in Figure 4
and Figure 5.

2.2.3. Training a neural network
Neural networks must be trained to be efficient. Train-

ing a neural network involves setting the right weights in the
various matrices W: in another word, tuning the parameters
θ the best possible so the neural network approximates the
desired function. To do so, a loss function is optimised and
various techniques to perform the task exist.
Loss functions
As mentioned in paragraph 2.1, it is common practice in ma-
chine learning to split the data into a training set and a val-
idation one. Let us define the output of the neural network
as ĉ and the actual output as c. In the training set, all the
pairs 〈d j , c j〉 ∈ D× C - each document and their correspond-
ing class ci - are known. The objective of the training is to

minimise the function L(ĉ, c) - a loss function - that gives a
score to ĉ based on c. The score is therefore null if ĉl = ci
and positive otherwise.

Recently, a comparison between several loss functions
has been performed for TC purpose (Janocha and Czarnecki,
2017). Out of 12 loss functions - showed in Table 2 - the au-
thors conclude that non-log losses are preferable for classifi-
cation purpose. In particular, they identify the squared hinge
loss (formula present in Table 1) to be the best performing
function. They note however that if much noise8 is present
in the data set, the expectation loss is the preferable choice.
Training techniques
The loss function is what needs to be minimised, and the
computer must be told how to do it i.e., defining a training
algorithm for the neural network.

As pointed out in (Goodfellow et al., 2016, Chapter 8),
the training of the parameters θ is indirect as we hope by
minimising L(ĉ, c)we will obtain the best parameters. There-
fore the techniques differ from classic optimisation problems.
This include for example not evaluating the loss on the whole
data set but rather on small batches and then average the
results for computation power purpose. Indeed, as the stan-
dard error of the mean from a sample n is σp

n where σ is
the true standard error, training a set of 10’000 examples
takes 100 times more computational power than training a
set of 100 examples, but reduces the error only by a factor 10
(Goodfellow et al., 2016, Chapter 8). Using less than all the
training examples available is referred as mini-batch meth-
ods.

The most used category of optimisation algorithm are
named back propagation or backward propagation of errors
(Rumelhart et al., 1988) and its best representative is cur-
rently the stochastic gradient descent (SGD) (Goodfellow
et al., 2016; Ruder, 2016). It consists of an iterative ap-
proach that reduces L(ĉ, c) by moving the parameters θ in
the direction opposite to sign of L′(ĉ, c) - the derivative of
the loss function. The algorithm is shown in Figure 6.

The learning rate εk present in Figure ?? as a required
output is a parameter that defines how quickly the old pa-

8i.e. a big variability

E. Vilar / Junior Management Science 4(1) (2019) 35-6240

Figure 4: Plots of activation functions including Sigmoid, ELU, ReLU; Source: (Alcantara, 2017)

Figure 5: Plot of the Swich function with different betas; Source: (Ramachandran et al., 2017)

Figure 6: Algorithm of SGD. Note that the function g(x i;θ) = ĉi is the one referred to in 2; Source: (Goodfellow et al., 2016,
Chapter 8)

rameters are forgotten compared to the new one. It has been
demonstrated that, if the learning rate is appropriately set,
using SGD, the function will surely converge to a global min-
imum or local minimum, if the function is convex (such as the

one presented in 2.2.3.1) (Bottou, 1998; Kiwiel, 2001). Fur-
thermore, Bottou, 2012 suggest to update the learning rate
in function of the iteration - also called epoch - as follow:

E. Vilar / Junior Management Science 4(1) (2019) 35-62 41

Table 2: List of loss functions tested in (Janocha and Czarnecki, 2017). The authors name “y” the true value. I use the
notation c. Similarly, the output of the neural network is named “o” whereas I name it ĉ; Source: (Janocha and Czarnecki,
2017)

symbol name equation

Λ1 L1 loss ‖ y − o ‖1

Λ2 L2 loss ‖ y − o ‖2
2

Λ1 ◦σ expectation loss ‖ y −σ(o) ‖1

Λ2 ◦σ regularised expectation loss ‖ y −σ(o) ‖2
2

Λ∞ ◦σ Chebyshev loss max j |σ(o)(j) − y (j)|

hinge hinge (margin) loss
∑

j max(0, 1
2 − ŷ (j)o(j))

hinge2 squared hinge (margin) loss
∑

j max(0, 1
2 − ŷ (j)o(j))2

hinge3 cubed hinge (margin) loss
∑

j max(0, 1
2 − ŷ (j)o(j))3

log log (cross entropy) loss −
∑

j y (j)logσ(o)(j)

log2 squared log loss −
∑

j[y
(j)logσ(o)(j)]2

tan Tanimoto loss
−
∑

j σ(o)
(j) y(j)

‖σ(o)‖2
2+‖y‖2

2−
∑

j σ(o)(j) y(j)

DCS Cauchy-Schwarz Divergence −log
∑

j σ(o)
(j) y(j)

‖σ(o)‖2‖y‖2

εk = ε0
1

1+ ε0δk

With ε0 the initial learning rate and δ a hyperparameter9

to be set. However, as pointed out in (Zeiler, 2012), setting
the hyperparameters alter the results of the neural networks,
and the tuning can be tricky. He, therefore, presents an im-
provement of the standard SGD, ADAELTA, that, when used,
the performance of the neural networks is not sensitive on
the hyperparameter of the learning rate. The algorithm is
shown in Figure 7.

Moreover, similar algorithms to ADADELTA exist such as
ADAM (Kingma and Ba, 2015) or Nadam (Dozat, 2016). Fi-
nally, it is worth to point out that Ranganathan and Natara-
jan (2018) recently developed a new method of backpropa-
gation without using SGD but rather Moore-Penrose Pseudo
Inverse10 with promising results.
Initialisation of the network
At the beginning of the training, the weights in the different
matrices W must be set. This point can determine whether
the loss function - regardless of its form - will converge or di-
verge. Therefore, two underlying questions emerge from this
issue: what is the ideal magnitude of the initial weights and
what is the range in which they must be included? Before

9In machine learning, the word “hyperparameter” is used to distinguish
from the parameters θ . Hyperparameters are higher level parameters set to
configure properties of the neural network.

10A generalisation of the notion of inverse matrix that satisfies the four
Moore-Penrose conditions (Penrose, 1955)

2006, deep neural networks tended to produce inaccurate
results and one reason for that is that initialisation of the net-
work was usually totally random (Erhan et al., 2009; Glorot
and Bengio, 2010; Sutskever et al., 2013). This resulted in
errors such as vanishing (converging close to 0) or exploding
(becoming high) gradients which does not allow the neural
network to approximate the required function. In addition,
neurons tended to become saturated - setting output value to
0 due to very small gradients. Likewise, output values could
become too high - or die - resulting in a gradient of 0 due
to inputs being negative caused by a big negative change in
the gradient during the previous iteration. These issues can
be solved with a wise choice of the loss function, learning
algorithm, and effective initialisation of the network. An ini-
tialisation method - the xavier initialisation - introduced in
(Glorot and Bengio, 2010), has become a popular technique
among researchers (Goldberg, 2015). It consists of initialis-
ing the matrix as follow:

W ∼ U[−
p

6
p

din + dout

;

p
6
p

din + dout

]

With U[a, b] being a uniformly sampled value between
a and b, din is the dimension of the input vector, and dout
is the dimension of the output vector. Using this initialisa-
tion makes sure that the distribution of the input is centred
around 0 and of variance 1. However, this method assumes
that the activation function is linear which is not the case
for ReLu for instance. Also, this method seems not to work
for very deep models (Glorot and Bengio, 2010). He et al.

E. Vilar / Junior Management Science 4(1) (2019) 35-6242

Figure 7: Algorithm of ADAELTA. Note that RMS[x]t =
p

E[x]t + ε as in (Becker et al., 1988). The hyperparameters ρ and
ε do not alter the performance of the model significantly; Source: (Zeiler, 2012).

Figure 8: Illustration of 1) underfitting, 2) a good approximation and 3) overfitting; Source: Author’s own representation

(2015) offer, therefore, to solve these two issues by doing an
initialisation as follow:

W ∼ U(0;

√

√ 2
din
)

With N(a, b) being a normal distribution of mean a and
standard deviation b.
Generalisation challenges and regularisation
As defined at the beginning of this section, the accuracy of
the classification algorithm is how often the couple 〈d j , ci〉
matches the values of the pre-classified corpus. Also, it was
mentioned that the data set is usually split between a training
set and a test set. When training the algorithm, we therefore
obtain a training error - the proportion of examples for which
the model produces an incorrect output. Similarly, we obtain
a test error, when running the model on the test set. One
challenge in training a model is to avoid a training error that
is too high - problem named underfitting - which is the result
of a high bias. It produces a model that is too general and not
capable of proper predictions with unknown inputs. A sec-
ond challenge is to have a gap between the training error and
test error to be too wide - which is called overfitting - which
makes the model to be too specific to the training set and thus
not generalizable for new data. Both problems are illustrated
in Figure 8 with an analogy to regressions. It must be pointed
out that no classification algorithm exists that outperforms

other on all possible data distribution. It is known as the no
free lunch theorem (Wolpert, 1996) which is a generalisation
of the inter-indexed inconsistency mentioned earlier in this
section. Nevertheless, we can find algorithms that perform
well on a specific distribution. As expressed in paragraph
2.1, neural networks are particularly capable of approximat-
ing any Borel functions. However, it makes them also par-
ticularly prone to overfitting. To minimise it, one could get
more and better data or regularize the model.

Regularization “ is any modification we make to a learn-
ing algorithm that is intended to reduce its generalization
error, but not its training error” (Goodfellow et al., 2016,
Chapter 5). Regularization is a widely researched topic in
machine learning but the most common forms of regulariza-
tion are weight penalties, early stopping, and dropout.

Weight penalties
Weight penalties consist of adding an element to the loss
function L(ĉ, c) depending on the magnitude of the weights
in the matrix W and a hyperparameter γ controlling for the
amount of penalty. Two common weight penalties used are
called L1 - also called Lasso regression (Tibshirani, 1996) -
and L2 regularisation - also called Tikhonov regularisation or
ridge regression (Ng, 2004). Let’s define a new loss function
L∗(ĉ, c), below the equations of L1 and L2:

E. Vilar / Junior Management Science 4(1) (2019) 35-62 43

Figure 9: Illustration of overfitting and when the training should stop; Source: Author’s own representation

L1 : L∗(ĉ, c) = L(ĉ, c) + γ
∑

w∈W

|w|

L2 : L∗(ĉ, c) = L(ĉ, c) +
γ

2

∑

w∈W

wT W

Both methods tend to penalise large values in W by
shrinking them towards 0, however, in L2 values are squared
due to the matrix multiplication and are therefore more pe-
nalised. In machine learning literature, L1 appeared first,
but L2 has been outperforming L1 in most cases (Ng, 2004).

Early stopping
Early stopping merely consists of stopping the training ses-
sion before the model starts to learn too much specificity on
the training set. This is achieved by stopping when the val-
idation error starts to become greater than for the previous
epoch. Indeed, that would mean that the gap between the
validation error and the training error is widening and there-
fore the model starts to become too specific to the training
set as shown in Figure 9.

Dropout
Dropout is a method introduced in (Srivastava et al., 2014)
that consists of temporarily removing random neurons of the
network as shown in Figure 10. A neuron has a probabil-
ity p of being removed and the authors suggest starting with
a value of 0.5 and then adjust if necessary. The rationale
behind it is inspired from the role of sex in evolution (Liv-
nat et al., 2010): sexual reproduction generally involves tak-
ing half the genes of the male and half of the women ones
forcing the genes to “work” together. Similarly, by dropping
out neurons from the network, they are obliged to work with
randomly selected neurons. It means that a neuron will not
overly rely on a specific underlying neuron and learn to adapt

from different inputs, which is the end goal of regularisation.
Empirical studies have suggested that dropout is a very ef-
fective method of regularisation, in particular with the ReLu
activation function (Dahl et al., 2013; Warde-Farley et al.,
2013).

2.3. Convolutional Neural Network
For TC tasks, the input of the neural networks is often a

sentence or a set of phrases. These have to be encoded in a
vector representation (discussion about it in Section 3). This
could easily be achieved by considering the sentence as a bag-
of-words. However, this method does not take into account
the word order. Yet the meaning of a sentence is highly de-
pendent on the word order. CNNs are designed to take into
account the context around each word and therefore avoid
to consider the input as a bag-of-words. They have been
first used in image recognition and then introduced to the
NLP community with the work of Collobert et al. (2011) and
then showed excellent results even with shallow architecture
(Kalchbrenner et al., 2014; Kim, 2014). Since then, CNNs
have been continuously used for TC tasks representing the
state-of-the-art of text classification techniques (Agrawal and
Awekar, 2018; Georgakopoulos et al., 2018; Le et al., 2018;
Salinca, 2017; Sundström, 2017). Zhang et al. (2015) de-
veloped a similar model to Kim’s working at a character-level
rather than word level with results varying from a data set to
another. Finally, in (Johnson and Zhang, 2017) a deep pyra-
mid CNN model with 15 weight layers was developed. To
avoid extravagant computing costs, they decrease the com-
putation time allowed to perform the task in function of the
layer depth (from which the pyramid reference comes from).
So far this architecture has been the best performing one on
several TC tasks.

E. Vilar / Junior Management Science 4(1) (2019) 35-6244

Figure 10: a) represents a two-layer neural network. b) is the same network with a dropout deactivating two neurons; Source:
Author’s own representation

The architecture of CNN is similar to the MLP model in-
troduced in section 2.2. The difference lies in the addition
of a convolutional layer and a pooling layer represented in
Figure 11.

2.4. Convolutional layer
The convolutional layer is present to extract from the in-

put the most salient information - also called feature (more
discussion about it in paragraph 3.3) - around a particular
window of h words referred as the filter11 in (Kim, 2014).
For a filter of size 2 and the sentence “we unlock the potential
of the modern workforce”12, the convolutional layer extracts
the features from “we unlock”, then “unlock the”, then “the
potential” and so forth. Similarly, a window of size 3 on the
same sentence extracts features in “we unlock the”, “unlock
the potential”, “the potential of” etc. For each filter, a feature
map is created that, from each extraction, stores the different
features.

Formally, the layer receives an input vector s ∈ Rs con-
structed from a sentence for instance. A dot product is per-
formed between a vector of weights w ∈ Rw and each w-
gram13 in s resulting in a new set of features e = [e1...en].
The value of n will change depending on the dimension of
s and w. If s≥w then n=s-m+1 (narrow convolution), else
n= s+m−1 (wide convolution) with all the ei = 0 for i > s.

In the model presented by Kim, a multichannel architec-
ture has been designed - that is a single layer that applies

11The filter has the goal to capture the context
12Sentence from www.logmeininc.com/
13“we unlock” would be a 2-gram in the sentence “we unlock the potential

of the modern workforce”. “we unlock the potential” would be a 4-gram.

multiple filters with different sizes on the input and stores
the features. Kalchbrenner et al. (2014) later added multiple
convolutional layers in their model.

2.4.1. Pooling layer
After the convolutional layer, a set of features is stored

for each filter in the filter map. The pooling layer will simply
extract the most important feature in each filter map with a
function such as max(x) called 1-max pooling. This is per-
formed to reduce the size of the output, reducing thus the
computation power required. In addition, as it reduces the
number of parameters θ (w is included in θ), it reduces the
risk of overfitting. Kalchbrenner et al. (2014) replaced the
1-max pooling layer by a dynamic k-max pooling layer in
charge of extracting the k most important features from the
different feature maps. It is called dynamic as the value of
k varies in function of the number of the current layer l, the
total number of layers L, the dimension of the input s and
klast the number of features that are extracted from the last
convolution:

kl = max(klast ;
L − l

L
s)

Several methods of pooling exist also using the average
or the summation of the features in e, but max() is the most
widely used.

2.5. Recurrent Neural Network
While basic feed-forward neural networks are not able

to take into account the word order, we have seen that, by
adding a convolutional layer to the architecture, they become

E. Vilar / Junior Management Science 4(1) (2019) 35-62 45

Figure 11: Illustration of a convolution and a 1-max pooling layer. Each word in the sentence “we unlock the potential of the
modern workforce” is represented by a vector of dimension 7. In green, a filter of size 1 is applied, in blue a filter of size 2,
in red a filter of size 3 and in yellow a filter of size 4. For each filter, the result is a filter map. For each filter map, a 1-max
pooling operation is applied. As 4 different filters were used, the output is of size 4 since only one feature is extracted from
the 1-max pooling layer; Source: Author’s own representation

capable of taking into account the context of a word. How-
ever, they are not able to take into account the full context
as filter sizes are set as hyperparameters. Also, the size of
the input vector has to be fixed and therefore during the pre-
processing of the data a padding operation - i.e., setting all
the input vectors to the same size - must be performed. It is
usually done by setting the vector size as big as the longest
input in the data set.

Recurrent Neural Network (Elman, 1990), shown in Fig-
ure 12, have been particularly suited to work with textual
data (Mikolov et al., 2010; Mikolov et al., 2011) because they
allow processing variable-length inputs. They do that by be-
ing recurrent as they perform the same task for every element
of a sequence. The output is then dependent on the previous
computation. Compared to MLPs or CNNs, RNNs have an
additional component - a hidden state vector - that memo-
rises the previous information. Using the same sentence “we
unlock the potential of the modern workforce”, the model
first processes the word “we”, then the word “unlock” taking
into account the computation performed for “we”. Then, it
processes the word “of” taking into account the computation
performed for the word “unlock” which was computed using
the computation for the word “we”. The algorithm goes one
until the end of the sentence. The output includes, there-
fore, all the computation performed for every single word in
the sentence. We understand therefore, why RNNs have first
been used for language modelling (Martens, 2011; Mikolov
et al., 2010, Mikolov et al., 2010): if the output of the com-
putation is a conditional probability based on the previous
words, they can thus predict the next word (Sundermeyer
et al., 2014). Similarly, for TC, after each word the condi-

tional probability of the sentence being in a class category
is updated until the end of the sentence. The output repre-
sents the probability of the whole sentence being classified in
a certain category based on all the words in it.

Formally, for an input vector x = [x1, ...x input] ∈ Rinput , a
scalar v1 is formed by concatenating the vector representing
a word in x, and s0 is the hidden state at iteration 0. Then
for i starting at 114

vi = concatenate(x i) = [x1; ...; x input]

si = f (viW + si−1V)
yi = g(SiV)

Where W and V are weights matrices, fan activation func-
tion and g another function that results in a probability dis-
tribution y = [y1, . . . yn]. In their original paper, Mikolov et
al. used a sigmoid function for f and a softmax for g. For
classification tasks, the intermediate values of yi are often
ignored and only the final one, xn, is used as it represents
the probability of the whole sentence being in a certain class.
From the notation above we can observe the recursive nature
of the neural network. If we model the hidden state at the
3rd iteration, the equation would be:

s3 = f (v3W + s2V)
= f (v3W + f (v2W + s1V)V)
= f (v3W + f (v2W + f (v1W + s0V)V)V)

14Please note that I use the notion [a, . . . , b] to define a set and [a; . . . ; b]
for the concatenation operation

E. Vilar / Junior Management Science 4(1) (2019) 35-6246

Figure 12: Representation of a Recurrent Neural Network (RNN) with an input vector of dimension 3; Source: Author’s own
representation

As the process is iterative, we understand how the size
of the input can be flexible. Conceptually, the RNN is very
similar to an MLP, however, the number of hidden layers is
the same as the dimension of the input. Therefore, a layer is
“created” for each word that is present in the sentence that
we want to classify.

This structure also has some drawbacks. Indeed, due to
their recursive nature, RNNs are often difficult to train as they
can become very deep neural networks. As a consequence,
they often face the problem of vanishing gradient explained
in paragraph 2.2.3.4. Also, when it comes to language mod-
elling or classification tasks, sometimes a big gap between
relevant information is found. Indeed, it can be that rele-
vant words are at the beginning and the end of the sentence.
Therefore, it would be hard for the last iterations to capture
the relevance of the first word as it is “drawn” by all the it-
erations that have been previously performed (Olah, 2017).
For these reasons, several improvements in their architecture
have been made to tackle classification tasks. The most com-
monly used are Long Short-Time Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) and its variant Gated Recurrent
Unit (GRU)(Cho et al., 2014).

2.5.1. Long Short-Time Memory
Simple RNNs introduced the hidden state layer to memo-

rise information. LSTM has an additional variable that tracks
the value of the gradients - the memory cell - and three addi-
tional layers to monitor and control the memorising of infor-
mation commonly named input gate, forget gate and output
gate. The different gates can be thought as neurons as in-
troduced in paragraph 2.2. In LSTMs, the hidden state layer
and the output are the same and therefore yi = si .

Conceptually, the memory cell is an object that is go-
ing to be updated during the whole iterative process. For
each iteration, the memory cell goes through the output gate
which gives the final output yi = si . How much information
comes from the previous iteration that must be forgotten in
the memory cell is monitored by the forget gate. Similarly
how much of the new information from the current iteration
should be added to the memory cell is monitored by the input
gate.

Formally, we define i, f o, o, n ∈ Rdims vectors referred as
input gate, forget gate and output gate and new candidate
respectively. Also are defined c = [c1, ...c2∗dims

the memory
cell and c j the memory components. Then:

ni = tanh(Wn[ci−1, yi−1; x i]) (1)

f oi = σ(Wf o[ci−1, yi−1; x i]) (2)

ii = σ(Wi[ci−1, yi−1; x i])
ci = f oi ∗ ci−1 + ni ∗ ii (3)

oi = σ(Wo[ci , yi−1; x i]) (4)

yi = tanh(ci) ∗ oi (5)

First, the new candidate (1) is computed through a tanh()
function which represents the new information coming from
the new word x i . The tanh() function is applied to make sure
that the values are included in the range [−1 : 1]. Then, the
forget gate (2) and the input gate (2’) are computed simul-
taneously through a sigmoid function σ. This step, thanks to
the sigmoid function, tells that value close to 0 must be for-
gotten and values close to 1 must be saved. From there, the
memory components c j (3) can be computed from the new
candidate, the input gate and the forget gate again with a
sigmoid function. The output gate (4) is computed from the
new memory component c j . Finally, the output yi (5) is com-
puted from the dot product between the tanh of the memory
component and the output gate. yn therefore represents the
final probability distribution over the different classification
categories.

2.5.2. GRU
The GRU architecture is a simplification of the classic

LSTM model but has shown to be competitive for TC tasks
(Berger, 2014). Like normal RNNs, GRUs use a hidden state
layer but have an update gate and a reset gate.

Mathematically, we define u, r, n ∈ Rdims , vector referred
as update gate, reset gate and new candidate respectively,
then:

E. Vilar / Junior Management Science 4(1) (2019) 35-62 47

ui = σ(Wu[yi−1; x i])
ri = σ(Wr[ci−1, yi−1; x i])

ni = tanh(Wn[yi−1 × ri; x i])
yi = (1− ui)× yi−1 + ui × ni

Similar to the LSTM architecture, the gates monitor the
quantity of new information that should be added at each it-
eration. The output is simply an interpolation between the
previous iteration - controlled by the update gate - and the
new iteration-controlled by the reset gate through the com-
putation of the new candidate.

Even if LSTMs, GRUs, and variants are better suited for
language modelling, they have been able to compete against
CNNs for TC tasks (Ding et al., 2018; Lee and Dernoncourt,
2016; Liu et al., 2016; Zhou et al., 2016a). Recently, Yu
et al. (2018) successfully mimicked skimming, re-reading
and skipping techniques performed by humans during TC
tasks with an LSTM design. They achieved that by adding
a cost function that is minimised during the whole process,
providing a better accuracy and higher efficiency than previ-
ous approaches. Also, Ma et al. (2018) provide an extension
of LSTM that has a separate output gate that incorporates the
explicit knowledge such as common sense facts for accom-
plishing a specific task. The architecture achieved promising
results.

2.6. Comparison
We have seen that CNNs are efficient machines in extract-

ing local features around words, but weak at deriving fea-
tures from sequential treatments because of their rigid struc-
ture. On the other hand, RNNs are effective at learning fea-
tures from sequential correlations, but unable to do it in a
parallel way (Zhou et al., 2015b). The two methods seem
complementary and in (Yin et al., 2017) the authors point
out that which architecture performs better depends on “how
important it is to understand the whole sequence”. Indeed,
they found that RNNs are not particularly well suited when
critical information has to be identified in a sentence to take
a classification decision. It includes identifying a particular
word to determine the topic or the sentiment of the sentence.
They also note that CNNs and GRUs are comparable when
sentences are small (<10), but GRU becomes better when
the sentences become longer. Finally, according to Baidu Re-
search DeepBench benchmark15, CNNs are approximately 5x
faster to train than RNNs. The iterative nature of RNNs may
explain this result.

As it is not clear which one performs better, Zhou et al.,
2015b developed a model combining a convolutional layer
and an LSTM one. Their model has been able to outperform
both CNNs and LSTMs based models. Xiao and Cho (2016)

15https://github.com/baidu-research/DeepBench#results The website
compares different hardware components for data science tasks including
training RNNs and CNNs.

also developed a hybrid model made out of a recurrent layer
(LSTM) and several convolutional layers. However, the input
of their model is not working at word level but at character
level. Their model has not been able to outperform either
simple CNNs or RNNs model on all common classification
benchmarks as their results were highly dependent on the
data set.

In this section, the classic methodology of solving text
classification problems using machine learning has been in-
troduced. Then, the main components of neural networks
namely the neurons, the parameters, activation functions and
output layer have been described. From there, an explana-
tion of the training procedure of neural network by initial-
ising the parameters and using a loss function to minimise
through a training algorithm has been provided. Finally, reg-
ularisation techniques to improve the generalisation power
of the neural networks were presented.

Building on the previous explanations, the functioning of
CNNs as powerful tools to learn local features thanks to a
convolutional layer and a pooling layer has been highlighted.
Also, the ability of RNNs to learn sequential features has been
explained, and a comparison of both models has been pro-
vided together with their most up-to-date applications.

The next section is dedicated to explaining how to convert
textual information in a format suitable to be fed in the neural
networks described.

3. Document Representation

“Translation is not original creation - that is what
one must remember. In translation, some loss is
inevitable” Joseph Brodsky

As computers work with binary information, they are not
able to directly interpret a human language. Consequently,
the second challenge of TC is to determine the best represen-
tation of the input for the classifier to extract the syntactic
structure and semantics of texts. Indeed, the effectiveness
of most classifiers is heavily dependent on the choice of the
representation of the data (Bengio et al., 2013; Wolfram and
Zhang, 2008). This task is often referred as learning repre-
sentation (or document indexing).

Several approaches have been developed and are based
on the idea that a document can be described based on a
set of the words contained in it commonly called the set-of-
words or the bag-of-words approach (Apté et al., 1994; Fuhr
et al., 1991; Lewis, 1992; Tzeras and Hartmann, 1993). Fur-
thermore, a word has been proved to be the best unit for text
representation (Song et al., 2005) despite promising recent
results of representations built at character level (Conneau
et al., 2016). However, not all words have the same represen-
tative value. Indeed, words such as “and” or “or” would not
provide the same information as “music” or “image” about
the topic of a document. A solution has therefore been to
develop a vector representation of the document where the
“importance” of each word is stored. Determining such im-
portance has been a highly investigated field of NLP and will

E. Vilar / Junior Management Science 4(1) (2019) 35-6248

be discussed in 3.1. In the past decade, various methods have
been approached and the currently predominant one is the
vector space model (VSM) introduced by Salton et al. (1975).

3.1. The vector space model
In the vector space model, documents are represented as

a vector where each dimension represents a separate term
(i.e., word), and weights are ranging between [0, 1]. 0 is
used to express the absence of a term in the document and
all value bigger aim to represent the importance of the word
in the document.

For D = {d1..., dn} a set of documents, we define L =
{l1..., lm} being the dictionary (or lexicon), i.e., the set of all
different terms occurring in D. Then we define, a document
vector as di = 〈w1i ..., wni〉 with wki representing the weight
of the kth term in di . Given the vector documents for two
documents, it is then possible to determine the similarity -
product of vector or inverse function of the angle between
the two vectors - between them (Salton et al., 1975). Also,
to give all the documents the same importance, each vector
document is normalized to have lengths of one.

Encoding the vectors, i.e., determine the weight wi of
a word li in a document d j has been subjects to many dis-
cussions (Baeza-Yates and Ribeiro-Neto, 1999; Gövert et al.,
1999), but a common approach has been to use the tfidf func-
tion introduced in (Salton & Buckley, 1988):

wi(d j , li) =
t f (di , li)log(N

nt
Ç

∑m
j=1 t f (di , li)2(log(N

nt
))2

With N being the number of documents in D, nt the num-
ber of documents in D that have an occurrence of l and
t f (d, l) the number of time l appears in d. With such a
method, deriving the similarity between two documents d1
and d2 becomes handy has it can be represented by the Eu-
clidian distance between the two document vectors d1 and
d2.

However, the drawback is the high dimensionality of the
representation. Indeed, for a set D of size N with M unique
words in L, the matrix representation is of size NxM whose
rows are words and columns are documents (Sánchez et al.,
2008). To overcome this issue, some pre-processing can be
done on the data which is discussed in the next paragraph.

3.2. Tokenization, filtering and stemming
As exposed before, the most common unit in text clas-

sification task is the word. Therefore for each document
d, a tokenization is required, i.e removing all punctuations
marks and replacing non-text characters by single white
spaces (Murty et al., 2011). It has been highlighted that by
representing the set of documents on a VSM, we end up with
a representation that has a high dimensionality. To reduce
it, the first method is to diminish the size of the lexicon L.
This can be done by filtering, i.e., removing words from the

lexicon. Frakes (1992) point out that words that appear re-
ally often bear no particular statistical relevance and can be
removed. Also, words such as prepositions or articles do not
have content information. In addition, stemming can be per-
formed on the data which consists of grouping words with
the same roots and replacing it with the most basic form or
stem. It is indeed assumed that words with a common stem
will usually have similar meanings (Porter, 1980). There-
fore plural forms from nouns or the “ing” from verbs will
be removed and the dictionary will contain a list of unique
stems.

3.3. Distributed representation of words
Although pre-processing techniques have been able to

reduce the dimensionality of the document representation
efficiently, the modelling presented earlier has other draw-
backs. They include not being able to represent the dis-
tance between individuals terms (Kusner et al., 2015) that
means it does not capture sense about the semantics of the
words. Also, the high dimensionality is often not suitable for
computing document distance as they produce matrixes that
are almost orthogonal (also called diagonal dominance16)
(Greene and Cunningham, 2006). Finally, word order is dis-
regarded when constructing such a representation. Some
studies have been trying to solve this issue producing a more
coherent approach, yet without improving the performance
of the downstream classification task. (Blei et al., 2003;
Deerwester et al., 1990; Robertson and Walker, 1994).

A breakthrough in document representation occurred
when researchers leveraged the distributional hypothesis
that states that words that are used and occur in the same
contexts tend to purport similar meanings (Harris, 1981).
Additionally, the pioneering work of Hinton et al. (1986) on
distributed representations contributed to improvement of
document representation: rather than representing a word
with a single high dimensionality vector, it can be repre-
sented as a combination of low dimensional vectors. Each
vector is used to represent a feature (such as the tfidf of a
word, Chi-Squared, Information Gain (Debole and Sebas-
tiani, 2003)) and the number of features is smaller than the
size of the lexicon (reducing thus the dimensionality). Also,
relevant features can be selected from a set of all the features
(feature selection) and used for the representation. Alterna-
tively, a machine learning approach can be implemented to
pick and transform the features (feature extraction) into a
lower dimension. This distributed representation of a word
is called word embedding. A word is thus represented as a
word vector with each dimension representing a feature.

Formally, for each word l in L, a set of linguistic features
[e1...ek] is extracted or constructed. Each ei is encoded in
a vector v(ei). l is then represented by a combination of
each vector (summation, concatenation or both). The model
is therefore made out of dense and low-dimensional vectors

16A square matrix A is called diagonally dominant if |Aii | ≥
∑

i 6= j |Ai j | for
all i.

E. Vilar / Junior Management Science 4(1) (2019) 35-62 49

Figure 13: Feature filter model; Source: (John et al., 1994)

Figure 14: Feature wrapper model; Source: (John et al., 1994)

which lowers the dimension of the representation of the doc-
ument significantly. These vectors are usually the input of
the classifier mentioned in paragraph 2.2.1.

3.4. Feature selection
In the previous section, the notion of feature for words

has been introduced. A plethora a features exists concern-
ing words and to generate the representation of a document,
some criteria can be used to filter out if a feature is relevant17

for prediction purpose or not. Feature selections methods are
categorized in three different types: filter, wrapper, and em-
bedded methods.

3.4.1. Filter
Filter method (illustration of process in Figure 13) refers

to algorithms that treat a possible set of features and rank
them independently of the classifier. The top-ranked features
are selected (Forman, 2003). Examples of such algorithm
include some built on similarity measures such as Pearson’s
correlation coefficient (Saeys et al., 2008), statistical meth-
ods and heuristic search or ensemble learning (Kira and Ren-
dell, 1992) . These methods have the advantage of being
fast and thus scalable. However, they do not yield particu-
larly accurate results as they increase bias and are exposed
to the selection of redundant features (Jashki et al., 2009).

3.4.2. Wrapper
Wrapper methods (illustration of the process in Figure

14), on the other hand, test every feature in the context of
the classifier (Kohavi and John, 1997). They usually involve
automated search techniques such as the greedy search strat-
egy (Guyon and Elisseeff, 2003). These methods are more
accurate than filter methods but come with high-computing
costs.

17Discussions about the meaning of relevance and its definition can be
found in (Sag et al., 2002)

3.4.3. Embedded
Finally, embedded methods perform feature selection

during the execution of the classifier (being therefore em-
bedded in the classifier). Therefore, the feature selection
and the training methods of the classifier are not separated
steps. Conventional methods may use decision three algo-
rithm (Genuer et al., 2010) or multinomial logistic regression
(Cawley et al., 2007). These methods are similar to wrappers
but are specific to classifiers, which makes them computa-
tionally less expensive as they are optimized for them.

3.5. Feature extraction
As mentioned, a board range of features exists and some

that humans find useful will not necessarily be useful for the
models and vice-versa. Therefore, all the features known
based on basic statistics about a document can be used, re-
ferred as count based methods. Alternatively, machine learn-
ing techniques such as neural networks can be used to let the
model determine which features are important or not.

3.5.1. Count based methods
In feature extraction, the feature space - set of all pos-

sible features - is converted to another space with a lower
dimension keeping the most informative and discriminative
features (Gomez et al., 2012). Methods include Principal
Components Analysis (PCA) and Latent Semantic Analysis
(LSA).

PCA is a statistical method that transforms the set of fea-
tures (possibly correlated) into new features that are uncor-
related called principal components using a linear transfor-
mation. Like in feature selection, the best new features are
then selected.

LSA (Deerwester et al., 1990) - also referred as Latent
Semantic Indexing - is a technique developed to address
the problems deriving from the use of synonymous, near-
synonymous, and polysemous words as features of document
representations (Sebastiani, 2002). The process involves

E. Vilar / Junior Management Science 4(1) (2019) 35-6250

identifying the relevant words - using, for example, the tfidf
of words - and then constructs a term-document matrix as
described in paragraph 3.1 . Then the matrix is decomposed
using Singular Value Decomposition - a technique closely
related to PCA. The result is a set of lower dimension fea-
tures vectors that were constructed looking at patterns of
word usage in the documents. In essence, the features are
usually hardly interpretable as there are meant to capture
latent (hidden) relationship between words. LSA provided
a significant step forward in document representation as it
accounted for semantic characteristics of texts, synonymy of
words and partially polysemy (Deerwester et al., 1990).
Glove: the state-of-the-art of count-based model
In the paper introduced by Pennington et al. (2014), the au-
thors argue that the count of words in a document carries
meaningful information, but also the count of a word wi in
the context of another word w j called co-occurrence proba-
bility. Following their example, for the context of steam and
ice, it is expected that the ratio of the probability of observ-
ing solid in the context of ice and the probability of observ-
ing solid in the context of steam - p(solid|ice)

p(solid|steam) - to be high.
Likewise, this ratio for the word gas in the same contexts is
expected to be small. The model therefore constructs a ma-
trix X i j based on word-context co-occurrences and factorise
it to obtain the vectors. To complete the latter step, the au-
thors use a weighted least squares regression model that is
able to encode the information available in the probability of
co-occurrence. When constructing the word vectors, the ob-
jective is to minimize the difference between the product of
the two word vectors wi and w j (word and context), and the
logarithm of the probability of co-occurrence (plus a bias for
each word) which is expressed as follow:

J =
V
∑

i, j=1

f (X i, j)(w
T
i Wj + bi + b j − log(X i j))

2

with f (X i j) =

¨

(
X i j

xmax)
3/4 if X i j < Xmax

1 otherwise

3.5.2. Neural networks for words embedding
Methods to represent words explained so far are referred

as count-based methods in (Baroni et al., 2014) as values in
vectors are derived from co-occurrence counts. The authors
point out the weaknesses of these models namely problem
of scalability, poor performance on word analogy evaluation
and task-dependent (except for GloVe that performed pretty
well on the latter). To deal with these issues, new models
have appeared referred as predictive-based methods. This
new generation of models where first exposed in 1981 (Hin-
ton et al., 1986), but have demonstrated their utility in (Col-
lobert and Weston, 2008) building up on previous research
on deep neural network (Bengio et al., 2003) challenging
the previous state-of-the-art methods. Rather than count-
ing words co-occurrence, generating the vectors and reduc-

ing the dimensionality, these methods try to directly gener-
ate the vectors by predicting a word from its neighbours or
vice versa. Thus, as similar words occur in similar contexts,
the system assigns similar vectors to similar words (Baroni
et al., 2014). The comparisons between count-based and
predictive-based methods have demonstrated the superior-
ity of the latter in lexical semantics tasks including semantic
relatedness, synonym detection and analogy, (Cambria et al.,
2017; Socher et al., 2011; Turney and Pantel, 2010; Weston
et al., 2010), but have failed to leverage statistical informa-
tion from documents as they are based on context windows
of a few words. It must however be pointed out that no meth-
ods of adequately evaluating the quality of vector represen-
tations have been developed. Indeed, so far they have been
evaluated on word similarity or analogy metrics, but these
only correlate weakly with downstream tasks performance
such as TC (Tsvetkov et al., 2015).

The next section is dedicated to presenting the most fa-
mous predictive-based methods using neural networks.
Word2Vec
In the paper (Mikolov et al., 2013), the authors offer two
models. One model predicts a word given a context (Contin-
uous Bag-of-Words model) and the other one given a context,
predicts a word (Skip-gram model). Using these models with
such objectives will not result in word vectors per se in the
output layer. Indeed, the word vectors will be present in the
different weight matrices of the models. The intuition be-
hind it was previously expressed: if two words are similar,
they should appear in a similar context and thus their repre-
sentation should be similar.

The results of the learned embedding were a big step for-
ward in the vector representation of words. Indeed, they
were not only capable of training a huge list of words (1.6 bil-
lion) in less than one day, but also captured semantic mean-
ing of words. It is illustrated by an example that has become
famous in the NLP community: having the vector for the
words queen, women, men and king, they have performed
the following calculation successfully:

queen−women+men= king

In the same vein, they were capable of capturing the seman-
tic behind the sentence “France is to Paris as Germany is to
Berlin”.

Continuous Bag-of-Words model
To achieve this amazing result, they leverage a modification
of the MLP presented in 2.2 as pictured in Figure 15. They
used the same structure with an input layer that represents
one-hot-encoded18 words, a single hidden layer and an out-
put layer with the goal to classify. They looked at four words
and given these words try to find a word that would fit in the
middle of these four words which can be defined as a classi-
fication problem. With this architecture, they therefore end

18A one-hot-encoded vector consists of 0s in each dimension with the ex-
ception of a 1 in a dimension used uniquely to identify the word by its posi-
tion in the sentence.

E. Vilar / Junior Management Science 4(1) (2019) 35-62 51

Figure 15: x1, x2, x3 is the input layer made out of one-hot-encoded vectors. The hidden layer is represented by neurons
and the output layer is y1, y2, y3. This representation would fit a sentence made out of three words. Source: Author’s own
representation

up with two weights matrices W 1 (from the input layer to
hidden layer) and W 2 (from the hidden layer to the output
layer) that form the parameters θ . The output layer, thanks
to a softmax function, represents a multinomial distribution
of all words given a context19. We understand that the goal is
to maximize the probability of a word given a context, which
consists of minimizing the opposite probability:

Loss f unct ion= −log(p(word|wordscontex t))

The log appears because we are using the softmax func-
tion to transform the last layer in a probability distribution.

With this setting, the actual output of interest are the ma-
trices W 1 and W 2. Indeed, after training, the matrix W 1 con-
tains in its lines vectors that, for a word, represents the con-
text. On the other hand, W 2 has a vector representation of a
word in its columns, which is precisely what we are looking
for (Rong, 2014).

Skip-Gram model
The Skip-Gram model is very similar to the CBOW model.
It is just doing the opposite: given a word, predict the con-
text. Indeed, for a word given, it will pick another word and
estimate the probability of that word being around20 it. Con-
sequently, the rows of W 1 will now represent the vector rep-
resentation for a word and the column of W 2 will represent
context vectors.

From the two models, the authors have been able to cre-
ate vectors that were capable of representing words better

19The context can be made out of one word or several words preceding or
following the word of interest

20“around” is predefined and can be for instance 2 words before and 2
words after. The authors of the model found that increasing the size of the
context resulted in better quality of word vectors.

syntactically (with the CBOW model) and semantically (with
the Skip-gram model) than previous neural models (Mikolov
et al., 2009; Mikolov et al., 2010). However, the models have
limitations. The first one is that for one word, they assign
one vector and therefore they are unable to represent poly-
semy words. To (partially) solve the issue, Upadhyay et al.
(2017) developed an algorithm that learns word representa-
tion jointly across language. The intuition behind it is that a
polysemy word in language could be translated into distinc-
tive words in another language. Using the authors’ example,
the word bank in English which has several meanings can be
translated to banque or banc in French which capture two
different meanings with two different words. Therefore, by
learning using multiple languages, the algorithm can iden-
tify which sense to use. The second caveat is that the mean-
ing of multi-word expressions21 is not captured. Indeed, ex-
pressions such as “in short” or “Los Angeles” are poorly en-
coded as they will be represented in two vectors. Some meth-
ods have been developed to capture phrasemes without how-
ever improving the performance of downstream tasks such as
text classifications (Hashimoto and Tsuruoka, 2016; Yu and
Dredze, 2015). Finally, training the CBOW or Skip-gram is
computationally expensive on large datasets. Thus, rather
than generating an embedding for every task performed, it is
common practice to use pre-trained vectors22. However, it is
often the case that some words in the datasets are not part
of the pre-trained vectors. These words are referred in the
literature as out-of-vocabulary words (OOV). Being able to
assign a proper representation to the input, including OOV

21Multiword expressions are also called phraseme. An accurate discussion
about the typology of multiword expression is present in (Sag et al., 2002)

22Mikolov et al., after developing their model, published a set of pre-
trained vectors on Google News with 3 million words and phrases.

E. Vilar / Junior Management Science 4(1) (2019) 35-6252

words, can alter the performance of the downstream task by
up to 6% over random initialization (Dhingra et al., 2017).
One way of dealing with OOV words is to replace them with
a unique token, UNK (Chen et al., 2016; Shen et al., 2017),
and use it for training. Another method is to assign each OOV
word a randomly generated vector at test time (Kim, 2014) or
a unique randomly generated vector (Dhingra et al., 2017).
A recently suggested method in (Dong and Huang, 2018) is
to combine pre-trained vectors and vectors generated during
training. When a word is present in the pre-trained vectors
and the training set, then a new vector is constructed concate-
nating both vectors. If one of them is missing, it is replaced
by a null vector.

Proposal
I would like to propose a variation of the method developed
in (Dong and Huang, 2018). Rather than pre-trained or em-
bedded vectors concatenating with a null one, I suggest to
concatenate them with a unique vector sampled from a distri-
bution such as the vector has the same variance as the other
ones. The idea of generating vectors from such a distribu-
tion is not new as it was already expressed in (Kim, 2014).
However, I combine both approaches with a concatenation
operation as shown in Figure 16.
FastText
As expressed earlier, training word vectors can be com-
putably expensive to learn and dealing with OOV words can
be challenging. Bojanowski et al. (2016) offer an extension
of Word2Vec named FastText to learn a vector representa-
tion of word quickly and to (partially) deal with OOV words.
Rather than learning vector representation of words, they
learn representations of character n-grams. Then a word is
simply the sum of this character n-gram23. For instance, for
the word “hello” , extracting a character 3-gram, will give
the vector representations of: “he”, “hel”,”ell”,”llo”,”lo”. This
allows leveraging the morphology of words and therefore
reducing the number of necessary computations. Also, when
dealing with OOV words, it is likely that new words can be
expressed as a combination of the learned character n-gram.

While Section 1 described various neural networks mod-
els, Section 2 of this work has been first dedicated to ex-
plaining the rationale behind the conversion of words into
vectors as inputs for the models. From the simple bag-of-
words method that uses a high dimensional representation,
the notion of feature and tricks to diminish the size of that
representation have been introduced. Furthermore, methods
to select features but also techniques that extract them were
explained. For the latter, the dichotomy that exists between
count-based solutions - with its best representative GloVe -
and prediction-based solutions such as Word2Vec and Fast-
Text has been presented. Finally, a solution to deal with
words that are not present in pre-trained vectors data set has
been proposed.

As the state-of-the-art of neural networks models for TC
and word embedding methods have been identified, the next

23In their study, they extract all the n-gram with n ranging from 3 to 6.

section describes the benchmark used to evaluate them on
the LogMeIn data. Also I introduce another dataset to assess
the proposal.

4. Experiment

“Experience is simply the name we give our mis-
takes” Oscar Wilde

To evaluate the state-of-the-art classifiers on the data pro-
vided by LogMeIn, the CNN model as described in (Kim,
2014) and a hybrid CNN+LSTM model as described in (Zhou
et al., 2015b) were implemented. Also, in order to evaluate
the proposal, the implementation was tested on two datasets:
the LogMeIn one and the TREC (Li and Roth, 2006) dataset.

Moreover, I test different techniques of embedding, a
random initialization with different dimensions, using pre-
trained vectors generated by Word2Vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014), FastText (Bojanowski
et al., 2016), FastText with subwords information (Mikolov
et al., 2017), the method introduced in (Dong and Huang,
2018) and my proposal.

4.1. Data
The LogMeIn dataset is made out of customer reviews

based on the product GoToMeeting - an online meeting and
video conferencing software. It has been annotated such as
reviews are classified under the categories “screen”, “video”,
or “audio”. Unfortunately, reviews may appear in several cat-
egories in the original dataset. Therefore the dataset is used
for a binary classification problem whether the review is un-
der the category ”audio” or not. Also, to avoid bias, an under-
sampling procedure has been performed on the “non-audio”
category to get a 1:1 ratio of “audio” and “non-audio” entries.
It consisted of randomly dropping data points until parity was
reached.

The TRAC dataset is a common benchmark used for
multi-topic categorisation. It is made out of a question
that refers to a person (884 samples), a location (616),
numeric information (664), an abbreviation (62), and an
entity (937). The task is to classify a question under one of
these categories. Statistics for both datasets are available in
Table 3.

4.2. Models
The CNN is the same as described in Section 2.3. As ex-

plained, a CNN takes a fixed length of input; therefore each
sentence is padded to the maximum sample length. It is done
by adding symbols for sentences that are shorter than the
maximum sentence length in the training set and taking off
words for samples that are longer in the test set. The window
sizes of the filters of the convolutional layer are 3, 4 and 5
words with 100 feature maps each which are combined with
a ReLu non-linearity. A 1-max pooling operation is performed
on the output of the filters and then a 0.5 dropout is applied.
The batch size is 32 and the loss function is the softmax cross
entropy function shown below:

E. Vilar / Junior Management Science 4(1) (2019) 35-62 53

Figure 16: Algorithm suggested to deal with OVV word, using the same notation as in (Dong and Huang, 2018); Source:
Author’s own representation

Table 3: Statistics about LogMeIn and TREC datasets Source: Data compiled by author

LogMeIn TREC

Total Samples 1137 4000
Train Samples 1023 3600
Test Samples 114 400
Number of categories 2 6
Average length of samples 16.975 10.1545
Median length of samples 10 10
Maximum length of samples 205 37
Total unique words 2786 6987

L(ĉ, c) = −log(
ec

∑C
i=1 e ĉ

The CNN+LSTM model is first made out of convolutional
layer that extracts higher-level sequences of word features.
It is the same convolutional layer as the simple CNN model.
Unlike in (Zhou et al., 2015a) a 1-max pooling operation is
kept after the convolutional layer. Then an LSTM capture
long-term dependencies over each window feature created
by the convolutional layer. After the LSTM, a 0.5 dropout is
applied just before the softmax cross entropy layer. The batch
size is also 32.

4.3. Word embedding
I test 8 forms of word embedding. First, I try two random

assignations of vectors to words from the uniform distribu-
tion U[-0.25,0.25]. The first set of vectors is of dimension
300 and the second of dimension 600. This is to check the
effect of the size of word embedding on the downstream clas-
sification task.

Also, a third embedding is generated from pre-trained
vectors with Word2Vec made available by Mikolov et al.
(2013). It includes a vocabulary of 3 million words and
phrases that were trained on about 100 billion words from a
Google News dataset. The vectors are of dimension 300.

The fourth embedding is generated from pre-trained vec-
tors with GloVe made available by Pennington et al. (2014).
They were trained on a Wikipedia and Giga word datasets24

and consist of 400’000 words. The vectors are of dimension
300.

The fifth and sixth embedding are generated from pre-
trained vectors with FastText (Bojanowski et al., 2016;
Mikolov et al., 2017). They consist of 1 million word vec-
tors trained on Wikipedia 201725, UMBC web base corpus26

and statmt.org news dataset27. One is trained with subword
information the other is not.

The sixth embedding method is the proposal of Dong and
Huang (2018) which consists of vectors of dimension 600
made out of the concatenation of Word2vec pre-trained vec-
tors and vectors trained directly on the database with the
CBOW algorithm. If a word is not present in either of the
two sources it is represented by a null vector of size 300. Fi-
nally, the last embedding is my proposal. It is the same as the
sixth except that vectors that are not found are represented
by a unique vector initialized from a uniform distribution U[-
0.25,0.25] of size 300.

The code was written in Python using TensorFlow28 and

24https://catalog.ldc.upenn.edu/LDC2012T21
25http://wiki.dbpedia.org/Datasets
26https://ebiquity.umbc.edu/resource/html/id/351
27http://www.statmt.org/
28https://github.com/tensorflow/tensorflow/releases/tag/v1.8.0

E. Vilar / Junior Management Science 4(1) (2019) 35-6254

the code of Jie Zhang available on GitHub29 as a basis for the
implementation of the CNN and CNN+LSTM. Also, the gen-
sim30 implementation of Word2Vec is used to generate the
word embedding of the TREC and LogMeIn dataset. The code
is available in Appendix 8.1, Appendix 8.2, and Appendix
8.3. Finally, the tests were performed on a Central Processor
Unit (CPU) Intel R© Core TM i7-7500U @ 2.70 GHz and 8GB
LPDDR3-1866Mhz RAM. As some randomness is part of each
model, they are tested 5 times. The average performance as
well as a 95% confidence interval is reported. The 16 mod-
els, their name, and characteristics are summarized in Table
4.

5. Results and Discussion

“I am just a child who has never grown up. I
still keep asking these ‘how’ and ‘why’ questions.
Occasionally, I find an answer” Stephen Hawking

The first part of this section presents the results necessary
to compare the effectiveness of the CNN and the CNN+LSTM
models. Then, the effects of the different word embedding
methods are presented and discussed.

5.1. CNN and CNN+LSTM
A first remark is that I was not able to achieve the same

results as (Kim, 2014) and (Zhou et al., 2015a) on the TREC
dataset. As pointed out in Wang et al., 2018), measures
can change depending on the pre-processing of the data. In
my experiment, short forms such as “I’m” or “He’ll” are split
in two distinctive words, uppercase characters are replaced
by lowercase ones and non-alphanumeric characters except
punctuation symbols were removed. Also, I do not use the
same hyperparameters and architecture. Indeed, when Kim
use ADADELTA (Zeiler, 2012) as the algorithm to update gra-
dients, I use ADAM (Kingma and Ba, 2015). Indeed, it was
shown in the aforementioned paper that both methods ef-
ficiently lower the cost of training on CNNs, but ADAM is
better at that task than ADADELTA, especially on deep neu-
ral networks. However, despite being more efficient, ADAM
and ADADELTA should converge toward the same local min-
imum which should therefore not change the performance
of the downstream task. Tests with an ADADELTA function
have been performed on the TREC dataset and the CNNFXT
model and no significant changes were perceived confirm-
ing the previous statement. Also, Kim uses 25 training cycle
(or epochs) whereas on my benchmark I only use 3. The
more epoch is used, the better trained the model is, however
the higher the risk of overfitting. I have personally chosen 3
epochs to run more tests in the benchmark. Indeed, multi-
plying the amount of epochs inevitably increases the training
time of each model. However, after testing on the CNNW2V

29https://github.com/jiegzhan
30https://radimrehurek.com/gensim/

model on the TREC dataset with 25 epochs, again no signif-
icant differences were observed as it appears that the model
plateaus at about 84% accuracy. Despite these differences, I
have not been able to identify other sources responsible for
the performances differences.

Similarly, the results of the CNN+LSTM models do not
replicate the ones from C. Zhou et al. The first difference is
the presence of the max pooling layer after the convolutional
layer. The authors argue that the operation breaks the se-
quence order as the selected features from the convolutional
layer are discontinuous. However, the role of the max-pool
is first reducing the computation for the next layer, but also
to extract the most salient features in the sample. A test has
been performed on the LSTMW2V model, but again no sig-
nificant changes in term of performance have been observed.

The number of epochs, however, affects much more the
LSTM models. Indeed, the results reported in Table 5 come
from a training procedure of 3 epochs, but by increasing it to
25, the accuracy for the model LSTMW2V jumped from 63%
and 77% to 86% and 97% on TREC and LogMeIn datasets
respectively31. To investigate it, I changed the gradient up-
dating algorithm of the CNN+LSTM models. In their initial
configuration (and the one tested in this work), the algorithm
used for the update of the gradient of the CNN+LSTM mod-
els is the RMSprop (Tieleman and Hinton, 2012). A test has
been performed using the ADAM algorithm with 3 epochs
on both datasets and results are conclusive achieving similar
results than with the RMSprop with 25 epochs. Therefore,
the first recommendation when using a CNN+LSTM model
is to use the ADAM algorithm as gradient update function. It
requires less training time while yielding better results than
RMSprop for the same number of epochs.

In the lights of the first conclusion, a second benchmark
has been performed using a CNN+LSTM with an ADAM gra-
dient update function and 3 epochs to compare the model di-
rectly with the simple CNN models. The results are reported
in Table 6.

Besides, for both configurations, I use filter sizes of 3, 4
and 5 on the convolutional layer. In their original paper, C.
Zhou et al. conclude that a filter of size 3 yields better re-
sults for the CNN+LSTM architecture. However, Kim reports
better results using filter size of 3, 4, 5 on a simple CNN one.
I find better results using filter size of 3, 4 and 5 on both
datasets with both configurations. As few data were collected
(5 per model), to investigate differences between CNN and
CNN+LSTM, I aggregate the measures of all CNN tests and
all CNN+LSTM tests. The mean and a 95% confidence inter-
val are reported in Table 7.

There are no statistical differences observed between the
two models on the dataset experimented. The CNN results
are similar in magnitude to the results in (Zhou et al., 2016b)
on the TRAC dataset, but no improvement is observed by
adding the LSTM layer to the architecture unlike in (Zhou
et al., 2015a). First, a better fine-tuning of the CNN+LSTM

31These figures might be inflated as I did not check whether an overfitting
problem was appearing or not.

E. Vilar / Junior Management Science 4(1) (2019) 35-62 55

Table 4: Summary of the different model tested and their features; Source: Data compiled by author

Name Model Dimension Embedding

CNN300 CNN 300 Random
CNN600 CNN 600 Random
CNNW2V CNN 300 Pre-trained Word2Vec (Mikolov et al., 2013)
CNNGVE CNN 300 Pre-trained GloVe (Pennington et al., 2014)
CNNFXT CNN 300 Pre-trained FastText (Bojanowski et al., 2016)
CNNFXT_SUB CNN 300 Pre-trained FastText (Mikolov et al., 2017)
CNNW2V600_NULL CNN 600 Word2Vec + pre-training on dataset (Dong and Huang, 2018)
CNNW2V600 CNN 600 Pre-trained Word2Vec + pre-training on dataset (proposal)
LSTM300 CNN+LSTM 300 Random
LSTM600 CNN+LSTM 600 Random
LSTMW2V CNN+LSTM 300 Pre-trained Word2Vec (Mikolov et al., 2013)
LSTMGVE CNN+LSTM 300 Pre-trained GloVe (Pennington et al., 2014)
LSTMFXT CNN+LSTM 300 Pre-trained FastText (Bojanowski et al., 2016)
LSTMFXT_SUB CNN+LSTM 300 Pre-trained FastText (Mikolov et al., 2017)
LSTMW2V600_NULL CNN+LSTM 600 Pre-trained Word2Vec + pre-training on dataset (Dong and Huang, 2018)
LSTMW2V600 CNN+LSTM 600 Pre-trained Word2Vec + pre-training on dataset (proposal)

Table 5: Classification accuracy of the different models on the LogMeIn and TREC datasets. The best result is in bold; the
second best is in italic. The 95% confidence interval is reported in parentheses. Here the CNN+LSTM models are trained with
RMSprop; Source: Data compiled by author

LogMeIn TREC

CNN300 0.9035 (± 0.0241) 0.7765 (± 0.0169)
CNN600 0.8614 (± 0.0190) 0.7810 (± 0.0107)
CNNW2V 0.9333 (± 0.0253) 0.8425 (± 0.0831)
CNNGVE 0.9123 (± 0.0108) 0.7730 (± 0.0162)
CNNFXT 0.9386 (± 0.0139) 0.8455 (± 0.0161)
CNNFXT_SUB 0.9193 (± 0.0385) 0.8300 (± 0.0121)
CNNW2V600_NULL 0.9351 (± 0.0268) 0.8445 (± 0.0176)
CNNW2V600 0.9273 (± 0.0268) 0.8165 (± 0.0099)
LSTM300 0.6069 (± 0.0478) 0.7000 (± 0.0438)
LSTM600 0.5825 (± 0.0321) 0.7005 (± 0.0231)
LSTMW2V 0.6316 (± 0.0311) 0.7745 (± 0.0348)
LSTMGVE 0.7175 (± 0.0419) 0.7380 (± 0.0185)
LSTMFXT 0.6070 (± 0.0575) 0.7550 (± 0.0360)
LSTMFXT_SUB 0.5316 (± 0.0476) 0.6835 (± 0.0176)
LSTMW2V600_NULL 0.6386 (± 0.0228) 0.7845 (± 0.0127)
LSTMW2V600 0.5912 (± 0.0275) 0.7535 (± 0.0261)

model is necessary. As pointed out in the previous paragraph,
LSTM based model are very sensitive to the number of epochs
and update algorithm function. Further investigations must
be performed on the CNN+LSTM model to identify the right
number of epochs, but also the ideal batch size. Indeed, a
test has been conducted with the LSTMW2V model with 6
epochs showing an accuracy of 84.25% on TREC, which is
higher than all other tests (Appendix 8.4).

In both models, the convolutional layer performs the
same task which explains the similarity of results, but the
addition of the LSTM layer requires further work to leverage
the memory cell capacity. Also, as pointed out in (Yin et al.,
2017), CNNs and RNNs are expected to yield comparable
results when sentences are short which is the case as shown

in Table 3. Finally, both algorithms perform better on Log-
MeIn than TREC, but tasks are also slightly different as one
is a binary classification and the other one is a 6 categories
classification task.

5.2. Effect of Word Embedding
Despite not being able to replicate other state-of-the-art

results, effects regarding the word embedding are captured
by both models by holding the rest of the parameters con-
stant. To capture only the effect of the word embedding
method, an aggregation has been made between results of
CNN and CNN+LSTM based models. Results on the LogMeIn
dataset is present in Figure 17 and results on TREC are avail-
able in Figure 18.

E. Vilar / Junior Management Science 4(1) (2019) 35-6256

Table 6: Classification accuracy of the different models on the LogMeIn and TREC datasets. The best result is in bold; the
second best is in italic. The 95% confidence interval is reported in parentheses. Here the CNN+LSTM models are trained with
ADAM; Source: Data compiled by author

LogMeIn TREC

CNN300 0.9035 (± 0.0241) 0.7765 (± 0.0169)
CNN600 0.8614 (± 0.0190) 0.7810 (± 0.0107)
CNNW2V 0.9333 (± 0.0253) 0.8425 (± 0.0831)
CNNGVE 0.9123 (± 0.0108) 0.7730 (± 0.0162)
CNNFXT 0.9386 (± 0.0139) 0.8455 (± 0.0161)
CNNFXT_SUB 0.9193 (± 0.0385) 0.8300 (± 0.0121)
CNNW2V600_NULL 0.9351 (± 0.0268) 0.8445 (± 0.0176)
CNNW2V600 0.9273 (± 0.0268) 0.8165 (± 0.0099)
LSTM300 0.87016 (± 0.0331) 0.7855 (± 0.0201)
LSTM600 0.89474 (± 0.0300) 0.7895 (± 0.0082)
LSTMW2V 0.8895 (± 0.0083) 0.835 (± 0.0271)
LSTMGVE 0.91924 (± 0.0162) 0.816 (± 0.0141)
LSTMFXT 0.90596 (± 0.0162) 0.8365 (± 0.0180)
LSTMFXT_SUB 0.91756 (± 0.0122) 0.8145 (± 0.233)
LSTMW2V600_NULL 0.91754 (± 0.0176) 0.825 (± 0.0258)
LSTMW2V600 0.91404 (± 0.0100) 0.833 (± 0.0220)

Table 7: Results of CNN and CNN+LSTM based models; Source: Data compiled by author

Models LogMeIn TREC

CNN 0.916348 (± 0.0116) 0.813688 (± 0.0116)
CNN+LSTM 0.90359 (± 0.0119) 0.816875 (± 0.0094)

First, it can be observed that, as expected, the effects of
the word embedding method are dependent on the dataset.
Indeed, as results are not necessarily conclusive on the Log-
MeIn data, they are on the TREC one. Here I assume two
effects must be taken into account. First, the larger the size
of the vocabulary (i.e., total unique words in Table 3), the
higher the model can leverage pre-trained vectors for similar
ratios of words found/total words. Also, the higher the noise
in the dataset, the higher will be the variance in performance
of the downstream model.

Furthermore, looking in Table 6, it is also striking that the
improvement in accuracy induced by the use of pre-trained
vectors is dependent on the downstream model used to tackle
the classification task. Indeed, compared to a random initial-
ization, using the pre-trained FastText vectors can improve
the accuracy by up to 10.2% using a CNN and 8.9% using
a CNN+LSTM. Also, the impact is even greater if the subse-
quent model is not ideally trained. Indeed, in Table 5, from
a random initialization of dimension 300 to the use of Dong
& Huang the accuracy is potentially jumping from 65.62% to
79.72%, a 14.1% gain. The figures found are higher than the
ones that in (Dhingra et al., 2017). As pre-trained vectors al-
ready carry information when fuelled to the subsequent clas-
sification model, they enhance the performance of the classi-
fier. However, the nature of the gain, whether linear or not,
has not, as far as I know, been investigated. It could be in-
vestigated by studying the relation between the number of
epochs and the relative gains by using pre-trained vectors.

My hypothesis is that the marginal gain of using pre-trained
vectors is diminishing as the number of epochs increases.

Second, simply doubling the dimension of the word em-
bedding does not change the performance of the classifica-
tion task with random initialization. However, doubling the
dimension, allows reducing the variance of downstream re-
sults as observed in Figure 18.

Third, using pre-trained vectors yields indeed better re-
sults over random initialization which can be observed on
the TREC results as well. As the matter of fact, except for
GloVe pre-trained vectors, all embedding methods give bet-
ter results than random initialization.

Fourth, using subword information from the pre-trained
vectors of FastText does not improve either the perfor-
mance. Further investigations using an architecture that
uses character-level information such as in (Xiao and Cho,
2016; Zhang et al., 2015) should be performed to investigate
whether these models can leverage these subword features
better. In addition, it can be observed that methods lever-
aging the CBOW algorithm such as Word2Vec and FastText
outperform GloVe. Looking at a 2D projections of the TREC
vocabulary generated from FastTtext pre-trained vectors us-
ing t-distributed stochastic neighbour embedding (T-SNE32)

32A technique used to reduce the dimensionality of the vectors while keep-
ing some features. The implementation has been done using the sckit-
learn library (http://scikit-learn.org/stable/index.html) and matplotlib
(https://matplotlib.org/)

E. Vilar / Junior Management Science 4(1) (2019) 35-62 57

Figure 17: 95% Confidence intervals of the results of the models on the LogMeIn dataset; Source: Author’s own representation

Figure 18: 95% Confidence intervals of the results of the models on the TREC dataset; Source: Author’s own representation

in Figure 19, we can observe that FastText vectors are bet-
ter at capturing semantic information as words with similar
meanings are clustered. However looking at the GloVe pro-
jections in Figure 20, we observe that fewer clusters appear
and that the projection is similar to a random initialization
with however increased variance. As a consequence, this
variance also spills over the variance of performance of the
models.

Finally, my proposal does not show a statistical difference
with Dong & Huang’s algorithm. As shown in Table 8, the
number of out-of-vocabulary words is relatively low and the
effectiveness of both methods is therefore hard to evaluate
as a few information is added by the algorithm.

Further tests on different datasets with a greater num-
ber of OOV words should be performed. Indeed, words
whose initialization is not random due to pre-training on the

dataset include “gotomeeting”, “gotowebinar” or “seminario”
which do not help much on determining whether the review
is audio or not (low representative value). Likewise, on
the TREC dataset these words include “spielberg”, “mozam-
bique”, “gould”. In TREC dataset, totally missing words
include numbers such as “1991”, “1967” or “327”, or words
such as ’occam’, ’rockettes’, ’quetzalcoatl’, ’khrushchev’, On
the LogMeIn dataset missing words also includes numbers
such as “995” or “65”, misspelled words such as “’presen-
tationbefore” or ’probleme’, and words in another language
such as “perfekt”, “einfache” or “reiniciar’. A suggestion to
improve the performance on the LogMeIn dataset is to use a
combination of pre-trained vectors from different language
as the dataset includes samples in another language than
English.

E. Vilar / Junior Management Science 4(1) (2019) 35-6258

Figure 19: T-SNE projection of FastText pre-trained vectors for the TREC vocabulary. Two clusters are shown; one presenting
words about time (bottom) and the other one with modal verbs (top); Source: Author’s own representation

Figure 20: TT-SNE projection of word vectors for the TREC vocabulary. On the left vectors from GloVe. On the right random
initialization of dimension 300; Source: Author’s own representation

Table 8: Descriptive statistics about the words found using different embedding methods; Source: Data compiled by author

LogMeIn TREC

Total unique words 2786 6987
Found in Word2Vec 2504 6036
Found in Glove 2575 6814
Found in FastText 2603 6501

Proposal

Found in both Word2Vec and generated vectors 393 863
Found only in Word2Vec 2111 5173
Found only in generated vectors 10 25
Not found 272 926

E. Vilar / Junior Management Science 4(1) (2019) 35-62 59

6. Conclusion

“As machines become more and more efficient
and perfect, so it will become clear that imper-
fection is the greatness of man.” Ernst Fischer

As the literature in deep learning is flourishing, so is the
range of models and their application. In this thesis, I have
first described two common architectures used for text classi-
fication tasks namely convolutional neural networks (CNNs)
and recurrent neural networks (RNNs). I have compared
their performance and training procedure on a text classifi-
cation task and found that CNNs are easier to train and yield
better results. Nevertheless, according to the literature re-
view, hybrid models combining both architectures can yield
better results. Through my benchmark, I could not verify this
statement as I could not reach optimal performance through
my implementation but could highlight that sensitive factors
for RNNs include the gradient update function and the num-
ber of epochs. I could also show that they are computably
more expensive to train.

Also, I have discussed ways to convert textual data into
inputs that the aforementioned models can leverage to im-
prove their performance. I have highlighted that the use of
pre-trained vectors can increase by up to 10.2% the perfor-
mance of the subsequent model. Concretely, I have found
that methods that generate word vectors based on a Contin-
uous Bag of Word (CBOW) algorithm such as Word2Vec or
FastText yield better results than count-based methods such
as GloVe. Moreover, after observing the empirical results, I
have stated that this gain is probably diminishing and there-
fore not linear as the subsequent models become fine-tuned.
This could be subject to further research to confirm or not my
hypothesis. I could also confirm that the gain was dependent
not only on the subsequent models but also on the dataset
used.

Finally, I proposed an algorithm for these models to deal
with words that are unknown with unfortunately inconclu-
sive results. Further evaluations are necessary with datasets
that include a higher proportion of unknown words with a
higher representative value. The benchmark used was de-
signed to assess models on a classification task and not suffi-
cient to evaluate my proposal.

While this thesis has been narrowed down to classifica-
tion tasks for qualitative analysis, the use of neural networks
is broad ranging from autonomous cars to automatic trad-
ing. The same way economists embraced the development of
differential calculus to expand their models; entrepreneurs
leveraged the spreading of the internet to create new busi-
ness models, I expect managers and researchers to incorpo-
rate big data analytics into their day-to-day activities to un-
derstand better the world around us. However, as demon-
strated during the hearing of Mark Zuckerberg, Facebook’s
CEO, in front of the U.S. Congress about the Cambridge An-
alytical scandal, even policymakers do not have a sound un-
derstanding of the current capabilities of modern techniques
despite growing concerns about machines taking over human

jobs and big data techniques hijacking democracy. I, there-
fore, call for a democratisation of programming languages
and a sensitisation of machine learning techniques as tools
to solve problems, but also about the issues they raise. As
a consequence, I hope this work demystified the functioning
of neural networks and could be used as a gate by business
students, entrepreneurs, managers, and teachers to enter the
machine learning world.

E. Vilar / Junior Management Science 4(1) (2019) 35-6260

References

Agrawal, S. and Awekar, A. Deep Learning for Detecting Cyberbullying
Across Multiple Social Media Platforms, 2018. URL https://arxiv.
org/pdf/1801.06482.pdf. Retrieved from.

Alcantara, G. Empirical analysis of non-linear activation functions for Deep
Neural Networks in classification tasks, 2017. URL https://arxiv.or
g/pdf/1710.11272.pdf. Retrieved from.

Apté, C., Damerau, F., and Weiss, S. M. Automated learning of decision rules
for text categorization. ACM Transactions on Information Systems (TOIS),
12(3):233–251, 1994.

Baeza-Yates, R. and Ribeiro-Neto, B. Modern information retrieval. New
York, 1999. URL https://doi.org/10.1080/14735789709366603.

Baroni, M., Dinu, G., and Kruszewski, G. Don’t count, predict! a systematic
comparison of context-counting vs. context-predicting semantic vectors.
In Proceedings of the 52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), volume 1, pages 238–247,
2014.

Becker, S., Le Cun, Y., et al. Improving the convergence of back-propagation
learning with second order methods. In Proceedings of the 1988 connec-
tionist models summer school, pages 29–37, 1988.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. A neural probabilis-
tic language model. Journal of machine learning research, 3(Feb):1137–
1155, 2003.

Bengio, Y., Courville, A., and Vincent, P. Representation learning: A review
and new perspectives. IEEE transactions on pattern analysis and machine
intelligence, 35(8):1798–1828, 2013.

Berger, M. J. Large Scale Multi-label Text Classification with Semantic Word
Vectors. Technical Report, 2014. URL https://cs224d.stanford.ed
u/reports/BergerMark.pdf. Retrieved from.

Blei, D. M., Ng, A. Y., and Jordan, M. I. Latent dirichlet allocation. Journal
of machine Learning research, 3(Jan):993–1022, 2003.

Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. Enriching Word Vec-
tors with Subword Information, 2016. URL https://doi.org/1511.
09249v1.

Bottou, L. Online learning and stochastic approximations. On-line learning
in neural networks, 17(9):142, 1998.

Bottou, L. Stochastic gradient descent tricks. In Neural networks: Tricks of
the trade, pages 421–436. Springer, 2012.

Cambria, E., Poria, S., Gelbukh, A., and Thelwall, M. Sentiment analysis is
a big suitcase. IEEE Intelligent Systems, 32(6):74–80, 2017.

Caudill, M. Neural Networks Primer, Part 1. AI Expert (Vol. 2). [CL Publi-
cations], 1986. URL https://dl.acm.org/citation.cfm?id=38295.
Retrieved from.

Cawley, G. C., Talbot, N. L., and Girolami, M. Sparse multinomial logistic re-
gression via bayesian l1 regularisation. In Advances in neural information
processing systems, pages 209–216, 2007.

Chen, D., Bolton, J., and Manning, C. D. A thorough examination
of the cnn/daily mail reading comprehension task. arXiv preprint
arXiv:1606.02858, 2016.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., and Bengio, Y. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

Cleverdon, C. Optimizing convenient online access to bibliographic
databases. Information services and Use, 4:37–47, 1984.

Clevert, D.-A., Unterthiner, T., and Hochreiter, S. Fast and accurate deep
network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289, 2015.

Collobert, R. and Weston, J. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings
of the 25th international conference on Machine learning, pages 160–167.
ACM, 2008.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., and Kuksa,
P. Natural language processing (almost) from scratch. Journal of machine
learning research, 12(Aug):2493–2537, 2011.

Conneau, A., Schwenk, H., Barrault, L., and Lecun, Y. Very deep con-
volutional networks for natural language processing. arXiv preprint
arXiv:1606.01781, 2, 2016.

Dahl, G. E., Sainath, T. N., and Hinton, G. E. Improving deep neural net-
works for lvcsr using rectified linear units and dropout. In 2013 IEEE

international conference on acoustics, speech and signal processing, pages
8609–8613. IEEE, 2013.

Debole, F. and Sebastiani, F. Supervised team weightening for Automated
Text Categorization. Istituto Di Scienza E Tecnologie dell’Informazione,
(Ml), pp. 784-788, 2003. URL http://nmis.isti.cnr.it/sebastian
i/Publications/NEMIS04.pdf. Retrieved from.

Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and Harshman,
R. Indexing by latent semantic analysis. Journal of the American society
for information science, 41(6):391–407, 1990.

Dhingra, B., Liu, H., Salakhutdinov, R., and Cohen, W. W. A comparative
study of word embeddings for reading comprehension. arXiv preprint
arXiv:1703.00993, 2017.

Ding, Z., Xia, R., Yu, J., Li, X., and Yang, J. Densely connected bidirectional
lstm with applications to sentence classification. In CCF International
Conference on Natural Language Processing and Chinese Computing, pages
278–287. Springer, 2018.

Dong, J. and Huang, J. Enhance word representation for out-of-vocabulary
on ubuntu dialogue corpus. arXiv preprint arXiv:1802.02614, 2018.

Dozat, T. Incorporating Nesterov Momentum into Adam. ICLR Workshop
(1), 2013–2016, 2016. Retrieved from.

Economist. The world’s most valuable resource is no longer oil, but data.
May 6th, 2017. URL https://www.economist.com/news/leaders
/21721656-data-economy-demands-new-approach-antitrust-r
ules-worlds-most-valuable-resource. Retrieved from.

Elfwing, S., Uchibe, E., and Doya, K. Sigmoid-weighted linear units for
neural network function approximation in reinforcement learning. Neural
Networks, 107:3–11, 2018.

Elman, J. L. Finding structure in time. Cognitive science, 14(2):179–211,
1990.

Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., and Vincent, P. The dif-
ficulty of training deep architectures and the effect of unsupervised pre-
training. In Artificial Intelligence and Statistics, pages 153–160, 2009.

Faraz, A. An elaboration of text categorization and automatic text classifica-
tion through mathematical and graphical modelling. Computer Science &
Engineering: An International Journal (CSEIJ), 5(2/3):1–11, 2015.

Forman, G. An extensive empirical study of feature selection metrics for text
classification. Journal of machine learning research, 3(Mar):1289–1305,
2003.

Frakes, W. B. Information retrieval, data structures & algorithms. Prentice
Hall, 1992. URL https://users.dcc.uchile.cl/~rbaeza/iradsboo
k/irbook.html. Retrieved from.

Fuhr, N., Hartmann, S., Lustig, G., Schwantner, M., Tzeras, K., and Knorz,
G. Air/x: A rule-based multistage indexing system for large subject fields.
In Intelligent Text and Image Handling-Volume 2, pages 606–623. LE CEN-
TRE DE HAUTES ETUDES INTERNATIONALES D’INFORMATIQUE DOC-
UMENTAIRE, 1991.

Genuer, R., Poggi, J.-M., and Tuleau-Malot, C. Variable selection using ran-
dom forests. Pattern Recognition Letters, 31(14):2225–2236, 2010.

Georgakopoulos, S. V., Tasoulis, S. K., Vrahatis, A. G., and Plagianakos, V. P.
Convolutional neural networks for toxic comment classification. In Pro-
ceedings of the 10th Hellenic Conference on Artificial Intelligence, page 35.
ACM, 2018.

Glorot, X. and Bengio, Y. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics, pages 249–256, 2010.

Goldberg, Y. A Primer on Neural Networks Models for Natural Language
Processing 1–76, 2015. URL https://doi.org/10.1613/jair.4992.

Gomez, J. C., Boiy, E., and Moens, M.-F. Highly discriminative statistical
features for email classification. Knowledge and information systems, 31
(1):23–53, 2012.

Goodfellow, I., Bengio, Y., and Courville, A. Deep Learning. The MIT Press,
2016. URL http://www.deeplearningbook.org/front_matter.pd
f. Retrieved from.

Gövert, N., Lalmas, M., and Fuhr, N. A probabilistic description-oriented ap-
proach for categorizing web documents. In Proceedings of the eighth in-
ternational conference on Information and knowledge management, pages
475–482. ACM, 1999.

Greene, D. and Cunningham, P. Practical solutions to the problem of diago-
nal dominance in kernel document clustering. In Proceedings of the 23rd
international conference on Machine learning, pages 377–384. ACM, 2006.

Guyon, I. and Elisseeff, A. An introduction to variable and feature selection.

https://arxiv.org/pdf/1801.06482.pdf
https://arxiv.org/pdf/1801.06482.pdf
https://arxiv.org/pdf/1710.11272.pdf
https://arxiv.org/pdf/1710.11272.pdf
https://doi.org/10.1080/14735789709366603
https://cs224d.stanford.edu/reports/BergerMark.pdf
https://cs224d.stanford.edu/reports/BergerMark.pdf
https://doi.org/1511.09249v1
https://doi.org/1511.09249v1
https://dl.acm.org/citation.cfm?id=38295
http://nmis.isti.cnr.it/sebastiani/Publications/NEMIS04.pdf
http://nmis.isti.cnr.it/sebastiani/Publications/NEMIS04.pdf
https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-antitrust-rules-worlds-most-valuable-resource
https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-antitrust-rules-worlds-most-valuable-resource
https://www.economist.com/news/leaders/21721656-data-economy-demands-new-approach-antitrust-rules-worlds-most-valuable-resource
https://users.dcc.uchile.cl/~rbaeza/iradsbook/irbook.html
https://users.dcc.uchile.cl/~rbaeza/iradsbook/irbook.html
https://doi.org/10.1613/jair.4992
http://www.deeplearningbook.org/front_matter.pdf
http://www.deeplearningbook.org/front_matter.pdf

E. Vilar / Junior Management Science 4(1) (2019) 35-62 61

Journal of machine learning research, 3(Mar):1157–1182, 2003.
Hahnloser, R. H., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., and Se-

ung, H. S. Digital selection and analogue amplification coexist in a cortex-
inspired silicon circuit. Nature, 405(6789):947, 2000.

Harris, Z. S. Distributional structure. Papers on Syntax, pages 3–22, 1981.
Hashimoto, K. and Tsuruoka, Y. Adaptive joint learning of compositional and

non-compositional phrase embeddings. arXiv preprint arXiv:1603.06067,
2016.

He, K., Zhang, X., Ren, S., and Sun, J. Delving deep into rectifiers: Surpass-
ing human-level performance on imagenet classification. In Proceedings
of the IEEE international conference on computer vision, pages 1026–1034,
2015.

Hinton, G., McClelland, J. L., and Rumerlhart, D. E. Distributed representa-
tions. Parallel Distributed Processing: Explorations in the Microstructure
of Cognition, 1, 1986.

Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

Hornik, K., Stinchcombe, M., and White, H. Multilayer feedforward net-
works are universal approximators. Neural networks, 2(5):359–366,
1989.

IBM. What is big data?, 2018. URL https://www-01.ibm.com/software
/in/data/bigdata/. Retrieved February 14, 2018.

Janocha, K. and Czarnecki, W. M. On loss functions for deep neural networks
in classification. Classification. Schedae Informaticae, 25:1–10, 2017.

Jashki, M.-A., Makki, M., Bagheri, E., and Ghorbani, A. A. An iterative hy-
brid filter-wrapper approach to feature selection for document clustering.
In Canadian Conference on Artificial Intelligence, pages 74–85. Springer,
2009.

John, G. H., Kohavi, R., and Pfleger, K. Irrelevant features and the subset
selection problem. In Machine Learning Proceedings 1994, pages 121–129.
Elsevier, 1994.

Johnson, R. and Zhang, T. Deep pyramid convolutional neural networks for
text categorization. In Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers), volume 1,
pages 562–570, 2017.

Kalchbrenner, N., Grefenstette, E., and Blunsom, P. A convolutional neural
network for modelling sentences. Proceedings of the 52nd Annual Meeting
of the Association for Computational Linguistics, pages 655–665, 2014.

Kaur, G. and Kaur, P. ISSN: 2454-132X Impact factor: 4.295 Review
on Text Classification by NLP Approaches with Machine Learning and
Data Mining Approaches. International Journal of Advance Research ,
Ideas and Innovations in Technology, 3, 767–771, 2017. Retrieved from
www.ijariit.com.

Khan, A., Baharudin, B., Lee, L. H., and Khan, K. A review of machine
learning algorithms for text-documents classification. Journal of advances
in information technology, 1(1):4–20, 2010.

Kim, Y. Convolutional neural networks for sentence classification. arXiv
preprint arXiv:1408.5882, 2014.

Kingma, D. P. and Ba, J. Adam: A method for stochastic gradient descent.
arXiv preprint arXiv:1412.6980, 2015.

Kira, K. and Rendell, L. A. A practical approach to feature selection. In
Machine Learning Proceedings 1992, pages 249–256. Elsevier, 1992.

Kiwiel, K. C. Convergence and efficiency of subgradient methods for quasi-
convex minimization. Mathematical programming, 90(1):1–25, 2001.

Kohavi, R. and John, G. H. Wrappers for feature subset selection. Artificial
intelligence, 97(1-2):273–324, 1997.

Kusner, M., Sun, Y., Kolkin, N., and Weinberger, K. From word embeddings
to document distances. In International Conference on Machine Learning,
pages 957–966, 2015.

Le, H., Pham, Q., Sahoo, D., and Hoi, S. C. Urlnet: Learning a url repre-
sentation with deep learning for malicious url detection. arXiv preprint
arXiv:1802.03162, 2018.

Lee, J. Y. and Dernoncourt, F. Sequential short-text classification
with recurrent and convolutional neural networks. arXiv preprint
arXiv:1603.03827, 2016.

Lewis, D. D. An evaluation of phrasal and clustered representations on a text
categorization task. In Proceedings of the 15th annual international ACM
SIGIR conference on Research and development in information retrieval,
pages 37–50. ACM, 1992.

Li, X. and Roth, D. Learning question classifiers: the role of semantic infor-
mation. Natural Language Engineering, 12(3):229–249, 2006.

Liu, P., Qiu, X., and Huang, X. Recurrent neural network for text classification
with multi-task learning. arXiv preprint arXiv:1605.05101, 2016.

Livnat, A., Papadimitriou, C., Pippenger, N., and Feldman, M. W. Sex, mix-
ability, and modularity. Proceedings of the National Academy of Sciences,
107(4):1452–1457, 2010.

Ma, Y., Peng, H., Khan, T., Cambria, E., and Hussain, A. Sentic lstm: a
hybrid network for targeted aspect-based sentiment analysis. Cognitive
Computation, 10(4):639–650, 2018.

Mikolov, T., Kopecky, J., Burget, L., Glembek, O., et al. Neural network
based language models for highly inflective languages. In 2009 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing, pages
4725–4728. IEEE, 2009.

Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., and Khudanpur, S. Recur-
rent neural network based language model. In Eleventh annual conference
of the international speech communication association, pages 1045–1048,
2010.

Mikolov, T., Kombrink, S., Burget, L., Černockỳ, J., and Khudanpur, S. Ex-
tensions of recurrent neural network language model. In 2011 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP),
pages 5528–5531. IEEE, 2011.

Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., and Joulin, A. Ad-
vances in pre-training distributed word representations. arXiv preprint
arXiv:1712.09405, 2017.

Murty, M. R., Murthy, J., and PVGD, P. R. Text document classification based-
on least square support vector machines with singular value decomposi-
tion. International Journal of Computer Applications, 27(7):21–26, 2011.

Ng, A. Y. Feature selection, l 1 vs. l 2 regularization, and rotational invari-
ance. In Proceedings of the twenty-first international conference on Machine
learning, page 78. ACM, 2004.

Nikam, S. S. A comparative study of classification techniques in data mining
algorithms. Oriental journal of computer science & technology, 8(1):13–19,
2015.

Olah, C. Understanding LSTM Networks – colah’s blog, 2017. URL https:
//colah.github.io/posts/2015-08-Understanding-LSTMs/. Re-
trieved April 14, 2018.

Pennington, J., Socher, R., and Manning, C. Glove: Global vectors for word
representation. In Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP), pages 1532–1543, 2014.

Penrose, R. A generalized inverse for matrices. In Mathematical proceed-
ings of the Cambridge philosophical society, volume 51, pages 406–413.
Cambridge University Press, 1955.

Porter, M. F. An algorithm for suffix stripping. Program, 14(3):130–137,
1980.

Rahimian, V. and Ramsin, R. Designing an agile methodology for mobile
software development: A hybrid method engineering approach. In 2008
Second International Conference on Research Challenges in Information Sci-
ence, pages 337–342. IEEE, 2008.

Ramachandran, P., Zoph, B., and Le, Q. V. Searching for activation functions.
arXiv preprint arXiv:1710.05941, 2017.

Ranganathan, V. and Natarajan, S. A new backpropagation algorithm with-
out gradient descent. arXiv preprint arXiv:1802.00027, 2018.

Robertson, S. E. and Walker, S. Some simple effective approximations to the
2-poisson model for probabilistic weighted retrieval. In SIGIR’94, pages
232–241. Springer, 1994.

Rong, X. word2vec parameter learning explained. arXiv preprint
arXiv:1411.2738, 2014.

Ruder, S. An overview of gradient descent optimization algorithms. arXiv
preprint arXiv:1609.04747, 2016.

Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al. Learning representa-
tions by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

Saeys, Y., Abeel, T., and Van de Peer, Y. Robust feature selection using ensem-
ble feature selection techniques. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 313–325. Springer,
2008.

Sag, I. A., Baldwin, T., Bond, F., Copestake, A., and Flickinger, D. Multi-
word expressions: A pain in the neck for nlp. In International Conference
on Intelligent Text Processing and Computational Linguistics, pages 1–15.
Springer, 2002.

Salinca, A. Convolutional neural networks for sentiment classification on

https://www-01.ibm.com/software/in/data/bigdata/
https://www-01.ibm.com/software/in/data/bigdata/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

E. Vilar / Junior Management Science 4(1) (2019) 35-6262

business reviews. arXiv preprint arXiv:1710.05978, 2017.
Salton, G., Wong, A., and Yang, C.-S. A vector space model for automatic

indexing. Communications of the ACM, 18(11):613–620, 1975.
Sánchez, D., Martín-Bautista, M. J., Blanco, I., and de la Torre, C. J. Text

knowledge mining: an alternative to text data mining. In 2008 IEEE In-
ternational Conference on Data Mining Workshops, pages 664–672. IEEE,
2008.

Sebastiani, F. Machine learning in automated text categorization. ACM com-
puting surveys (CSUR), 34(1):1–47, 2002.

Shen, Y., Huang, P.-S., Gao, J., and Chen, W. Reasonet: Learning to stop read-
ing in machine comprehension. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages
1047–1055. ACM, 2017.

Socher, R., Lin, C. C., Manning, C., and Ng, A. Y. Parsing natural scenes
and natural language with recursive neural networks. In Proceedings of
the 28th international conference on machine learning (ICML-11), pages
129–136, 2011.

Song, F., Liu, S., and Yang, J. A comparative study on text representation
schemes in text categorization. Pattern analysis and applications, 8(1-2):
199–209, 2005.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R. Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

Sundermeyer, M., Alkhouli, T., Wuebker, J., and Ney, H. Translation model-
ing with bidirectional recurrent neural networks. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pages 14–25, 2014.

Sundström, J. Sentiment analysis of swedish reviews and transfer learning
using convolutional neural networks, 2017. URL http://uu.diva-p
ortal.org/smash/get/diva2:1174477/FULLTEXT01.pdf. Retrieved
from.

Sutskever, I., Martens, J., Dahl, G. E., and Hinton, G. E. On the importance
of initialization and momentum in deep learning. ICML (3), 28(1139-
1147):5, 2013.

Tibshirani, R. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society: Series B (Methodological), 58(1):267–288,
1996.

Tieleman, T. and Hinton, G. Lecture 6.5-rmsprop, coursera: Neural networks
for machine learning. University of Toronto, Technical Report, 2012.

Tsvetkov, Y., Faruqui, M., Ling, W., Lample, G., and Dyer, C. Evaluation of
word vector representations by subspace alignment. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing,
pages 2049–2054, 2015.

Turney, P. D. and Pantel, P. From frequency to meaning: Vector space models
of semantics. Journal of artificial intelligence research, 37:141–188, 2010.

Tzeras, K. and Hartmann, S. Automatic indexing based on bayesian infer-
ence networks. In Proceedings of the 16th annual international ACM SIGIR
conference on Research and development in information retrieval, pages 22–
35. ACM, 1993.

Upadhyay, S., Chang, K.-W., Taddy, M., Kalai, A., and Zou, J. Beyond bilin-
gual: Multi-sense word embeddings using multilingual context. arXiv
preprint arXiv:1706.08160, 2017.

Wang, B., Wang, L., Wei, Q., and Liu, L. Textzoo, a new benchmark for
reconsidering text classification. arXiv preprint arXiv:1802.03656, 2018.

Warde-Farley, D., Goodfellow, I. J., Courville, A., and Bengio, Y. An em-
pirical analysis of dropout in piecewise linear networks. arXiv preprint
arXiv:1312.6197, 2013.

Weston, J., Bengio, S., and Usunier, N. Scaling up to large vocabulary image
annotation. In Proceedings of the 22st International Joint Conference on
Artificial Intelligence, pages 2764–2770, 2010.

Wolfram, D. and Zhang, J. The influence of indexing practices and weight-
ing algorithms on document spaces. Journal of the American Society for
Information Science and Technology, 59(1):3–11, 2008.

Wolpert, D. H. The lack of a priori distinctions between learning algorithms.
Neural computation, 8(7):1341–1390, 1996.

Xiao, Y. and Cho, K. Efficient character-level document classifica-
tion by combining convolution and recurrent layers. arXiv preprint
arXiv:1602.00367, 2016.

Yin, W., Kann, K., Yu, M., and Schütze, H. Comparative study of cnn and rnn
for natural language processing. arXiv preprint arXiv:1702.01923, 2017.

Young, T., Hazarika, D., Poria, S., and Cambria, E. Recent trends in deep

learning based natural language processing. ieee Computational intelli-
genCe magazine, 13(3):55–75, 2018.

Yu, K., Liu, Y., Schwing, A. G., and Peng, J. Fast and accurate text classifica-
tion: Skimming, rereading and early stopping. 2018.

Yu, M. and Dredze, M. Learning composition models for phrase embeddings.
Transactions of the Association for Computational Linguistics, 3:227–242,
2015.

Zeiler, M. D. Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701, 2012.

Zhang, X., Zhao, J., and LeCun, Y. Character-level convolutional networks
for text classification. In Advances in neural information processing sys-
tems, pages 649–657, 2015.

Zhou, C., Sun, C., Liu, Z., and Lau, F. A c-lstm neural network for text
classification. arXiv preprint arXiv:1511.08630, 2015a.

Zhou, C., Sun, C., Liu, Z., and Lau, F. A c-lstm neural network for text
classification. arXiv preprint arXiv:1511.08630, 2015b.

Zhou, P., Qi, Z., Zheng, S., Xu, J., Bao, H., and Xu, B. Text classification im-
proved by integrating bidirectional lstm with two-dimensional max pool-
ing. arXiv preprint arXiv:1611.06639, 2016a.

Zhou, Z., Zhu, X., He, Z., and Qu, Y. Question classification based on hybrid
neural networks. In 2016 4th International Conference on Electrical &
Electronics Engineering and Computer Science (ICEEECS 2016). Atlantis
Press, 2016b.

http://uu.diva-portal.org/smash/get/diva2:1174477/FULLTEXT01.pdf
http://uu.diva-portal.org/smash/get/diva2:1174477/FULLTEXT01.pdf

	Introduction
	Data availability
	Feedback loops

	Text Classification and Machine Learning
	Neural Networks for text classification
	Feed-forward neural networks
	Input layer
	Activation functions
	Training a neural network

	Convolutional Neural Network
	Convolutional layer
	Pooling layer

	Recurrent Neural Network
	Long Short-Time Memory
	GRU

	Comparison

	Document Representation
	The vector space model
	Tokenization, filtering and stemming
	Distributed representation of words
	Feature selection
	Filter
	Wrapper
	Embedded

	Feature extraction
	Count based methods
	Neural networks for words embedding

	Experiment
	Data
	Models
	Word embedding

	Results and Discussion
	CNN and CNN+LSTM
	Effect of Word Embedding

	Conclusion

