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Extending Kolkata Paise Restaurant Problem to Dynamic Matching in Mobility
Markets

Layla Martin

Technische Universität München

Abstract

In mobility markets – especially vehicle for hire markets – drivers offer individual transportation by car to customers.
Drivers individually decide where to go to pick up customers to increase their own utilization (probability of carrying
a customer) and utility (profit). The utility drivers retrieve from customers comprises both costs of driving to another
location and the revenue from carrying a customer and is thus not shared between different drivers. In this thesis, I
present the Vehicle for Hire Problem (VFHP) as a generalization of the Kolkata Paise Restaurant Problem (KPRP) to
evaluate different strategies for drivers in vehicle for hire markets. The KPRP is a multi-round game model presented
by Chakrabarti et al. (2009) in which daily laborers constitute agents and restaurants constitute resources. All agents
decide simultaneously, but independently where to eat. Every restaurant can cater only one agent and agents cannot
divert to other resources if their first choice is overcrowded. The number of agents equals the number of resources.
Also, there is a ranking of restaurants all agents agree upon, and no two resources yield the same utility. The VFHP
relaxes assumptions on capacity and utility: Resources (customers) are grouped in districts, agents (drivers) can redirect
to other resources in the same district. As the distance between agent and resource reduces the agent’s utility and
the location is not identical for all agents, the utility of a given resource is not identical for all agents. To study the
impact of the different assumptions, I build four different model variants: Individual Preferences (IP) replaces the
shared utility of the KPRP with uniformly distributed utilities per agent. The Mixed Preferences (MP) model variant
uses the utility assumption of the VFHP, but the capacity of all districts remains 1. The Individual Preferences with
Multiple Customers per District (IPMC) model variant groups customers in districts, and uses the uniform utilities
introduced in the IP model variant. Mixed Preferences and Multiple Customers per District (MPMC) implements
all assumptions of the VHFP. In this thesis, I study different strategies for the KPRP and all variants of the VFHP
to build a foundation for an incentive scheme for dynamic matching in mobility markets. The strategies comprise
history-dependent and utility-dependent strategies. In history-dependent strategies, agents incorporate their previous
decisions and the utilization of resources in previous iterations in their decision. Agents adapting utility-dependent
strategies choose the resource offering the highest utility with a given probability.

Keywords: vehicle for hire markets; distributed decision making; agent-based modelling; congestion game; limited
rationality

1. Introduction

Mobility markets, or in particular vehicle for hire mar-
kets, comprise all modes of shared, but individual trans-
portation with a driver, in particular with a short-term
focus (e.g., taxis, Lyft, and Uber). In mobility markets,
drivers individually decide where to look for customers.
However, the average idle time of taxis is about 25–50%

in most cities where data is available (Linne+Krause
Marketing-Forschung, 2011; Cramer and Krueger, 2016;
Linne+Krause Marketing-Forschung, 2016). Though ex-
cess capacity can partially explain these numbers, utiliza-
tion could be increased, if drivers would be distributed
across the city more efficiently. In contrast to underutiliza-
tion, passengers have to wait for more than 20 minutes in
approximately every third case in other cities (Rayle et al.,

DOI: https://doi.org/10.5282/jums/v4i1pp1-34

www.jums.academy
https://doi.org/10.5282/jums/v4i1pp1-34


L. Martin / Junior Management Science 4(1) (2019) 1-342

2014), suggesting that the drivers are not at the locations
where they are needed.

To address these inefficiencies in vehicle for hire mar-
kets, coordinators could instruct drivers where to wait
for customers. In current business models, however, this
is not possible, since drivers are not employees of the
coordinators. Hence, they try to maximize their individ-
ual profits by deciding independently where to look for
customers without considering the social welfare or uti-
lization of other agents. In practice, there are approaches
like ‘surge pricing’ (price adapts dynamically to changes
is demand and supply with the goal to influence demand
and supply, e.g. increase supply by increased price) to
respond to expected peaks in demand, though literature
on the efficiency of different driver strategies is limited
(Chen and Sheldon, 2015; Hall et al., 2015; Rogers, 2015).
One, therefore, has to turn the attention to the coordina-
tion amongst drivers: Drivers maximize their individual
utility, but their utility inversely depends on the number
of agents selecting the same option. Thus, drivers benefit
if there are less other drivers in the same district than
available customers, thus, deciding against the crowd
is beneficial. Alternatively, one could construct a game
model derived from the College Admission Problem or Stable
Marriages Problem (Gale and Shapley, 1962; Manlove and
Sng, 2006; Abraham et al., 2007; Akbarpour et al., 2016).
In these problems, agents try different matches until an
optimal match is found. Yet, in vehicle for hire markets,
I assume that redirecting to another resource, if the pre-
ferred resource is not available, is not an option, because
of the costs and time constraints of redirecting (requires
the agents to drive to another location consuming time
and fuel).

To analyze the fundamental underlying problem, I
propose a repeated non-cooperative game model to in-
vestigate different strategies in the coordination prob-
lem among drivers. It is a generalization of the Kolkata
Paise Restaurant Problem (KPRP) (Chakrabarti et al., 2009)
where agents repeatedly compete for a set of resources.
As a foundation to be able to assess coordinators’ incen-
tives like ‘surge pricing’, one first needs to understand
the fundamental impact of different driver strategies. I
contribute to this research field by game model, relaxing
assumptions of the KPRP. In contrast to existing research,
I address both individual agent preferences and different
resource capacities. Besides the game model, the contribu-
tions of this research are different mixed strategies for the
model and an analysis of their impact on car utilization
and driver utilities in different settings. These insights
constitute building blocks for a characterization of favor-
able agent behavior to design incentive mechanisms to
distribute drivers efficiently.

1.1. The Vehicle for Hire Problem and its Model Variants
In this thesis, I cover five different, but related model

variants: The Kolkata Paise Restaurant Problem and four
relaxations suited for mobility markets comprising the
Vehicle for Hire Problem (VFHP).

In Kolkata, there were very cheap and
fixed-rate ‘Paise Restaurants’, popular among
the daily laborers in the city. During lunch
hours, the laborers used to walk down (to
save the transport costs) to any of these restau-
rants and would miss the lunch if they arrived
at a restaurant where their number is more
than the capacity of the restaurant for such
cheap lunch. Walking down to the next restau-
rant would mean failing to report back to the
job in time! Paise means the smallest Indian
coin and there were indeed some well known
rankings of these restaurants as some of them
would offer more tastier items compared to
the others. (Chakrabarti et al., 2009, p. 2421)

The KPRP was first presented by Chakrabarti et al.
(2009). In this model, N agents (that is daily laborers)
aim at having lunch at one of the N restaurants. All
agents gain the same utility from some restaurant, and all
restaurants have mutually different utilities. Every agent
aims at getting lunch at his preferred restaurant, but every
restaurant can only cater a single agent. Thus, if more
than 1 agent goes to some restaurant, some agents will
not get lunch, as they cannot divert to another restaurant
that same day. The KPRP is a repeated game with an
infinite number of iterations.

In mobility markets, drivers i ∈ I constitute agents
and customers j ∈ J (located in districts k ∈ K) consti-
tute resources. Agents drive to resources. Agents carry
resources (up to the capacity limit). For this thesis I re-
lax two main assumptions: Agents no longer retrieve
identical utility from a given resource, but one agent can
prefer resource j and another agent can prefer resource
j′ 6= j (with the highest utility determining preference).
I present two different models: In the Individual Pref-
erences model (IP), utilities are uniformly assigned to
resources (customers). Thus, agent preferences are inde-
pendent of each other. In the Mixed Preferences model
(MP), utilities are calculated as a weighted average of
an individual component (that is distance between agent
and customer) and a shared component (that is the pay-
off). I further model increased capacity: Clustering cus-
tomers j ∈ J in districts k ∈ K allows agents to divert
to other customers inside the district they drove to. The
average number of customers per district is ϕ, and the
customers randomly “choose” the district they belong to,
the number of customers per district is thus Gaussian
distributed around ϕ. The Individual Preferences with
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Multiple Trips per Customer model (IPMC) combines the
IP model with the clustering concept: Agents gain ran-
dom utilities from customers and customers belong to
districts. In the Mixed Preferences with Multiple Trips
per Customer model (MPMC), the utility is obtained as a
weighted average of an individual component to model
the distance and a shared component to model the payoff.
The distance (and thus the individual component) is equal
for all customers belonging to one district.

1.2. Outline of this Thesis
The remainder of this thesis is organized as follows: I

first discuss related work in chapter 2, I then present the
strategies (chapter 3). The successive chapters present the
individual model variants and assess the performance of
aforementioned strategies. Chapter 4 focuses on the KPRP,
chapter 5 presents the IP model variant, chapter 6 gives
insight in the MP model variant, chapter 7 concerns the
IPMC model variant, and chapter 8 evaluates the MPMC
model variant. To improve the reader’s understanding,
chapters 4-8 can be read independently from each other,
as key concepts are presented in each of them. Chapter
9 discusses the results from chapters 4-8, and chapter 10
concludes this thesis.

2. Related Work

To my knowledge, no paper extends the KPRP for
mobility markets. Relevant research is conducted in three
fields: First, I give an overview of relevant game models in
other application areas, in particular coordination games.
Second, there is literature in optimization and operations
research in the field of vehicle for hire markets. Third, I
introduce basic literature of dynamic mechanism design.

2.1. Congestion Games
The presented model is a type of congestion game, a

model for games in which agents should choose different
alternatives to succeed first described by Rosenthal (1973).
Mathematically, congestion games can be identified by
their potential function and thus their pure-strategy Nash-
equilibria; Congestion games are therefore also Potential
games (Monderer and Shapley, 1996; Nash, 1951). Yet,
such a Nash equilibrium is usually inefficient, as Cor-
rea et al. (2005) prove. Other congestion game models
are the El Farol Bar Problem (Arthur, 1994), the KPRP
(Chakrabarti et al., 2009), the Crowding Game (Milchtaich,
1996), and the minority game (Challet and Zhang, 1998).

The El Farol Bar Problem is a game model with N
agents (scientists) and one resource (the bar in Santa Fe
during Karaoke night). All agents aim at maximizing
their profit. If more than 0.6 · N agents go to the bar,
it becomes overcrowded, and the agents would enjoy
themselves more at home. If fewer agents go to the bar,

they enjoy themselves more than if they stayed at home.
Agents, therefore, coordinate themselves such that as
many agents as possible (but less than 0.6 · N) go to the
bar (Arthur, 1994).

The KPRP is the foundation game model for this the-
sis; the model is described in chapter 4 in more detail.
Chakrabarti et al. (2009) and Ghosh et al. (2013) introduce
strategies for increasing the utilization of the KPRP. Yang
et al. (2016) study a generalization of the KPRP which
is also aimed at dynamic markets: As a relaxation of
the KPRP they study whether an agent should divert to
another district or stay in the current one with different
capacities for different districts. Agents are being replaced
by others (which do not have the same prior knowledge)
following a Poisson distribution. They prove the existence
of a Mean Field Equilibrium (Lasry and Lions, 2007) for the
Threshold Strategy (if a capacity threshold is exceeded at
time t, agents stochastically divert to other districts) (Yang
et al., 2016). This thesis on the opposite compares differ-
ent strategies. Agarwal et al. (2016) generalize the KPRP
to a Majority Game, in which they study convergence be-
havior given only few prior knowledge. In difference to
the KPRP, capacity is not restricted, and in difference to
the problem in mobility markets agents have no internal
utility ranking, they aim at choosing with the herd.

The Crowding Game is a game model in which the
utility of agents only depends on the number of agents
also selecting the same option. If more agents select one
option, the utility decreases (Milchtaich, 1996). The VFHP
game model is similar to the Crowding Game as the num-
ber of agents decreases the utility (as the expected utility
is divided among all agents selecting some resource), but
this model also uses a basic utility which is not shared
among agents.

The Minority Game is a game with N agents and
two resources, and the utility for those agents choosing
the resource with the lower occupancy is higher than the
utility for those agents in the crowded resource (i.e. roads)
(Challet and Zhang, 1998). In a recent study, “treatments”
(which differ in the information given to participants)
for the Minority Game were studied with experiments.
The authors state that changing from one option to the
other is not recommended regardless of prior knowledge
(Chmura and Pitz, 2006). Because the Minority Game only
allows two different payoffs from two different resources,
I cannot directly transfer this insight to the Kolkata Paise
Restaurant Problem in mobility markets.

2.2. Vehicle for Hire Market
There is only limited research work available on op-

timal distribution of drivers in vehicle for hire markets.
Several studies focus on assigning drivers an optimal dis-
trict where they await passengers (Lee et al., 2004; Seow
et al., 2010); though, in most business models, drivers
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decide independently. Yang et al. (2005) study a model
with varying demand and supply. Taxi drivers individu-
ally decide when to enter the market and when to leave
it, resulting in a market equilibrium. This work does
not study utility, but only utilization. Kim et al. (2011)
propose an agent-based model incorporating real-world
passenger travel pattern to predict the highest possible
utility. Their model also incorporates districts (“areas”)
and varying utility functions over time, but tests for dif-
ferent criteria: Whilst I analytically derive utilization and
utility for different strategies in a large environment, Kim
et al. (2011) studies a setting with five nodes and retrieves
utilization and passenger wait time for varying fleet sizes.
Wong’s primary criterion is reduced vacant mileage for
taxis (Wong et al., 2015). He uses a two-step approach in
which taxis can only divert to adjacent zones rather than
all others. Trigo et al. (2006) uses Multi-Agent Markov
Decision Processes to model drivers transporting passen-
gers. This paper uses a cover story which is highly similar
to ours, but rather than using stochastic strategies, Trigo
et al. (2006) use a two-layered learning process. This the-
sis aims at improving the taxi allocation with respect to
utilization fraction or utility assuming choice at discrete
time steps. Li (2006) on the opposite studies strategies
to minimize passenger waiting time or travel time, taxi
idle time or non-live mileage with drivers deciding asyn-
chronously. This thesis studies a large variety of strategies,
Li (2006) restricts himself to three simple strategies. The
paper concludes that returning to hotspots after serving a
trip can increase all studied parameters. Similar results
can also be seen in this thesis, as the utilization fraction
increases after introducing multiple trips per district.

Li et al. (2011) present a model which predicts whether
agents should wait for passengers stationary or continue
driving to “hunt down” customers. They use data mining
techniques with data on time, location, and strategy (hunt
or wait). In the VFHP, all agents decide where to drive to
(yet, the location might not change). Thus, the strategy
of the VFHP dictates where to go rather than if to go to
another location. The model by Li et al. (2011) cannot
predict where taxi drivers should drive. Ge et al. (2010)
build a recommender system to reduce the travel distance
before carrying the next customer. This behavior is re-
flected by the VFHP game model, as the individual utility
models distance. Yuan et al. (2011) extend the work by
Ge et al. (2010) by also recommending optimal passenger
behavior.

Alonso-Mora et al. (2017) postulate that it should be
possible to replace 13,000 cabs in New York City by only
3,000 on-demand vehicles for ride-sharing, which would
both reduce wait time and traffic congestion. Their cal-
culations suggest that a better utilization fraction of cabs
can be achieved, though ride-sharing is not considered
in this thesis. Furthermore, using graph traversals for

optimal distribution and routing of taxis is a solution a
single driver cannot adopt, but only dispatchers.

Shi and Lian (2016) study the taxi transportation mar-
ket from the opposite side as this thesis paper does: Pas-
sengers can decide whether or not they are queueing for
a taxi (depending on the “queue length” (number of pas-
sengers) and the “buffer size” (number of cabs) at the
taxi stand). The authors compare strategies of selfish
and social passengers and options for the government to
interfere.

Furthermore, there are several papers in the field of
operations research which focus on the influence of regu-
lation (taxi medallions, fixed rates) on the market (Cairns
and Liston-Heyes, 1996; Arnott, 1996). In the VFHP game
model, I assume that there are sufficient agents to carry
every customer and sufficient customers such that every
agent can carry a customer.

2.3. Dynamic Mechanism Design
There is early stage work on dynamic mechanism

design in matching markets: If there is a dispatcher, he
can make agents wait for a better suited trip. Kurino
(2009) gives a dynamic version of the House Allocation
Problem. Bloch and Houy (2012) periodically redistribute
items between agents.

If agents are allowed to choose independently from
a dispatcher, waiting time might influence their choice,
reducing welfare. In this component – choosing the best
individual option reduces social optimality – the prob-
lem described by Leshno (2012) is highly similar to the
KPRP. Yet, unlike environments described in the paper
(e.g., nursing homes, subsidized housing), there are no
“overloaded waiting lists” (demand tremendously exceeds
supply) in the taxi industry, as passengers usually have
other means of transportation to choose from.

Social Welfare (benefit for the entire group) in trans-
portation markets has been studied at the example of
Rotterdam Port: Transportation tasks inside the port are
assigned to trucks which are waiting for departure. The
authors claim that a higher number of participants in gen-
eral increases social welfare (as it is easier to adapt to peak
load times), but agents might not continue participating if
they assumed that the game put them at a disadvantage
in comparison to other players. They, therefore, postulate
an algorithm which ensures that agents are equally uti-
lized (Ye and Zhang, 2016; Ye et al., 2017). In the KPRP
on the opposite, I assume that the number of customers
always equals the number of agents (agents will always
participate), but agents are not assigned their trip.

Chen and Hu (2016) conduct research on market de-
sign in a market place with buyers and sellers such as
Uber: In such markets, buyers wait for lower market
prices while sellers wait for higher market prices. They
conclude that fast changes in the market price (set by
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an intermediary) and price surges are not recommended,
as participants might leave the market temporarily. This
thesis on the opposite assumes myopic agents, who only
plan ahead few time steps.

3. Strategies

In this thesis I consider seven strategies: No Learn-
ing (NL), Rank Dependent Choice (RD), Limited Learn-
ing (LL), One Period Repetition (OPR), Crowd Avoiding
(CA), Stochastic Crowd Avoiding (SCA), and Stochastic
Rank Dependent Choice (SRD). NL and RD are baseline
strategies which represent basic behavior. RD, LL, OPR,
and SRD incorporate the resource’s utility in the agents’
choices and are therefore utility-based. LL, OPR, CA, and
SCA require knowledge about previous iterations and are
therefore history-based.

The NL strategy dictates agents to randomly choose
a resource in every iteration, regardless of history (hence
the term “No Learning”) or resource utility. Resources
are either customers or districts (or restaurants in the
KPRP). The strategy was first presented by Chakrabarti
et al. (2009) in which restaurants comprise resources.

The second baseline strategy is the strategy RD.
Agents always drive to the resource yielding them max-
imum utility. Agents thus receive maximum utility, if
they carry a customer. If there are several resources
yielding equal utility, agents decide randomly between all
maximum utility resources. I introduce this strategy, as it
mimics simple behavior if limited information is available:
If agents do not know about the preferences or behavior
of other agents, but assume that only a few agents share
the same preference, the most simple approach is to
always head for the preferred resource. It requires only
very few computational power: Prior to the first iteration,
agents calculate their preferred customer by comparing
the utility of all resources. After driving there, they will
remain in their position, requiring no recomputation at all.
It also requires no information except the own utilities or
preferences, making it suitable for large problem spaces.

Agents incorporating the LL strategy follow a two-
step approach: (1) If an agent carried a customer at time
t, he will drive to the highest utility resource at time t + 1.
(2) If an agent did not carry a customer at time t, he will
randomly choose any other resource at time t + 1. (If an
agent was successful at the highest utility resource, he will
return there in the next iteration). The LL strategy was
presented by Chakrabarti et al. (2009) (named Limited
Learning 1).

The OPR strategy requires agents to follow a three-
step approach: (1) If an agent carried customer j at time t
(but not at time t− 1), he will return to this resource at
time t+ 1 (return). (2) If an agent served the same resource
j at time t− 1 and t, he will compete for the highest utility

customer at time t + 1 (improve). (3) If an agent did not
carry any customer at time t, he will randomly choose any
resource which was vacant at time t in the next iteration
(random). OPR was also introduced in Chakrabarti et al.
(2009).

With the CA strategy agents only drive to resources
which were vacant or had remaining capacity at time t− 1.
This strategy originates in a paper by Ghosh et al. (2013).

Agents using the SCA strategy stochastically decide
whether to return to the same resource or to randomly
turn to another resource. If a resource j does not exceed
its capacity at time t, all agents driving to this resource
j at time t will return there at time t + 1. If the capacity
is exceeded, all agents stochastically either return to j or
drive to any other (randomly chosen) resource at time t +
1 such that the expected number of agents in j equals its
capacity (let the capacity be cj and the number of agents
at the resource be oj: return with probability

cj
oj

, randomly

choose another resource with probability 1− cj
oj

). The SCA
strategy stems from Ghosh et al. (2013).

The SRD strategies build upon the RD strategy, in-
cluding some properties of the SCA strategy: Let the ca-
pacity of a resource j be cj, and let the number of agents
preferring resource j be pj (agents who cannot retrieve
higher utility from any other resource). Agents drive to
their preferred resource if its capacity is not exceeded,
that is cj ≥ pj. Otherwise, they stochastically drive to j
with probability

cj
pj

and redirect to another resource with

probability 1− cj
pj

. Thus, the expected number of agents
preferring a resource j driving to that resource j is cj, if
at least cj agent prefer j, and pj otherwise. The resource
agents divert to can be one of the following: (SRD1) Any
customer which is noone’s first choice; (SRD2) any other
customer; (SRD3) his second choice customer; or (SRD4)
the best customer which is noone’s first choice. SRD3 and
SRD4 are an extension of SRD2 and SRD1 respectively,
increasing the average utility of successful agents, that
is agents carrying a customer. If the first preferences of
different agents are not independent, this likely also apply
for the alternate preferences in SRD3 and SRD4, decreas-
ing the utilization fraction. All SRD strategies require
information about the first preferences of all other agents
which can be acquired by a single iteration of RD upfront.
Then all agents know how many other agents share the
same top preference, making the second iteration identi-
cal (SRD2) or similar (SRD1, SRD3, SRD4) to SCA, as all
agents redirect based upon the number of agents in the
chosen district during the previous iteration. In addition
to the number of agents preferring the same resource,
the SRD1 strategy also requires information about the
number of agents preferring all other resources which
one could also retrieve in a single iteration of RD upfront.



L. Martin / Junior Management Science 4(1) (2019) 1-346

Thus, the SRD1 strategy does not require too much in-
formation, if the number of iterations is sufficiently high
to compensate for a potentially very low utility during
the first iteration. The SRD2 strategy requires less infor-
mation than the SRD1 strategy, as it only incorporates
the number of agents preferring the resource they prefer
themselves. It is thus beneficial if the information about
other resources cannot be determined easily. The SRD3
strategy also requires only very few information (as much
as SRD2), but the utility of successful agents is higher, as
all successful agents receive a high utility (maximum or
second highest utility). If the agent utilities of different
agents are not stochastically independent, there can be
a high number of resources noone drives to, neither as
first nor as second preference. In many cases, the second
preference of an agent is the first preference of another
agent, thus not exploiting the full potential. In SRD4, the
second preference is only chosen, if no agent prefers this
resource. Thus, the set of first choice resources and the
set of alternate choice resources do not intersect, making
it impossible that alternate choice agents carry a customer
who is preferred by another agent increasing the average
utility. Yet, SRD4 requires more information about the
preferences of other agents than SRD3. Thus, the exis-
tence of all strategies is justified by their different data
requirements comparing to the expected performance.
The performance of the different strategies with respect
to the metrics utilization fraction and utility depends on
the actual model variant.

4. Kolkata Paise Restaurant Problem

In their paper, Chakrabarti et al. (2009) discussed dif-
ferent strategies and provided simulations.

In the following, I will briefly reproduce their results
analytically.

4.1. The Model
In the KPRP cover story, daily laborers i ∈ I, |I| = N

represent agents who select a restaurant j ∈ J, |J| = N for
lunch. Agents select (i.e. randomly) a restaurant to which
they drive. Formally, I use d (i, j) to represent that i goes
to j.

d (i, j) =

{
1 if agent i goes to restaurant j
0 otherwise

(Definition 4.1)

∀j : oj = ∑
i∈I

d (i, j) (Definition 4.2)

Obviously, one agent can only go to one restaurant
(∀i : ∑

j∈J
d (i, j) = 1). Every restaurant j ∈ J can cater

exactly one agent i ∈ I.

c (i, j) =

{
1 if agent i eats at restaurant j
0 otherwise

(Definition 4.3)

If no agent went to j, j does not cater any agent, if
more than one agent goes to restaurant j, only one will be

served (∀j : c (i, j) = min
(

∑
i∈I

d (i, j), 1
)

). Agents can only

eat at restaurants they went to (∀i, j : c (i, j) ≤ d (i, j)). The
utility u (i, j) agents receive from eating at a restaurant
is a random permutation and is identical for all agents
(resulting in a shared utility us (j)), that is ∀j : u (i, j) =
us (j) and ∀j, j′ : us (j) 6= us (j′) ∨ j = j′). A daily laborer
(agent) prefers a restaurant if no other restaurant yields
higher utility for him. The number of agents preferring a
restaurant j is denoted as pj.

p (i, j) =

{
1 if ∀j′ ∈ J \ {j} : u (i, j) ≥ u (i, j′)
0 otherwise

(Definition 4.4)

∀j : pj = ∑
i∈I

p (i, j) (Definition 4.5)

The utilization fraction f is given as the number of
agents getting lunch divided by the total number of
agents. If an agent i gets lunch is given by f (i) which is
0, if i ate at no restaurant, and 1 otherwise (as every agent
can eat at maximum one restaurant).

f =
1
N
·∑

i∈I
f (i) (Definition 4.6)

f (i) = ∑
j∈J

c (i, j) (Definition 4.7)

The overall utility u is average utility per agent. The
agent utility u (i) is u (i, j), if i eats at j and 0 otherwise.

u =
1
N
·∑

i∈I
u (i) (Definition 4.8)

u (i) = ∑
j∈J

u (i, j) · c (i, j) (Definition 4.9)

In experiments and simulations, I further assume
N = 1000 (1000 agents and 1000 customers), and that cus-
tomers are indexed by their utility (us (j) = j

N ). Thus, the
utility is uniformly distributed such that um = umax = 1
is the utility of agents eating at their preferred restaurant,
and uavg = 0.5 is the expected utility of agents eating at
any other restaurant.



L. Martin / Junior Management Science 4(1) (2019) 1-34 7

4.2. Theoretic Foundations
The capacity of all restaurants is 1. All agents prefer

the same restaurant jp. Thus, the probability that j ∈ J is
preferred by exactly pj agents is 1 for jp and pj = N and
0 otherwise.

4.3. No Learning
As a baseline comparison Chakrabarti et al. (2009) give

an entirely random selection: In every iteration, every
agent selects one of the restaurants at random.

In Chakrabarti et al. (2009) they give the formula equa-
tion 1 as probability P

(
oj
)

for oj agents choosing the same
restaurant, if on average λ agents go to the same restau-
rant. Equation 2 simplifies equation 1 by setting λ = 1.
With N → ∞, one can further simplify the formula using
the Poisson Limit Theorem.

P
(
oj
)
=

(
λN
oj

)
1
N

oj
(

1− 1
N

)λN−oj

=
λoj

oj!
e−λ (1)

=

(
N
oj

)(
1
N

)oj
(

1− 1
N

)N−oj

=
1

oj!
e−1 (2)

Therefore, P(0) gives the probability of a restaurant
being unoccupied any evening using this random stategy,
making 1− P(0) ≈ 63.2% the average utilization.

I, therefore, expect a Gaussian distribution around
f = fNL = 63.2% for the utilization fraction. As agents
on average receive average utility (if they are successful),
I conclude that the utility is u = f · uavg = 0.316 · umax.

4.4. Rank Dependent Choice
Agents i ∈ I incorporating the RD strategy always

turn to the restaurant j that yields them the highest utility
(d (i, j) = 1 ⇐⇒ ∀j′ : u (i, j) ≥ u (i, j′)).

In the KPRP, the restaurant with the highest utility
and thus the first preference restaurant is identical for
all agents (∀i, i′ ∈ I : u (i, j) = u (i′, j)). Thus, all agents
i ∈ I go to the same restaurant j. This restaurant can only
cater a single agent, resulting in a utilization fraction of
f = 1

N . For N = 1000, I, therefore, expect f = fRD = 0.1%.
The (single) successful agent receives maximum utility,
resulting in u = 0.001 · umax on average.

4.5. Limited Learning
With this strategy, all agents choose a restaurant at

random the first night. The utilization therefore is Gaus-
sian distributed around 63.2%. During successive nights,
all agents base their choice on whether they got dinner
the previous day (Chakrabarti et al., 2009):

• If some agent got food at time t, he will choose the
highest ranking restaurant at time t + 1. (If an agent
was successful at the highest utility restaurant, he
will return there in the next iteration)

• If some agent did not get food at time t, he will
randomly choose any other restaurant at time t + 1.

The first case is irrelevant for the KPRP, as the utiliza-
tion fraction for this part is fRD = 1

N (with fRD as the
utilization fraction of the RD strategy or fraction of carried
customers by an agent preferring them), with N → ∞ the
utilization fraction gets negligibly small (or fRD = 0.1%
for N = 1000). The second case is given by λ = 1− f in
equation 1 (the ratio between agents and restaurants is
(1− f ) : 1). Chakrabarti et al. (2009) give the following
recursion relation:

ft+1 = 1− e−λt ; λt = 1− ft (3)

In a more generalized fashion, I write:

ft = ft−1 · fRD︸ ︷︷ ︸
first try best

+
(

1− e−(1− ft−1)
)

︸ ︷︷ ︸
random or return

(4)

If one assumes that f converges as ft+1 = ft, the
utilization will be Gaussian distributed around an average
value of f = 43.3% and u = f · uavg = 0.212 · umax.

4.6. One Period Repetition
All agents choose the restaurant randomly the first

evening.

• If some agent got dinner at restaurant j at time t (but
not at time t− 1), he will return to this restaurant
at time t + 1 (return).

• If some agent got dinner at the same restaurant j
at time t− 1 and t, he will compete for the highest
utility restaurant at time t + 1 (improve).

• If some agent did not get dinner at any restaurant
at time t, at time t + 1 he will randomly choose any
restaurant which was vacant at time t (random).

In their paper, Chakrabarti et al. (2009) both give the
distribution and simulation results.

The probability distribution of utilizations is given by
equation 6 with xt being the fraction of agents returning
to the same restaurant at time t + 1, and thus the fraction
of agents eating at a randomly chosen restaurant at time
t. As all agents who do not eat at a restaurant at time
t − 1 choose a restaurant randomly and are successful
with probability fNL, Chakrabarti et al. (2009) assume
that xt = (1− xt−1) · fNL. xt is also the fraction of agents
improving at t + 2 (in this case, the expected utilization is
fRD = 1

xt N , it can therefore be ignored if N → ∞).

ft =xt−1 + (1− xt−1) ·
(

1− e−1
)

(5)
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ft+1 = (1− xt) ·
(

1− e−1
)
+ (6)(

1− (1− xt) ·
(

1− e−1
))
·
(

1− e−1
)

In their paper, Chakrabarti et al. (2009) conclude that
the fixed point of this right half of both equations in 6
is at x ≈ 0.38 or f ≈ 0.77, a result I cannot replicate in
simulations.

Their original formula is not replicable: It only con-
siders those agents who are not eating at their pre-
ferred restaurant (the utilization fraction for these agents
is added in the second term). From the remaining
(1− fRD) · N agents, a fraction of xt−1 agents returns
to the previously chosen restaurant, and a fraction xt−2
tries eating at the highest utility restaurant (yet unsuc-
cessful, as all successful agents contribute utilization via
the second term). Thus, a fraction of (1− xt−1 − xt−2)
of all agents randomly chooses a restaurant. These
agents are successful with probability fNL = 1 − e−1.
Chakrabarti et al. (2009) do not deduct xt−2, as these
agents are unsuccessful. In the next iteration, those
agents who successfully randomly choose a restaurant
((1− xt−1 − xt−2) · fNL), become xt. Assuming that xt
converges to a stable state (xt = xt+1 = xt+2), I can
drop subscript t, resulting in a fraction x. The corrected
formula is given in equation 7.

f = (x + (1− 2 · x) · fNL) · (1− fRD)︸ ︷︷ ︸
random, return, and improve

+ fRD︸︷︷︸
best

(7)

The fraction x is given by x = (1− 2x) ·
(
1− e−1) ≈

27.9%, and ft decreases to f = 55.8%. The utility is given
as u = 0.279 · umax.

Yet, one should notice that this strategy is promising
for vehicle for hire markets: The best (highest utility)
resources are different for different agents, thus, this share
is not “lost”, but will be added.

4.7. Crowd Avoiding
Agents using the CA strategy only choose restaurants

which did not serve customers the previous evening.
The probability P (0) of a restaurant being vacant at

time t = 1 after being empty at time t = 0 is given by
equation 8. As the number of restaurants to choose from
at time t = 1 is reduced from 1 to 1 − f , the average
number of agents per restaurant needs to be set to λ =

1
1− f to cater for this change (in equation 1).

P (0) = e−λ = e−
1

1− f (8)

Incorporating f = 1 − P (0) and the fact that only
1− f restaurants are available into equation 8, yields the
following equation:

f = (1− f )
(

1− e−
1

1− f

)
(9)

Equation 9 has two solutions at f1 ≈ 0.457 and f2 ≈
1.872, the latter being discarded as the utilization fraction
cannot exceed 1. The utilization fraction is therefore
f = 45.7%. As all agents who eat at any restaurant
receive average utility, I conclude that the utility is u =
0.229 · umax.

4.8. Stochastic Crowd Avoiding
Ghosh et al. (2013) also introduced another strategy

in which the probability of returning to some place in-
versely depends on the number of agents choosing this
restaurant (retj (t) = 1

oj(t−1) with retj the probability of

returning to restaurant j and oj (t− 1) the number of
agents at restaurant j at time t− 1). Alternatively, this
agent will choose any other restaurant with equal proba-

bility
oj(t−1)−1

oj(t−1) ·
1

N−1 .

In their paper, Ghosh et al. (2013) give an expected
utilization fraction of f ≈ 80%. My simulations give an
average utilization fraction of f̄ = 0.735. This is still better
than random (the only better than average strategy), but
it is not as good as expected.

Ghosh et al. (2013) define that ai is the share of restau-
rants with i agents (in our model, i is oj) and ai = 0 ∀i > 2.
Thus, a0 + a1 + a2 = 1 (number of restaurants), and
a1 + 2 · a2 (number of agents). In every iteration, the
share of vacant restaurants (a0) is newly calculated, it
comprises those restaurants which were empty the pre-
vious iteration (prev), minus those restaurants to which
some agent drives to who went to an a2 restaurant the pre-
vious iteration (new) and those a2 restaurants in which
both agents from the previous iteration divert and no
agent goes to (both leave).

a0 = a0︸︷︷︸
prev

− a0 · a2︸ ︷︷ ︸
new

+
a2

4
− a2

a2

4︸ ︷︷ ︸
both leave

(10)

I assume that the difference emerges from the fact that
the authors ignored that more than two agents can head
for in the same restaurant. They state that the influence of
ai for i > 2 is negligibly small), yet, using a0 = a2 + 2 · a3 +
3 · a4 + . . . the accumulated impact grows. In simulations
with N = 1000 agents, I observed oj = 3 in 3.39% of all
restaurants and oj = 4 in 0.42% of all restaurants, oj = 5
to oj = 10 occurred seldom, but still affected the final
result.

The utility is u = f · uavg = 0.368 · umax.



L. Martin / Junior Management Science 4(1) (2019) 1-34 9

4.9. Stochastic Rank Dependent Choice
Agents using the SRD strategy stochastically either

eat at the highest-utility restaurant jp or turn to another
restaurant j ∈ J. As all N agents share the same first
preference, the probability that some agent i goes to jp is
1
N .

In the SRD1 strategy, the other agents turn to all restau-
rants except jp. On average, N − 1 agents turn to N − 1
restaurants, yielding an average utilization fraction of
1− e−1 (for those N− 1 diverting agents). The total utiliza-
tion fraction is therefore f = 1

N + N−1
N ·

(
1− e−1) = 63.2%

and the utility is u = 0.316 · umax.
In the SRD2 strategy, redirecting agents turn to all

restaurants j ∈ J (including jp). On average, N − 1 agents
turn to N restaurants, with N → ∞ this yields and aver-
age utilization fraction of 1− e−1 for diverting agents and
an overall utilization fraction of f = 63.2% and a utility
of u = 0.316 · umax.

In the SRD3 strategy, diverting agents turn to their
second choice (that is the restaurant yielding second high-
est utility). As all utilities are identical for all agents, this
second preference is shared among all agents. Thus, all
diverting agents go to the same restaurant j′, resulting in
a total utilization fraction of f = 2

N = 0.2% for N = 1000
and a utility of u = 0.002 · umax.

The SRD4 strategy is identical to the SRD3 strategy
for the KPRP, as the best vacant restaurant assuming all
agents prefer the same restaurant is the restaurant that
yields the second highest utility. I, therefore, conclude
that the utilization fraction is f = 2

N = 0.2% for N = 1000
and that the utilility is u = 0.002 · umax.

4.10. Results
Table 1 comprises analytical and simulation results

of the previous sections (simulation for SCA, analytical
otherwise).

For the KPRP, utilization fraction and utility are lin-
early dependent for most strategies (u = f · uavg). RD,
SRD3 and SRD4 have u = f · umax, but the performance
with respect to utilization fraction or utility of these strate-
gies is insufficient. All strategies exceed the baseline com-
parison RD, but only SCA outperforms the baseline NL.
SRD1 and SRD2 are as good as NL, but cannot outperform
it. SRD1 and SRD2 as well as SRD3 and SRD4 perform
pairwise equally well, as the alternate choice is identical
for the KPRP.

5. Individual Preferences

In this chapter, I will apply the strategies introduced in
chapter 3 to the IP model variant. Some of the aforemen-
tioned strategies do not draw upon the actual ranking; I
can therefore safely assume that the utilization will be the
same as in the KPRP with the given adjustments.

5.1. The Model
I formally define the IP game as follows:
The utility agents i ∈ I, |I| = N receive from carrying

some customer j ∈ J, |J| = N is uniformly distributed,
that is every agent associates every utility level between 0
and 1 with 1

N step size with some customer, but different
agents may receive different payoff from the same cus-
tomer. I assume strict utility levels (no two customers are
associated with the same utility by some agent) and are
therefore able to derive a preference ranking.

Every agent i ∈ I drive to exactly one customer j ∈ J
(∀i : ∑

j∈J
d (i, j) = 1). I denote that i drives to j as d (i, j) = 1.

The number of agents driving to some customer j is its
occupancy oj.

d (i, j) =

{
1 if i drives to j,
0 otherwise.

(Definition 5.1)

∀j : oj = ∑
i∈I

d (i, j) (Definition 5.2)

Every agent drives to exactly one customer (∀i :
∑
j∈J

d (i, j) = 1). If more than one agent drives to some

customer j, only one of the agents will be able to carry
j; all others will run empty. I denote that agent i carries
customer j as c (i, j) = 1.

c (i, j) =

{
1 if i carries j,
0 otherwise.

(Definition 5.3)

Obviously, an agent i can only carry a customer j,
if he drives to j (∀i, j : c (i, j) ≤ d (i, j)), A customer
j is carried by at most one agent, and if there is an
agent i that drives to j, this customer will be carried

(∀j : c (i, j) = min
(

∑
i∈I

d (i, j), 1
)

). Agents can either ran-

domly or deterministically choose the customer they drive
to. Every agent prefers one customer over all others, as it
returns the highest utility for him (if no other agents were
driving to the same customer). This customer j yields a
higher utility than all other agents. The number of agents
preferring some customer j is denoted as pj.

p (i, j) =

{
1 if ∀j′ ∈ J \ {j} : u (i, j) ≥ u (i, j′)
0 otherwise

(Definition 5.4)

∀j : pj = ∑
i∈I

p (i, j) (Definition 5.5)

The utilization fraction is derived from the average
number of agents carrying a customer.
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Strategy utilization f utility u

NL 63.2% 0.316
RD 0.1% 0.001
LL 43.3% 0.212

OPR 55.8% 0.279
CA 45.7% 0.229

SCA 73.5% 0.368
SRD1 63.2% 0.316
SRD2 63.2% 0.316
SRD3 0.2% 0.002
SRD4 0.2% 0.002

Table 1: KPRP: Comparing Strategies

f =
1
N
·∑

i∈I
f (i) (Definition 5.6)

f (i) = ∑
j∈J

c (i, j) (Definition 5.7)

The utility is given as the average utility of all agents.
The individual utility u (i, j) an agent i receives from
carrying a customer j is a random permutation for every
customer (∀i : ∀j, j′ : u (i, j) 6= u (i, j′) ∨ j = j′).

u =
1
N
·∑

i∈I
u (i) (Definition 5.8)

u (i) = ∑
j∈J

u (i, j) · c (i, j) (Definition 5.9)

In numerical experiments and simulations I use |I| =
|J| = N = 1000 agents and customers, and a uniformly
distributed utility (between 1

N ≈ 0 and umax = 1). Agents
i carrying their preferred customer (∀j : c (i, j) = p (i, j))
receive an expected maximum utility um = umax, agents
carrying another (not preferred) customer ( ∑

j∈J
c (i, j) =

1∧ ∀j : p (i, j) = 1⇒ c (i, j) = 0) receive uavg.

5.2. Theoretic Foundations
The capacity of all customers is 1. The agent prefer-

ences are randomly distributed, Thus, the probability that
pj agents prefer customer j is Poisson distributed around
1.

Pre f
(

pj
)
=

1
pj!
· e−1 (11)

5.3. No Learning
One of the best strategies for the Kolkata Paise Restau-

rant Problem with respect to the utilization fraction was

to choose a restaurant randomly at every evening. I will
therefore adopt this strategy for mobility markets.

With this strategy, every driver randomly selects the
customer (independent of his individual preference rank-
ing and the history). Thus, the utilization fraction is cal-
culated as f = 1− e−1 and is therefore f = fNL = 63.2%.

As agents choose randomly, on average every driver
can expect utility uavg . As only 63.2% of all drivers can
expect payoff (the others do not get a customer), only
those can get payoff. The average utility is therefore given
by equation 12. In the given experiment with N = 1000
agents, I, therefore, expect a Gaussian distributed utility
around an average of u = 0.316 · umax.

u = uavg · f = uavg ·
(

1− e−1
)

(12)

5.4. Rank Dependent Choice
The RD strategy is a second baseline comparison in

addition to the NL strategy. Whilst the RD strategy was
outperformed with respect to both metrics by all other
strategies in the KPRP, the high number of distinct first
preference resources makes it a reasonable choice in the
IP model variant.

Assuming a random preference ranking, it would be
beneficial to always try to get the maximum payoff, which
– on average – should also yield an average utilization
of f = fRD = 63.2% = 1 − Pre f (0) = 1 − e−1 with
Pre f (0) being the probability that a customer is noone’s
first choice (pj = 0). The expected average utility for
successful agents – that is agents carrying a customer –
increases from uavg to umax. In our example, this would
be u = 0.632 · umax.

5.5. Limited Learning
Using the LL strategy, agents choose a customer ran-

domly at time t and go to their highest utility customer
at time t + 1, if they got a tour at time t, otherwise they
choose randomly again.
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The utilization fraction can be given by the following
formula:

ft = ft−1 · fRD︸ ︷︷ ︸
first try best

+
(

1− e−(1− ft−1)
)

︸ ︷︷ ︸
random or return

(13)

The left summand of the equation models all those
agents which chose their top priority customer at time
t after successfully choosing randomly (at time t− 1 or
earlier). The success rate for these agents is fRD which
is the utilization fraction of the RD strategy. The sec-
ond summand of the equation comprises all those agents
which choose randomly or which successfully chose their
top priority at time t − 1 and return there. Using this
equation, the utilization fraction is f = 70.2%.

One has to differentiate between those agents who
return to their prioritized customer and those agents who
randomly choose a customer, as both belong to the sec-
ond summand of equation 13. Let’s assume that all those
agents who do not share their top priority with any other
agent will be able to return there. The fraction of re-
turning agents is, therefore, given as r = Pre f (1) = e−1

(probability that pj = 1 agents prefer a customer j).
The utility is given by 14 which results in a utility of

u = 0.620 · umax for N = 1000 for the IP model.

u = f · fRD · um +
(

1− e f−1
)

·
(
r · um + (1− r) · uavg

) (14)

5.6. One Period Repetition
Though the average utilization fraction was quite low

for the One Period Repetition strategy in the KPRP, it can
be a good solution for mobility markets: In the KPRP with
identical rankings, the fraction of agents which headed
for the best possible resource was usually lost (only one
of them got dinner). This does not happen in mobility
markets, as agents turn to different customers when going
to their preferred resource.

Drawing upon the conclusions for the One Period Rep-
etition in equation 7, I can assume that the new average
utilization fraction is given by equation 16. Over time, all
customers who are someone’s first preference will be car-
ried (second summand). fRD is the utilization fraction of
the RD strategy and, therefore, the fraction of customers
carried by an agent preferring them. All other customers
(1− fRD = e−1) will be serviced during the random step
and the improve step.

f =
(

x + (1− 2x)
(

1− e−1
))
· (1− fRD) + fRD

(15)

=
(

x + (1− 2x)
(

1− e−1
))
· e−1 +

(
1− e−1

)
(16)

Solving equation 16 yields an average utilization frac-
tion f = 83.7%.

The average utility is given by equation 5.6, in this
formula, all those customers who are some agent’s first
preference will be serviced with maximum utility and
all others will be serviced resulting in average utility
for the respective agent. The result for this equation is
u = 0.728 · umax.

u =
(

x + (1− 2x)
(

1− e−1
))
· e−1 · uavg+(

1− e−1
)
· um

(17)

5.7. Crowd Avoiding
The strategy CA is identical to the one given in section

4.7 for the KPRP: All agents go to customers j ∈ J who
were vacant the previous iteration (oj = 0 at time t− 1).

As this is strategy is independent of the rank, the
expected utilization fraction is f = 45.7% from equation 9,
and the utility is u = f · uavg = 0.229 · umax for N = 1000
agents.

5.8. Stochastic Crowd Avoiding
Like in the CA strategy (section 5.7), the strategy SCA

for mobility markets works exactly like the one for the
KPRP in section 4.8: The probability of returning to a
customer the successive day is inversely dependent on
the number of agents at this customer the previous day.

This strategy is also independent of the actual utility
resulting in expected utilization fraction of f̄ = 0.735 and
a utility of u = f · uavg = 0.368 · umax for N = 1000 agents.

5.9. Stochastic Rank Dependent Choice
Assuming every agent knows the number of agents pj

with an identical highest-ranking customer, agents could
head for this customer with a probability of 1

pj
and head

for either

• any customer which is noone’s first choice (SRD1)

• any other customer (SRD2)

• his second choice customer (SRD3)

• the best customer which is noone’s first choice
(SRD4)

with a probability of 1− 1
pj

.
The expected utilization fraction f is the sum over

the utilization given pj agents preferring some customer
j for all possible values of pj. F

(
pj
)

is the expected
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fraction of customers being carried both in this customer
and by switching to another customer (a more detailed
description will follow in this section). Pre f

(
pj
)

is the
probability that some customer is preferred by pj agents
and is given by equation 11.

f =
N

∑
pj=1

Pre f
(

pj
)
· F
(

pj
)

(18)

The fraction of agents servicing a customer given the
number of agents preferring this customer pj depends
on the number of agents rj switching (“redirecting”) to
another customer. Every rj is associated with a probability
D
(

pj, rj
)

that rj out of pj agents divert to other customers.
Every agent that switches to another customer yields uti-
lization with probability s (success rate). In total r′j/r′′j
agents receive this payoff. If at least one agent remains
at this prioritized customer, this agent (or one of these
agents) i will receive utilization f (i) = 1. (In SRD2 and
SRD3 it is possible that redirecting agents turn to a cus-
tomer in which at least one agent remains. In this case,
diverting agents can “bully out” other agents. This is
included in the success rate s.)

F
(

pj
)
=

pj

∑
r′j=1

D
(

pj, r′j
)
· s · r′j +

pj−1

∑
r′′j =0

D
(

pj, r′′j
)

(19)

The probability that rj out of pj agents redirect to
another customer is given by D

(
pj, rj

)
. Agents service

their top priority customer with p = 1
pj

, otherwise they
redirect. For larger rj and pj, one can apply the Poisson
Limit Theorem.

D
(

pj, rj
)
=

(
pj
rj

)(
1
pj

)pj−rj
(

1− 1
pj

)rj

(20)

=
1(

pj − rj
)
!
· e−1 (21)

The average utility is given by adapting equation 18.
The utilization fraction for pj agents preferring the same
customer is replaced by the utility U

(
pj
)

which gives the
corresponding utility.

u =
N

∑
pj=1

Pre f
(

pj
)
·U
(

pj
)

(22)

U
(

pj
)

modifies F
(

pj
)

by introducing different ex-
pected utilities for successful agents: If an agent switches
to another customer, he can only expect average utility

ualt, whilst staying with the top priority yields optimal
utility um.

U
(

pj
)
=

pj−1

∑
r′j=0

D
(

pj, r′j
)
· s · r′j · ualt +

pj

∑
r′′j =1

D
(

pj, r′′j
)
· um

(23)

The success rate s and the utilities um and ualt de-
pend on the behaviour of diverting agents. Table 2 lists
these parameters, and they are discussed in the following
sections.

5.9.1. Noone’s First Choice (SRD1)
The success rate s is given by on average e−1 agents

switching over to other (vacant) customers. On average,
e−1 customers are vacant.

s =
(

1− e−1
)

(24)

I, therefore, derive f = 79.5% and u = 0.678 · umax.
I further assume um = umax = 1 and ualt = uavg = 0.5,

as agents redirect to a randomly selected customer.

5.9.2. Any Other Customer (SRD2)
The success rate s for redirecting agents changes in

comparison to the previous strategy: If an agent frequents
a customer who is someone else’s first preference, I can-
not assume that the utilization is increased. On average,
e−1 · N agents divert to other customers, and there are N
customers these agents can divert to. The success rate is
the probability that a diverting agent carries a customer j
who is not preferred by any other agent (pj = 0). On av-
erage, e−1 customers are not preferred by any agent. The
probability that a customer j with pj = 0 is not carried by
another diverting agent is e−λ with λ the average number
of diverting agents driving to a customer (λ = 1

e−1 ). Thus,
the probability that at least one agent drives to some cus-

tomer j is 1− e−
1

e−1 . The success rate is, therefore, given
by equation 25.

s = e−1 ·
(

1− e−
1

e−1

)
≈ 0.347 (25)

The expected maximum utility um is derived from
the probability that a = pj − rj agents remain with their
shared first priority customer and another b agents get to
this customer when selecting any other but their preferred
customer. a agents remain if rj = pj − a agents divert
which is given by D

(
pj, pj − a

)
from equation 21. The

probability that b agents choose this customer randomly
is given by equation 27 (swap to customer j). On average,
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Strategy s um ualt f u

SRD1 0.623 1.00 0.50 79.5% 0.678
SRD2 0.347 1.00 0.50 69.0% 0.626
SRD3 0.347 1.00 1.00 69.0% 0.690
SRD4 0.623 1.00 1.00 79.5% 0.795

Table 2: IP: SRD Choice Strategy – Variables

e−1 of all agents divert to another customer, they choose
from all N customers, thus, λ = 1

e−1 = e.

um =
N

∑
a=1

N

∑
b=1

D
(

pj, pj − a
)
· P (b swap)·

a · umax + b · ualt
a + b

= 0.922

(26)

P (b swap) =
λb

b!
· e−λ, λ = e (27)

The utilization fraction is, therefore, given as f =
69.0% and the utility is u = 0.626 · umax.

5.9.3. Second Choice Customer (SRD3)
In this strategy, every agent who knows that other

agents share the same #1 priority decides to go to his #2

priority with probability
pj−1

pj
(with pj from Definition

5.5).
Success rate s = 0.347 and expected utility for success-

ful non-diverting agents um = 1.0 remain unchanged with
respect to SRD2, but ualt for successful diverting agents
increases to um. In the numerical experiment, the top
priority customer yields a utility of 1.0, the second best
had a utility of 0.999. Thus, the payoff is always either
1 oder 0.999 (And, therefore, f · 0.999 < u < f · 1). With
N → ∞ I can assume ualt = umax.

The utilization fraction is f = 69.0% and the utility is
u = 0.690 · umax.

5.9.4. Best Vacant Customer (SRD4)
Rather than choosing any vacant customer (like in the

first case), or always the second best (regardless of other
agents choosing this customer as #1) an agent chooses the
best possible customer in which no other agent might be
serving with maximum utility.

Mathematically, choosing this alternative customer
is identical to randomly choosing any vacant customer
(there are e−1 · N vacant customers, as the customers are
assigned as a random permutation, one could also ran-
domly draw these customers). Therefore, the success rate
of diverting agents is s = 1− e−1 like in SRD1 (equation
24). The utilization fraction is, therefore, f = 79.5%.

If an agent approaches his top priority customer and is
the only one there, the utility will be given by umax. If the
agent diverts to another customer, the expected utility is
slightly lower. The highest utility customer cannot be the
best vacant customer. The second best customer is vacant
with probability e−1. The customer with the third highest
utility is vacant with probability e−1, but only is the best
vacant customer, if the customer wiht the second highest
utility is not vacant (with probability 1− e−1). The l best
customer is the best vacant customer if all l− 2 customers
(all customers yielding a higher utility except the first
preference customer) are not vacant and customer l is
vacant. Customer l then yields a utility of 1− l

N .

ualt =
N

∑
l=2

(
1− l

N

)
· e−1 ·

(
1− e−1

)l−2

= umax −
1.7183

N

(28)

For N = 1000, the utility of the alternate choice is
ualt = 99.8%. With increasing N, this deviation becomes
negligible (ualt ≈ umax). The utility is, therefore, u =
0.795 · umax.

5.10. Results
Table 3 lists utilization fraction and utility for all strate-

gies in this setting.
The two baseline comparison strategies NL and RD

perform equally well with respect to f , but RD outperms
NL by orders of 2 concerning u, as all successful agents
receive um (utility for agents carrying their preferred cus-
tomer) rather than uavg (average utility for agents carrying
any customer). Except for CA, all strategies outperform
NL and RD with respect to f (and NL with respect to
u), but LL, SCA, and SRD2 fall behind RD with respect
to utility, as agents receive a lower utility if they are suc-
cessful (due to the fact that agents frequently choose a
random customer). OPR performs best with respect to
utilization but is outperformed by SRD4 regarding the
utility. SRD1 and SRD4 as well as SRD2 and SRD3 show
equal utilization, as the success rate is identical, but SRD3
and SRD4 outperform their counterparts on utility, as all
agents receive (almost) umax.
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Strategy utilization f utility u

NL 63.2% 0.316
RD 63.2% 0.632
LL 70.2% 0.602

OPR 83.7% 0.728
CA 45.7% 0.229

SCA 73.5% 0.368
SRD1 79.5% 0.678
SRD2 69.0% 0.626
SRD3 69.0% 0.690
SRD4 79.5% 0.795

Table 3: IP: Comparing Strategies

6. Mixed Preferences

This section evaluates the performance regarding uti-
lization and utility for the strategies defined in chapter 3
for the MP model: The distance to a customer is modeled
as individual component in the utility of a customer, the
payoff is modeled as the shared component.

6.1. The Model
The MP game is defined as follows: Agents i ∈

I, s.t. |I| = N drive to customers j ∈ J, s.t. |J| = N
(d (i, j) = 1), agents try to carry the customer they drive to
(c (i, j) = 1), but one customer can only be carried by one
agent (∀j : c (i, j) = min ∑

i∈I
d (i, j), 1). Every agent drives

to exactly one customer (∀i : ∑
j∈J

d (i, j) = 1), and oj agents

drive to customer j (occupancy of j). An agent i can only
carry a customer j, if i drives to j (∀i, j : c (i, j) ≤ d (i, j)).
The customer j that yields the highest utility for some
agent i is preferred by i (denoted as p (i, j) = 1). The
number of agents preferring some customer j is denoted
as pj.

d (i, j) =

{
1 if i drives to j,
0 otherwise.

(Definition 6.1)

∀j : oj = ∑
i∈I

d (i, j) (Definition 6.2)

c (i, j) =

{
1 if i carries j,
0 otherwise.

(Definition 6.3)

p (i, j) =

{
1 if ∀j′ ∈ J \ {j} : u (i, j) ≥ u (i, j′)
0 otherwise

(Definition 6.4)

∀j : pj = ∑
i∈I

p (i, j) (Definition 6.5)

The utility an agent i receives from a customer j u (i, j)
is determined as the weighted average of two compo-
nents: The individual utility ui (i, j) represents the inverse
distance between agent and customer. The shared utility
us (j) is the utility which is identical to all agents i ∈ I.
ui (i, j) is a uniform distribution in the range between 0
and 1 independently calculated for every agent, us (j) is a
uniform distribution in the range between 0 and 1.

u (i, j) = α · ui (i, j) + (1− α) · us (j) , 0 ≤ α ≤ 1
(Definition 6.6)

The utilization fraction is calculated as the average
number of agents carrying a customer (given by f (i) = 1)
divided by the total number of agents N. The agent
utilization f (i) denotes if agent i carries any customer.
The utility u is given by the average agent utility u (i)
which is 0 if agent i does not carry any customer and is
u (i, j) if i carries customer j.

f =
1
N
·∑

i∈I
f (i) (Definition 6.7)

f (i) = ∑
j∈J

c (i, j) (Definition 6.8)

u =
1
N
·∑

i∈I
u (i) (Definition 6.9)

u (i) = ∑
j∈J

u (i, j) · c (i, j) (Definition 6.10)

For numerical experiments and simulations I assume
that there are N = 1000 agents and customers. I further
assume that α = 0.5, resulting in the same influence for
shared and individual utility. The individual utility is uni-
formly distributed between 1

N and umax = 1. Every agent
that is successful at the preferred customer receives on
average um and every agent successful at a randomly cho-
sen customer receives on average uavg = 0.5. Without loss
of generality, I further assume that customers are indexed
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by their shared utility (us (j) = j
N ). Though deterministic

rather than random, this does not influence numerical
results (the index j is no more than a theoretical construct
which one can fit to the utilities). It simplifies calculations,
as one can easily iterate through all customers with a
higher (or lower) shared utility.

6.2. Theoretic Foundations
The maximum utility an agent can achieve may be

lower than umax = 1 as the utility is built as the weighted
sum of two uniformly distributed variables with maxi-
mum umax.

6.2.1. Probability of a Customer with a given Shared Util-
ity yielding Maximum Utility

It is possible that there is no longer a single customer
yielding maximum utility, but there can be multiple cus-
tomers with the same utility. A customer is part of the set
of top customers for some agent if there is no customer
who returns a higher utility for this agent.

For simplicity, I first consider random integers for the
individual component rather than a random permutation
for the shared component (no duplicates). With this sim-
plification, the probability that the utility retrieved from
one customer is higher than the utility retrieved from
another customer is independent of the utility yielded by
all other customers (otherwise, one had to ensure that no
duplicates occurred).

I denote the probability Π (j) that some customer j
with shared utility component us (j) is among the cus-
tomers with highest utility for any agent i ∈ I. Assuming
that u (i, j) = α · ui (i, j) + (1− α) · us (j) (Definition 6.6)
and that ui (i, j) is random, I conclude that this probability
only depends on the customer j.

Π (i, j) = Π (j) = P
(
∀j′ : u (i, j) ≥ u

(
i, j′
))

(29)

Without loss of generality, one can assume that
us (j) = j

N . In the following I will use j as us (j) · N.
Numerically, I assume that every individual utility be-
tween 1

N and 1 is equally likely, I use q ∈ 1 . . . N to
model all possible individual utilities (q = ui (i, j) · N). I
separately calculate the probability that another customer
yields higher utility for those customers with a higher
(Πh (j, q)) and a lower (Πl (j, q)) shared utility component.
The total number of customers considered in Πl (j, q)
and Πh (j, q) is N − 1, customers jl < j are considered in
Πl (j, q), customers jh > j are considered in Πh (j, q).

Π (j) =
1
N

N

∑
q=1

Πl (j, q)Πh (j, q) (30)

To derive the formulas for Πl (j, q) and Πh (j, q), I first
consider a basic example: In an environment with N = 5
customers and agents, there is a customer j = 3 with
shared utility us (j) = 3

N and an agent i assigning an indi-
vidual utility ui (i, j) = 3

N , q = 3 to j. What is the probabil-
ity that a customer with a lower shared utility jl ∈ {1, 2}
or a higher shared utility jh ∈ {4, 5} is preferred over
j by agent i? Agent i can assign any individual utility
1
5 , 2

5 , 3
5 , 4

5 , 5
5 to these customers j′ ∈ {1, 2, 4, 5} (resulting in

q′ ∈ {1, 2, 3, 4, 5}). For every customer j′ one determines
the probability that this customer does not reach a higher
utility than u (i, j) = α · ui (i, j) + (1− α) · us (j) = 3

N . In
table 4 I display the (combined) utility of j′ (multiplied
by N for readability) and whether j or j′ reaches a higher
utility for agent i (→ j and→ j′), depending on its indi-
vidual utility q′ that an agent i can derive from j′ (left-
most column). The last row gives the probability that j′

does not exceed j. As none of the other customers must
reach a higher utility, I multiply the probabilities (that is
5
5 ·

4
5 ·

2
5 ·

1
5 = 8

125 ) to retrieve the probability that customer
j reaches the highest utility for agent i, if agent i assigned
him an individual utility of q

N = 3
5 . Obviously, one has

to calculate the probability that j is the highest utility
customer for all possible individual utilities, that is all
values of q ∈ {1 . . . N}.

Πl (j, q) is 1 if customer j has the lowest shared utility
(j = 1) as there is no customer with a lower shared utility
who could exceed the utility of customer j. Thus, j yields
a higher utility than all customers with a lower shared
utility. Otherwise, it is the product of the probabilities
that the utility of j exceeds the utility of all customers
j′ = j− jl with a lower shared utility. The probability of
exceeding any given other customer is given by q+jl

N , but
at most 1 ( N

N ). If a customer j′ has a jl lower shared utility
than j, its individual utility must be at least jl + 1 higher
than the individual utility of j (q) to exceed j. I, therefore,
calculate the probability that the individual utility of the
other customer j′ is not more than q + jl .

Πl (j, q) =


j−1
∏

jl=1

min(N,q+jl)
N , if j > 1

1 otherwise
(31)

Πh (j, q) is 1 if customer j has the highest shared com-
ponent as no customer with a higher shared utility compo-
nent exceeds the utility of j. Otherwise, it is the product
of the probabilities that the utility of j exceeds every
customer j′ = j + jh with a higher shared utility. The
probability of exceeding a given other customer is given
by q−jh

N , but is always non-negative. If a customer j′ has
a shared utility that is jh higher than the one of j, its
individual utility must be at most jh − 1 lower than the
individual utility of j (q). j′, therefore, requires an indi-
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Lower Higher
Indiv. Utility q′ = ui (i, j′) · N j′ = 1 j′ = 2 j′ = 4 j′ = 5

1 1→j 1.5→j 2.5→j 3→j
2 1.5→j 2→j 3→j 3.5→j′

3 2→j 2.5→j 3.5→j′ 4→j′

4 2.5→j 3→j 4→j′ 4.5→j′

5 3→j 3.5→j′ 4.5→j′ 5→j′

prob. u (i, j) ≥ u (i, j′) 5
5

4
5

2
5

1
5

Table 4: MP: Highest Utility Customer (Example)

vidual utility of q− jh + 1 to exceed the utility of j. The
combined utility is higher for j, if the individual utility of
j′ is at most q− jh.

Πh (j, q) =


N−j
∏

jh=1

max(0,q−jh)
N , if j < N

1 otherwise
(32)

Incorporating equations 31 and 32 in equation 30
yields:

Π (j) =



1
N ·

N
∑

q=1

j−1
∏

jl=1

min(N,q+jl)
N

N−j
∏

jh=1

max(0,q−jh)
N , if 1 < j < N

1
N ·

N
∑

q=1

N−1
∏

jh=1

max(0,q−jh)
N , if j = 1∧ N 6= 1

1
N ·

N
∑

q=1

N−1
∏

jl=1

min(N,q+jl)
N , if j = N ∧ N 6= 1

1 otherwise
(33)

This equation 33 can be transformed to the random
permutation case by decreasing the denominator as the
number of options for the individual component of the
other customer is reduced by the assignment to the first
customer. This also decreases the numerator of the frac-
tion in Πl .

Π (j) =



1
N ·

N
∑

q=1

j−1
∏

jl=1

min(N−1,q+jl−1)
N−1

N−j
∏

jh=1

max(0,q−jh)
N−1 , if 1 < j < N

1
N ·

N
∑

q=1

N−1
∏

jh=1

max(0,q−jh)
N−1 , if j = 1∧

N 6= 1

1
N ·

N
∑

q=1

N−1
∏

jl=1

min(N−1,q+jl−1)
N−1 , if j = N∧

N 6= 1
1 otherwise

(34)

Given this approach, it might happen that two cus-
tomers yield the same utility. The probability that the
highest utility is shared among different customers de-
creases with N → ∞. For N = 1000, approximately 3.9%
of all agents prefer more than one customer (given by the
sum of probabilities Π (j) for all j).

With the above equation with N = 1000, I expect that
4.03% of all agents prefer the customer with the highest
shared utility (that is max (j)). For those 70 customers
with the highest shared component the probability of
an agent preferring them is greater than 0.1%, thus, on
average, there is an agent for whom this customer yields
the best possible utility.

6.2.2. Expected Number of Agents Sharing a Top Priority
The number of agents sharing the same top priority

customer depends on the shared component of this cus-
tomer. The customer with the highest possible shared
utility will be chosen more often than the customer with
the lowest shared utility.
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Pre f
(

pj
)
=

(
N
pj

)
(Π (j))pj (1−Π (j))N−pj (35)

=

(
NΠ (j)

pj

)(
1
N

)pj
(

1− 1
N

)NΠ(j)−pj

(36)

=
(Π (j))pj

pj!
e−Π(j) (37)

6.2.3. Expected Number of Distinct Top Priorities
With the equation 37, it is now possible to calculate

the probability that a customer is noone’s first prefer-
ence (Pre f (0) for pj = 0) and the expected number of
customers which are noone’s preference (as the average
probability).

I ignore duplicate first preferences and assume that
a customer is selected with his associated probability of
being first preference.

no. of not pref. customers = N −∑
j∈J

1− Pj (0) (38)

The expected number of customers who are not pre-
ferred by any agent for N = 1000 is, therefore, 923 (or
alternatively: I expect approximately 77 distinct first pref-
erences).

6.2.4. Expected Utility of Top Priority Customers
The expected utility of a randomly selected customer

is straight-forward: The average of two random numbers
between 1

N and 1 is uavg = 0.5 (for sufficiently large N).
The expected utility for the first preference customer um
is more elaborate: um = umax = 1 can only be reached, if
both the shared and the individual utility are maximum
for an agent i and a customer j. Otherwise, the maximum
agent utility is a weighted sum of 1

N ·
j+q

2 weighted by
the probability that a customer yielding shared utility j

N
and individual utility q

N (for agent i). For simplicity, I
only consider the case 1 < j < N; equation 39 needs to
be adjusted accordingly to equation 34 to cater for j = 1
and j = N. For the defined numerical assumptions, the
expected utility of top priority customers is um = 0.92.

um =
1
N

N

∑
q=1

j−1

∏
jl=1

min (N − 1, q + jl − 1)
N − 1

N−j

∏
jh=1

max (0, q− jh)
N − 1

· j + q
2

(39)

6.3. No Learning
Agents incorporating the NL strategy randomly

choose where to drive to. Thus, the number of agents per
customer is Poisson distributed around 1. The number
of agents carrying a customer equals the number of cus-
tomers who are carried by some agent which is N minus
the number of agents who are not carried by any agent
( ∑
i∈I

c (i, j) = 0). As the number of agents driving to some

customer j is Poisson distributed, I conclude that the num-
ber of agents who do not carry any agent is

(
1− e−1) · N,

resulting in a utilization fraction of f = fNL = 63.2% and
a utility of u = f · uavg = 0.316 · umax.

6.4. Rank Dependent Choice
Obviously, only those customers who are some agent’s

first preference will be served with the RD strategy.
The utilization fraction is, therefore, given by equation

38 ( f = fRD = 7.7% for N = 1000). Those 7.7% of all
agents will receive maximum utility, resulting in u =
f · um = 0.075 · umax (with um = 0.92 from equation 39).

6.5. Limited Learning
In the LL strategy, agents decide randomly on a cus-

tomer until they are able to serve one. After that, agents
try their preferred customer. If they are being “bullied”
out, they return to selecting randomly. Those customers
who are preferred by some agent (j ∈ J|∃i ∈ I : p (i, j) =
1) will be carried in all iterations unless they did not carry
any customer in the previous iteration t− 1 ( ft−1 · fRD).
Agents who do not drive to their preferred customer
randomly select any customer, resulting in

(
1− e ft−1−1

)
as the number of agents in this phase is lower than the
number of customers to choose from.

ft = ft−1 · fRD +
(

1− e ft−1−1
)

(40)

f = lim
t→∞

ft (41)

u = f · fRD · um +
(

1− e f−1
)
· (42)(

r · um + (1− r) · uavg
)

Derived from equation 41 and ?? (with fRD the number
of customers who are preferred by some agent (or the
utilization fraction of the RD strategy), um = 0.97 and
r = ∑

j∈J
Π (j) · e−Π(j) = 0.01), I deduce that the utilization

fraction is f = 45.5% and that the average utility is u =
0.246 · umax.
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6.6. One Period Repetition
Using the OPR strategy, agents drive to their preferred

customer after being successful with some randomly cho-
sen customer for two iterations.

fRD · N agents carry the customer they prefer ( fRD
is the utilization fraction of the RD strategy). All other
agents follow the three-step approach ((1) random, (2)
return, and (3) improve). In every iteration a fraction
1− 2x agents chooses randomly (x = (1− 2x) ·

(
1− e−1)

successful), x agents return, and x agents drive to their
preferred customer (which is already occupied by another
agent, therefore not increasing the utilization). For N =
1000 and, therefore, fRD = 0.077, the utilization fraction
is f = 56.6%.

f = fRD + (1− fRD) ·
(

x + (1− 2x) ·
(

1− e−1
))

(43)

The utility is calculated analogously, those fRD agents
carrying their preferred customer receive um = 0.97, the
other agents carry a randomly selected customer and,
therefore, receive uavg. This results in u = 0.320 · umax.

6.7. Crowd Avoiding
Agents who follow the CA strategy randomly choose

any customer who was not carried during the previous
iteration. Thus, there are N agents driving to (1− ft−1) ·
N customers.

ft = (1− ft−1) · (1−
(

N
0

)
· (1− 1

(1− ft−1) · N
)N)

= (1− ft−1) ·
(

1− e−(1− ft−1)
)

(44)

I, therefore, conclude that f = 45.7%. As all successful
agents drive to a randomly chosen a customer, I assume
that these agents receive uavg. Thus, the utility is u =
0.229 · umax.

6.8. Stochastic Crowd Avoiding
Using the SCA strategy, agents either return to the

same customer or drive to any other customer depending
on the number of agents driving to the customer they
drove to in the previous iteration. If at time t− 1 agent
i drove to customer j (d (i, j) = 1) and the occupancy of
customer j is oj = 1, agent i returns to customer j at
time t. If agent i drove to customer j at time t− 1 and
the occupancy oj > 1, i returns there with probability 1

oj

and randomly chooses any other customer at time t with

probability
oj−1

oj
.

In simulations with N = 1000, umax = 1 and uavg =
0.5 I observe a utilization fraction of f = 73.5% and a
utility of u = 0.368 · umax.

6.9. Stochastic Rank Dependent Choice
With this strategy, the probability of driving to the top

customer depends on the number of agents which share
the same top priority.

Analytically, one can assume that the function of
the utilization fraction has to incorporate the no longer
random number of agents preferring some customer.
Pre f

(
pj
)

is the probability that a customer j is preferred
by exactly pj agents (derived from equation 37). F

(
pj
)

is
the expected utilization, if pj agents prefer customer j. As
Pre f

(
pj
)

is used to weight F
(

pj
)
, one has to divide by

∑
j∈J

N
∑

pj=1
Pre f

(
pj
)
= ∑

j∈J
Π (j) ≈ N.

f =
1

∑
j∈J

Π (j) ∑
j∈J

 N

∑
pj=1

Pre f
(

pj
)
· F
(

pj
) (45)

F
(

pj
)

includes the probability that rj agents di-
vert to other customers (with probability D

(
pj, rj

)
=((

pj − rj
)
!
)−1 · e−1).

F
(

pj
)
=

pj

∑
r′j=1

D
(

pj, r′j
)
· s · r′j +

pj−1

∑
r′′j =0

D
(

pj, r′′j
)

(46)

The average utility is calculated by adapting equations
45 and 46 such that it incorporates different utility levels
regarding on the agent’s type of choice (remain with their
top priority resulting in um or diverting to alternative
resources resulting in ualt).

u =
1

∑
j∈J

Π (j) ∑
j∈J

 N

∑
pj=1

Pre f
(

pj
)
·U
(

pj
) (47)

U
(

pj
)
=

pj−1

∑
r′j=0

D
(

pj, r′j
)
· s · r′j · ualt+

pj

∑
r′′j =1

D
(

pj, r′′j
)
· um

(48)

s, um, and ualt depend on the actual strategy. Table 5
compares the variables for SRD1 and SRD2.

6.9.1. Noone’s First Choice Customer
In this strategy, agents choose those customers who

are not preferred by any agent (j ∈ J, s.t. ∑
i∈I

p (i, j) = 0).

As the number of diverting agents on average equals
the number of customers who are not preferred by any
agent, I can assume that a fraction of s = 0.632 of all
diverting agents successfully carries another customer
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Strategy s um ualt f u

SRD1 0.632 0.92 0.46 89.8% 0.521
SRD2 0.661 0.92 0.50 88.0% 0.512

Table 5: MP: SRD Strategy – Variables

(success rate). The utilization fraction is, therefore, f =
63.8%. The utility of diverting agents (alternate utility)
is ualt. One cannot assume ualt = 0.5, as only those
customers with a lower shared component and therefore
a lower utility are being selected as noone’s preference.
For N = 1000, I assume ualt = 0.46, as on average 77
of the highest utility customers cannot be selected. The
expected maximum utility is um = 0.92, according to
equation 39, the utility is thus u = 0.326 · umax.

6.9.2. Any Other Customer
The SRD2 strategy dictates diverting agents to choose

any other customer, regardless of the preferences of other
agents or own preferences. The success rate s = 0.611
therefore derived from equation 1 with λ = 1− fRD as
(1− fRD) N agents divert to N customers. fRD is the uti-
lization fraction of the RD strategy and can be interpreted
as the fraction of customers who can carry their preferred
customer in the SRD strategy.

s = (1− fRD) ·
(

1− e−
1

1− fRD

)
(49)

Thus, the expected utilization fraction is f = 61.9%.
All agents carrying their preferred customer (i ∈ I, s.t.∀j ∈
J : c (i, j) = p (i, j)) can expect um = 0.92 (as in equation
39). Diverting agents can expect ualt = 0.462. The ex-
pected average utility is u = 0.330 · umax.

6.9.3. Second Choice Customer
In the SRD3 strategy, diverting agents drive to the cus-

tomer yielding them the second highest utility. For this
strategy, the utilization rises only slightly in comparison
to the RD strategy, as those 92.3% of all agents who ran-
domly choose not to service the top ranked customer will
go to the second ranked customer, which in most cases
is someone else’s top priority or overlaps with another
agent’s second priority.

The number of distinct second preferences is around
93 for N = 1000. Yet, many of these customers are some
other agent’s first preference. The expected number of
customers which are either first or second preference is,
therefore, ≈ 94 (in simulations).

Simulations suggest a utilization fraction of f̄ = 9.4%
and an average utility of u = 0.091 · umax.

6.9.4. Best Vacant Customer
A similar explanation holds for the strategy SRD4

(Best Vacant Customer): Even if agents only turn to cus-
tomers who are noone’s first preference, they will most
likely be competing there, as those customers will also be
much alike.

The total number of distinct customers in the best
vacant customer choice is approx. 74 with N = 1000.
With ≈ 77 distinct first preference customers, there are
around 151 customers the agents choose from.

The actual utilization is lower, as agents do not dis-
tribute themselves uniformly. In simulations, the uti-
lization fraction was f̄ = 12.1% and the utility was
u = 0.115 · umax.

6.10. Results
The utilization fraction and utility for all considered

strategies can be found in table 6.
All strategies which do not incorporate the utility (NL,

CA, SCA) are obviously not affected by mixed utilities.
LL, OPR, RD, and SRD on the opposite worsen (mod-
erately to dramatically) in comparison to the Individual
Preferences setting. Only one of the rank dependent strate-
gies outperforms both baseline comparisons: SRD1 (and
with respect to utility OPR as well). As the redirection
option for SRD3 and SRD4 is correlated to the first choice,
and due to the low number of distinct first preferences,
those strategies fall behind SRD1 and SRD2. With the de-
creased performance of rank dependent strategies (most
“first preference selections” do not increase utility and
utilization), SCA becomes the best strategy concerning
both utilization fraction and utility.

7. Individual Preferences with Multiple Customers per
District

In this model variant I assume that there are several
customers in one district, thus, an agent always has sev-
eral customers from which he can carry one even if the
preferred one is not available. I assume that every district
on average has the same number of customers, but as
customers randomly spawn in some district, there can
also be less or more customers in a district. Agents select
a customer and drive to the district in which the selected
customer is located in.
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Strategy utilization f utility u

NL 63.2% 0.316
RD 7.7% 0.075
LL 45.5% 0.246

OPR 56.6% 0.320
CA 45.7% 0.229

SCA 73.5% 0.368
SRD1 63.8% 0.326
SRD2 61.9% 0.313
SRD3 9.4% 0.091
SRD4 12.1% 0.115

Table 6: MP: Comparing Strategies

7.1. The Model
In the IPMC model variant, customers are located to

districts. Agents i ∈ I, |I| = N drive to their preferred
customer and are able to divert to other customers in the
same district at no cost. I denote that some customer
j ∈ J, |J| = N is located in a district k ∈ K, |K| = D = N

ϕ

as b (j, k) = 1 (j “belongs to” k). Every customer j belongs
to exactly one district k (∀j : ∑

k∈K
b (j, k) = 1), and ck

customers are located in district k (capacity of k).

b (j, k) =

{
1 if j is in k
0 otherwise

(Definition 7.1)

∀k : ck = ∑
j∈J

b (j, k) (Definition 7.2)

Agents drive to customers. I denote this relation as
d (i, j) = 1. Every agent drives to exactly one customer
(∀i : ∑

j∈J
d (i, j) = 1). As agents are able to divert to other

customers in the same district, I extend d (i, j) = 1 as the
notion that agent i drives to customer j to d (i, k) = 1
to denote that agent i drives to the district k that j is
located in (d (i, j) = 1 ∧ b (j, k) = 1 ⇒ d (i, k) = 1). As
the customer j that agent i originally drove to exactly
one district k, I conduct that every agent drives to exactly
one district (∀i : ∑

k∈K
d (i, k) = 1). The number of agents

driving to some district k yields the occupancy ok.

d (i, j) =

{
1 if i drives to j
0 otherwise

(Definition 7.3)

∀j : oj = ∑
i∈I

d (i, j) (Definition 7.4)

d (i, k) =

{
1 if i drives to k
0 otherwise

(Definition 7.5)

∀k : ok = ∑
i∈I

d (i, j) (Definition 7.6)

Agents can carry any customer that awaits a ride in the
district k that agent i drove to. I denote that agent i carries
customer j as c (i, j) = 1. One customer can only be car-
ried by one agent (∀j : ∑

i∈I
c (i, j) ≤ 1) and one agent i can

carry at most one customer (∀i : ∑
j∈J

c (i, j) ≤ 1). Agents

can only carry customers located in the district they drove
to (c (i, j) ≤ ∑

k∈K
d (i, k) · b (j, k)). If agents are able to carry

any customer, they prefer carrying him over not carrying
anyone. Thus, the total number of customers carried from
one district k is the minimum of the number of customers
in k (capacity ck) and the number of agents driving to k
(occupancy ok) (∀k : ∑

i∈I
j∈J

c (i, j) · b (j, k) = min (ck, ok)).

c (i, j) =

{
1 if i carries j
0 otherwise

(Definition 7.7)

Agents can either drive to their preferred customer or
district or randomly choose a resource. I use p (i, j) = 1 to
denote that i prefers j (j yields more utility for i than any
other customer). This is the case if no other customer j′

results in a higher utility. The number of agents preferring
j is given as pj. Analogously, I define pk as the number of
agents preferring any customer that are located in district
k.

p (i, j) =


1 if ∀j′ : u (i, j) ≥

u (i, j′)
0 otherwise

(Definition 7.8)

∀j : pj = ∑
i∈I

p (i, j) (Definition 7.9)

∀k : pk = ∑
i∈I
j∈J

p (i, j) · b (j, k) (Definition 7.10)

u (i, j) is a random permutation individually assigned
for every agent (∀i ∈ I : ∀j, j′ ∈ J : u (i, j) = u (i, j′)⇒ j =
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j′). As agents who select their preferred resource choose
whichever customer results in the highest utility for them
and drive to the corresponding district, I define that the
utility of a district k is determined by the highest utility
of any customer in k.

∀k : u (i, k) = max
j∈J

(u (i, j) · b (j, k))

(Definition 7.11)

One calculates the utilization fraction as the share of
successful agents, that is agents who carry some customer.
The utility is the average of all agent utilities u (i). u (i)
is the utility agent i receives. If i does not carry any
customer, the agent utility is u (i) = 0, otherwise it is the
utility u (i, j) of the customer j that agent i carries.

f =
1
N
·∑

i∈I
f (i) (Definition 7.12)

f (i) = ∑
j∈J

c (i, j) (Definition 7.13)

u =
1
N
·∑

i∈I
u (i) (Definition 7.14)

u (i) = ∑
j∈J

u (i, j) · c (i, j) (Definition 7.15)

In simulations and numerical experiments, I assume
that there are N = 1000 agents and customers in D = 200
districts (on average ϕ = 5 customers per district), that the
utility is uniformly distributed between 1

N and umax = 1.
Every agent that is successful in the preferred district
receives on average um and every agent successful at a
randomly chosen district receives on average uavg = 0.5.

7.2. Theoretic Foundations
7.2.1. Capacity: Number of Customers per District

In theory, there can be 0 . . . N customers in one district,
though both extremes are highly unlikely. Assuming that
there are ϕ customers on average per district (N = ϕD),
the probability C (ck) for capacity ck is given by equation
50. In this case ϕ is the average number of customers
per district (in numerical experiments and simulations:
ϕ = 5).

C (ck) =

(
ϕD
ck

)
·
(

1
D

)ck

·
(

1− 1
D

)ϕD−ck

=
ϕck

ck!
· e−ϕ

(50)

7.2.2. Occupancy: Number of Agents per District (based
upon Capacity)

As agents choose a customer and then drive to the
corresponding district, the probability that ok agents drive
to district k depends on its capacity ck. With N agents
and N customers, the number of agents in district k with
ck customers is Gaussian distributed around ck.

O (ok, ck) =
ck

ok

ok!
e−ck (51)

7.2.3. Same First Preference
The probability that a district with capacity ck is pre-

ferred by pk agents is calculated as a Gaussian distribution
around ck, as agents randomly “choose” their preferred
customer.

Pre f (ck, pk) =
cpk

k
pk!
· e−ck (52)

7.2.4. Expected Utility of Top Priority Customers
The expected maximum utility depends on the capac-

ity ck: If an agent i enters a district with ck customers
and he carries any customer in this district, there is a 1

ck
chance that the customer j that i carries is his preferred
customer yielding a utility of umax and a 1− 1

ck
chance

that i carries any other customer, yielding a utility of on
average uavg.

um (ck) =
1
ck
· umax +

ck − 1
ck
· uavg (53)

The expected maximum utility um in random pro-
cesses is calculated by weighting um (ck) by the probabil-
ity of ck and the expected number of successful agents
ok ≤ ck. I, therefore, conclude um = 0.59 if ck of district k
is unknown.

7.3. No Learning
In this strategy, every agent randomly decides which

district he will go to by randomly selecting a customer j
and driving to the district k that j is located in. The agent
is then randomly assigned a customer from the selected
district. If there are less or equal agents than customers
(ok ≤ ck), every agent will be assigned a customers. Oth-
erwise, there is a ck

ok
probability for every agent to actually

be assigned a customer.
Agents select customers and drive to the correspond-

ing districts rather than districts directly, as this increases
the utilization fraction and utility, as every district is –
on average – chosen by as many drivers as it can cater
(instead of ϕ drivers on average per district). In the ap-
pendix I calculate the utilization fraction and utility for
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district-based choice (??). To derive the utilization fraction,
I calculate the expected number of not carried customers

for every possible capacity ck (
ck−1
∑

ok=0
O (ok, ck) (ck − ok)) and

derive the number of carried customers from it. The prob-
ability of capacity ck is derived from equation 50 and the
probability of occupancy ok is derived from equation 51.

f =
1
ϕ

N

∑
ck=1

C (ck) ·
(

ck −
ck−1

∑
ok=0

O (ok, ck) (ck − ok)

)
(54)

=
1
ϕ

N

∑
ck=1

ϕck

ck!
e−ϕ ·

(
ck −

ck−1

∑
ok=0

cok
k

ok!
e−ck (ck − ok)

)
(55)

The utilization fraction is, therefore, f = fNL = 83.0%.
With average utility for all successful agents, the expected
utility is u = f · uavg = 41.5% for N = 1000.

7.4. Rank Dependent Choice
I now consider the strategy in which every agent

drives to the district which provides him with the best
possible utility that is the district containing the customer
yielding the highest utility. There are different possible
approaches to choosing the best district: Choose the dis-
trict with the highest average utility from all customers
in this district or choose the district which contains ones
(individual) #1 priority customer. The first corresponds to
selecting a district in No Learning, the second to selecting a
customer. I only consider the latter as it results in a higher
utilization and utility. Yet, one can find some insight on
the first in the appendix.

The utilization fraction is the same as for the NL strat-
egy (given by equation 55), as the preferred customer is
randomly selected (resulting in f = fRD = 83.0%). The
utility increases slightly in comparison to No Learning,
as the probability of serving the top priority customer is
increased.

u =
1
ϕ
·

N

∑
ck=1

C (ck)

(
ck −

ck

∑
ok=0

O (ok, ck) (ck − ok)

)
·

um (ck)

(56)

For N = 1000 and ϕ = 5 this results in an average
utility of u = 0.495 · umax.

7.5. Limited Learning
In the LL strategy, every agent first chooses a customer

at random and – after carrying a customer – continues
with the highest ranked district. With multiple customers

in a district, one has to choose which district one deems
#1 priority (district containing highest utility customer).

The utilization fraction f depends on the fraction of
agents servicing their top district for the first time and the
fraction of agents who either randomly choose a district
or return to the best possible district. From equation 55
I derive fRD = 83.0% which is the fraction of customers
carried by an agent preferring them, ft is calculated it-
eratively. On average (1− ft−1) · N customers are not
carried by first agents choosing their preferred customer
the first time (and thus belong to the first summand of
the equation). Thus, on average λ = (1− ft−1) customers
per district are not carried by agents belonging to the left
summand of the equation.

ft = ft−1 · fRD︸ ︷︷ ︸
first try best

+

1
ϕ
·

N

∑
ck=1

C (ck)

(
ck −

ck−1

∑
ok=0

O (ok, λ) · (ck − ok)

)
︸ ︷︷ ︸

random or return
(57)

f converges towards f = 85.2% for fRD = 0.830.
To calculate the utility u, I adapt equation 57 to in-

corporate whether agents expect maximum utility um (ck)
or average utility uavg. All those agents who carry a cus-
tomer from their highest utility district receive on average
um (ck). As the right half of the equation comprises both
those agents who randomly choose any resource and
those, who return to their highest utility customer, I have
to differentiate between those groups by introducing r
as the fraction of agents returning to their highest utility
resource. r is calculated as the fraction of customers in not

overutilized districts (r =
N
∑

ck=1

ck
∑

pk=0
Pre f (pk, ck) = 0.621).

Thus, I derive u = 0.500 · umax.

u = f · fRD · um (ck) +

+
1
ϕ
·

N

∑
ck=1

C (ck)

(
ck −

ck−1

∑
ok=0

O (ok, λ) · (ck − ok)

)
·(

r · um (ck) + (1− r) · uavg
)

(58)

7.6. One Period Repetition
Agents applying the OPR strategy choose the district

containing their top priority customer after returning once
to a successful random district choice.

Drawing upon the results from section 5.6 I calculate
the utilization fraction and the utility as follows. fRD
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agents carry a customer from their preferred district, all
other agents follow a three step approach: (1) random
choice (with a success probability of fNL), (2) return to
the same district (certainly successful, that is f (i) = 1,
as randomly choosing agents only drive to previously
not carried customers), and (3) try best district (with a
success rate of 0, as the agent would otherwise belong to
those fRD agents who are constantly successful). In every
iteration, a share x of all agents is in step (2) and (3), and
a share of 1− 2x is in step (1) (successful with probability
fNL, resulting in x = (1− 2x) · fNL ≈ 0.312). fRD is the
utilization of the RD strategy and fNL is the utilization of
the NL strategy.

f = (x + (1− 2x) · fNL) · (1− fRD) + fRD (59)

u = (x + (1− 2x) · fNL) · (1− fRD) · uavg+ (60)

um · fRD

Thus, I expect a utilization fraction of f = 93.6%. The
average utility is u = 0.547 · umax.

7.7. Crowd Avoiding
Using the strategy CA, agents only choose from cus-

tomers which have not been carried the previous time
step and drive to the district the selected customer is lo-
cated in. This yields a weighted selection of the districts
with too few agents. The number of customers which
can be chosen at some time t is the number of customers
not chosen at time t − 1. Those remaining customers
are located in different districts. On average, a fraction
of λ = 1

1− f of all customers remain vacant. I assume
that these remaining customers are Gaussian distributed
across districts, resulting in λ · ck customers remaining
per district.

f = (1− f ) ·(
N

∑
ck=1

C (ck) ·
(

ck −
ck−1

∑
ok=0

O (ok, λ · ck) · (ck − ok)

))
(61)

With the above assumptions, one can derive f = 49.7%.
As all agents randomly decide upon a resource, I conduct
u = 0.249 · umax.

7.8. Stochastic Crowd Avoiding
With this strategy, agents deterministically return

to the same district, if the capacity of district was not
exceeded in the previous iteration. Otherwise, agents
stochastically return to the same district or drive to any
other district.

There are two different choice mechanisms: Returning
if the customer is not taken by others or returning if

the district has remaining capacity. In the appendix, I
introduce a customer-based decision but will continue
with a district-based decision in this chapter.

If the number of agents in a district does not exceed
the number of customers, this agent will return there.
Otherwise, the agent will move towards another customer
with p = 1 − ck

ok
and return to the same district with

p = ck
ok

. The customer is then chosen at random from
all available customers. In simulations, the utilization
fraction is f̄ = 93.8%. The utility is average for all agents
serving a customer that time step and, therefore, u =
0.469 · umax for N = 1000.

7.9. Stochastic Rank Dependent Choice
This strategy vastly builds upon the strategy Rank

Dependent Choice. Yet, all those drivers who prefer an
overcrowded district will not carry a customer with a
given probability. With Stochastic Rank Dependent Choice,
these drivers are now diverted to another district with
some probability p = ck−pk

pk
. The district to divert to is

either a district which has remaining capacity, any other
district, the #2 district, or the highest utility district which
has remaining capacity. The overall utilization fraction f
is calculated as a generalization of equation 18.

f =
N

∑
ck=0

C (ck) ·
N

∑
pk=0

Pre f (pk, ck) · F (ck, pk) (62)

u =
N

∑
ck=0

C (ck) ·
N

∑
pk=0

Pre f (pk, ck) ·U (ck, pk) (63)

Pre f (pk, ck) is the probability that pk agents prefer
a district with capacity ck (equation 52). C (ck) is the
probability that the capacity of some district k is ck (given
by equation 50). The utilization fraction function F (ck, pk)
calculates the expected utilization, if pk agents prefer a
district k with capacity ck (including rk agents redirecting
to other districts with probability D (ck, pk, rk)).

F (ck, pk) =



pk if pk ≤ ck
ck
∑

rk=0
D (ck, pk, rk)·

(s · rk + ck)

+
pk
∑

rk=ck+1
D (ck, pk, rk)·

(s · rk + (pk − rk)) otherwise
(64)
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D (ck, pk, rk) =

(
pk
rk

)
·
(

pk − ck
pk

)rk

·(
1− pk − ck

pk

)pk−rk

=
(pk − ck)

rk

rk!
· eck−pk (65)

The success rate s depends on the strategy and its
associated behavior in case of swapping.

The utility function U (ck, pk) is given by adapting
equation 64 accordingly to equation 22:

U (ck, pk) =



pk · um if pk ≤ ck
pk
∑

rk=0
D (ck, pk, rk)·

(s · rk · ualt + ck · um)

+
pk
∑

rk=0
D (ck, pk, rk)·

(s · rk · ualt + (pk − rk) · um) otherwise

(66)

Table 7 lists the variables s, umax, and ualt for the
different SRD strategies.

In strategies SRD1 and SRD4, I assume that s = 0.595
as given by equation 67. On average 0.17N = (1− 0.83) N
agents divert to other districts. Thus, 0.17N customers
are not being serviced by an agent to whom they are first
preference. I furthermore assume that these customers
are Gaussian distributed across all districts.

s =
N

∑
ck=1

ϕck

ck!
· e−ϕ

ck−1

∑
ok=0

cok
k

ok!
· e−ck , ϕ = 5 · 0.17 (67)

In strategies SRD2 and SRD3, the success rate is s =
0.442. In this case, I calculate the expected number of
previously not serviced customers (c′k = ck − ok + rk) and
the probability that these customers are serviced by r′k
agents who divert to district k.

s =
N

∑
ck=1

ck

∑
c′k

P
(
c′k
)

c′k −
c′k−1

∑
r′k=0

((1− fRD) · ck)
r′k

r′k!
· e−((1− fRD)·ck)

 (68)

The utility um is derived from section 7.2.4. In strate-
gies SRD3 and SRD4 I also use this value um for ualt
(the alternative choice utility), for SRD1 and SRD2 I set
ualt = uavg.

7.10. Results
Table 8 lists utilization and utility for all disussed

strategies for the IPMC model variant.
In the IPMC setting, OPR outperforms all other strate-

gies regarding the utility and is outperformed by SCA
concerning f by only a slight margin. All strategies except
CA exceed the utilization of the baseline comparisons NL
and RD, with respect to utility, SCA also falls behind RD
(and RD outperforms NL). I assume that a higher aver-
age number of customers per district ϕ further increases
the numbers for utilization and utility, this comparison is,
therefore, purely relative. In comparison to the previously
presented IP and MP model variants, the utility values
for different strategies in the IPMC models are close to
each other, as average utility and expected utility of a top
priority customer are rather close.

8. Mixed Preferences with Multiple Customers per Dis-
trict

8.1. The Model
In the MPMC model, customers are located in districts

(“belong to”) and the utility consists of a customer-specific
(“shared”) component and an “individual” component
that is based on customer and agent. The shared utility
models the payoff an agent receives from carrying a cus-
tomer. All agents would receive the same payoff if they
carried this customer. The individual component models
the costs to get to the pickup location which is identi-
cal for all customers in one district but varies between
different agents.

In the MPMC model, customers j ∈ J, |J| = N are
“clustered” in districts k ∈ K, |K| = D = N

ϕ . One average
ϕ customers await a driver in one district. As customers
are located in a randomly drawn district, the number of
customers in a district is Gaussian-distributed around ϕ.
Customers j ∈ J belong to the district k ∈ K in which
they await a driver. Let’s denote this as b (j, k) = 1. Every
agent is located in exactly one district (∀j : ∑

k∈K
b (j, k) = 1)

and the number of customers that are located in a district
k is its capacity ck.

b (j, k) =

{
1 if j is in k
0 otherwise

(Definition 8.1)

∀k : ck = ∑
j∈J

b (j, k) (Definition 8.2)

Agents i ∈ I, |I| = N select customers j ∈ J (d (i, j) =
1) and drive to the district k that j is located in. Every
agent drives to exactly one customer (∀i : ∑

j∈J
d (i, j) = 1),

and the number of agents driving to customer j is denoted
as occupancy oj. In the MPMC model, agents can divert
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Strategy s um ualt f u

SRD1 0.595 0.59 0.50 89.8% 0.521
SRD2 0.442 0.59 0.50 88.0% 0.512
SRD3 0.442 0.59 0.59 88.0% 0.519
SRD4 0.595 0.59 0.59 89.8% 0.530

Table 7: IPMC: SRD Strategy – Variables

Strategy utilization f utility u

NL 83.0% 0.415
RD 83.0% 0.495
LL 85.2% 0.500

OPR 93.6% 0.547
CA 49.7% 0.249

SCA 93.8% 0.469
SRD1 89.8% 0.521
SRD2 87.2% 0.508
SRD3 87.2% 0.515
SRD4 89.8% 0.530

Table 8: IPMC: Comparing Strategies

to other customers that belong to the same district at no
cost; I, therefore, extend d (i, j) to d (i, k) to denote that
agent i drives to district k. Every agent i drives to exactly
one district k (∀i : ∑

k∈K
d (i, k) = 1). If an agent drives to a

customer j, he also drives to the district k that j belongs
to (d (i, j) = 1 ∧ b (j, k) = 1⇒ d (i, k)). The occupancy ok
of district k is the number of agents i driving to k.

d (i, j) =

{
1 if i drives to j
0 otherwise

(Definition 8.3)

∀j : oj = ∑
i∈I

d (i, j) (Definition 8.4)

d (i, k) =

{
1 if i drives to k
0 otherwise

(Definition 8.5)

∀k : ok = ∑
i∈I

d (i, j) (Definition 8.6)

As agents independently decide upon the customer
or district they drive to, distributions in which too many
agents drive to some customers and too few customers
drive to some other agents can and do frequently oc-
cur. I further introduce the notion c (i, j) = 1 to de-
note that agent i carries customer j. An agent i can
carry a customer j, if i drives to the district k that j be-
longs to (c (i, j) ≤ ∑

k∈K
d (i, k) · b (j, k)). One agent i can

carry at most one customer j (∀j : ∑
i∈I

c (i, j) ≤ 1) and

one customer j can be carried by at most one agent i

(∀i : ∑
j∈J

c (i, j) ≤ 1). In every district, agents carry as

many customers as possible, no agent refuses to carry
a customer remaining at this district. Thus, the number
of customers carried per district is either capacity ck or
occupancy ok (∀k : ∑

i∈I
j∈J

c (i, j) · b (j, k) = min (ck, ok)).

c (i, j) =

{
1 if i carries j
0 otherwise

(Definition 8.7)

Agents can either drive to their preferred customer
or a randomly drawn customer (given by the strategy).
For every agent i there exists a customer j whom he
prefers over all other customers, as this customer yields
the highest utility for him. A customer j is preferred by pj
agents. Agents prefer the district their preferred customer
belongs to. A district k is preferred by pk agents.

p (i, j) =

{
1 if ∀j′ : u (i, j) ≥ u (i, j′)
0 otherwise

(Definition 8.8)

∀j : pj = ∑
i∈I

p (i, j) (Definition 8.9)

∀k : pk = ∑
i∈I
j∈J

p (i, j) · b (j, k) (Definition 8.10)

The utility an agent i can gain from carrying customer
j depends on both an individual and a shared utility
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component (ui (i, j) , us (j) = us (i, j) ∀i). Both utilities are
uniformly distributed between 0 and 1.

u (i, j) = α · ui (i, j) + (1− α) · us (j) , 0 ≤ α ≤ 1
(Definition 8.11)

∀j, j′ ∈ J :∀k ∈ K : b (j, k) = b
(

j′, k
)
⇒ us (j) = us

(
j′
)

(Definition 8.12)

In the MPMC game model, the individual utility is
identical for all customers which are located in a given
district as the driving distance between agent and cus-
tomer is identical for all customers in the same location
(district).

∀k ∈ K : ui (i, j) = ui (i, k) ∨ b (j, k) = 0
(Definition 8.13)

I define that the utility of a district k is given by the
utility of the customer yielding the highest utility (see
Proposition 8.2.2). The highest utility customer is defined
as b1 (j, k) = 1. Obviously, the “best” customer j (cus-
tomer with highest utility) must be located in district k,
and there must not be any other customer j′ that also
belongs to k that yields a higher shared utility.

∀k : u (i, k) = max
j∈J

(u (i, j) · b (j, k))

(Definition 8.14)

b1 (j, k) =


1, if b (j, k) = 1∧

(us (j) ≥ us (j′) ∨ b (j′, k) = 0 ∀j′)
0, otherwise

(Definition 8.15)

The utilization fraction is calculated as the average of
all agent utilizations. The agent utilization f (i) defines
whether an agent i carries any customer. The utility is
calculated as the average of all agent utilities u (i). u (i) is
0, if i does not carry any customer and the utility of the
customer j that i carries (u (i, j)) otherwise.

f =
1
N
·∑

i∈I
f (i) (Definition 8.16)

f (i) = ∑
j∈J

c (i, j) (Definition 8.17)

u =
1
N
·∑

i∈I
u (i) (Definition 8.18)

u (i) = ∑
j∈J

u (i, j) · c (i, j) (Definition 8.19)

For numerical experiments and simulations I assume
that there are N = 1000 agents and customers in D = 200
districts (on average ϕ = 5 customers per district), that
α = 0.5, that the individual utility is uniformly distributed
between 1

N and umax = 1 (with step size 1
D , as the indi-

vidual utility is calculated on a district basis) and every
agent that is successful at the preferred customer receives
on average um and every agent successful at a randomly
chosen customer receives on average uavg = 0.5, and that
customers are indexed by their utility (us (j) = j

N ).

8.2. Theoretic Foundations
8.2.1. Capacity: Number of Customers per District

The capacity ck that is the number of customers be-
longing to district k is given as a Gaussian distribution
around the average number of customers per district ϕ,
as customers randomly choose the district they belong
to. Thus, the probability for capacity ck is calculated as
follows:

C (ck) =

(
ϕD
ck

)
·
(

1
D

)ck

·
(

1− 1
D

)ϕD−ck

=
ϕck

ck!
· e−ϕ (69)

8.2.2. Highest Utility Customer and District
Proposition: In the MPMC partial game
model, agents only prefer the customer j
with the highest shared utility in district k. If
another customer j′ who belongs to the same
district k has a higher shared utility, j is not
preferred by any agent.

Proof. Assume that j, j′ ∈ J are customers, k ∈ K is
the district both customers belong to such that b (j, k) = 1
and b (j′, k) = 1. Assume that j a higher utility than j′

(u (i, j) < u (i, j′)). An agent i chooses the district which
yields the highest utility, assume that this district is k
(p (i, k) = 1). Thus, ∀k′ ∈ K \ {k} : u (i, k) ≥ u (i, k′).
From definition Definition 8.14 I know that the utility
of a district is given by the highest utility of any of the
customers belonging to it. I assume that this customer is
j.

u (i, j) > u
(
i, j′
)

| with Definition 8.11 (70)

α · ui (i, j) + (1− α) · us (i, j) >

α · ui
(
i, j′
)
+ (1− α) · us

(
i, j′
)

| with Definition 8.13 (71)
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α · ui (i, k) + (1− α) · us
(
i, j′
)
>

α · ui (i, k) + (1− α) · us
(
i, j′
)

| − α · ui (i, k)
(72)

us (i, j) > us
(
i, j′
)

(73)

The probability that a customer j yields the highest
utility in his district k (is the “best” customer) is denoted
as B1 (j, ck) and is calculated as the probability that all
customers jh with a higher shared utility us (jh) > us (j)
choose other districts (∀jh : b (jh, k) = 0), j belongs to k
(b (j, k) = 1) and exactly ck − 1 customers jl with lower
shared utility choose this district k. Without loss of gener-
ality, I assume that there are N − j customers with higher
shared utility and j− 1 customers with lower shared util-
ity (one assigns the identifiers j to customers based on
their shared utility component). N is the number of cus-
tomers and the number of agents (|I| = |J| = N), and D
is the number of districts (|K| = D = N

ϕ ).

B1 (j, ck) =

(
j

ck

)
1
D

ck D− 1
D

j−ck

︸ ︷︷ ︸
jl≤j

D− 1
D

N−j

︸ ︷︷ ︸
jh>j

=

(
j

ck − 1

)
1
D

ck D− 1
D

N−j
=

(
j

D

)ck

(ck)!
· e−

j
D

(74)

If the capacity of (another) district is unknown, one
can use a generalization of equation 74. B1 (j) ensures that
all customers jh with a higher shared utility component
choose other districts and all those jl with lower shared
utility component are being ignored.

B1 (j) =
(

N − j
0

)
1
D

0 (
1− 1

D

)N−j
=

D− 1
D

N−j

=

N
ϕ − 1

N
ϕ

N−j

(75)

8.2.3. Same First Preference
In the MPMC model, the probability that district k

yields maximum utility is no longer equal for all k ∈ K,
as the utility depends on a shared component all agents
agree upon.

The average number of agents choosing a district k
with individual utility ui (k) = ui (j) is denoted as ϕ ·
Π′ (k). Π′ (k) is calculated as the product of probabilities
that no other customer jl , jh yields a higher utility u (i, jl),
u (i, jh) for any agent i and is best in his district for all
customers j ∈ J.

Π′ (j) =
j−1

∏
jl=1

P

(
u (i, j) ≥ u (i, jl) ∨

D

∑
k=1

b1 (jl , k) = 0

)
·

N

∏
jh=j+1

P

(
u (i, j) ≥ u (i, jh) ∨

D

∑
k=1

b1 (jh, k) = 0

)
(76)

Numerically, I adapt equation 76 as follows: I iterate
through all customers with lower j′ = j− jl and higher
j′ = j + jh shared utility component assuming ∀j ∈ J :
us (j) = ϕ k

D ∨ b (j, k) = 0, and weighting individual and
shared utility component equally (α = 0.5). A customer
j′ = j− jl (shared utility is jl · 1

N lower if an agent carries
j′ than if he carried j) does not exceed the utility of j if its
individual utility is less than (jl − 1) · 1

ϕ higher. Assuming
that individual utilities are represented by q (ui (i, k) =
ϕ · q · 1

N ), one can derive that the individual utility of the
district k′ that j′ is located in must not be higher than
ϕq + jl . Analogously, the individual utility of a customer
j exceeds the utility of j′ = j + jh (customer with higher
shared utility) if the individual utility is correspondingly
lower that is lower by ϕ · q− jh. If j′ does not yield the
highest shared utility in its district, I do not consider it.

Π′l (j, ϕ, q) =

j−1

∏
jl=1


1− (B1 (j− jl))︸ ︷︷ ︸

j′ best

·

1− min (N, ϕ · q + jl)
N︸ ︷︷ ︸

u(i,j)≥u(i,j′)


︸ ︷︷ ︸

u(i,j)<u(i,j′)


︸ ︷︷ ︸

j′ not best or u(i,j)≥u(i,j′)

Π′h (j, ϕ, q) =
N−j

∏
jh=1

(1− B1 (j + jh)

·
(

1− max (0, ϕ · q− jh)
N

)
)

Π′′ (j) =
D

∑
q=1

Π′l (j, ϕ, q) ·Π′h (j, ϕ, q)

Π′ (j) =
D

N
∑

j′′=1
Π′′ (j′′)

·Π′′ (j) (77)

I, therefore, expect ϕΠ′ (j) = ϕΠ′ (k) (b1 (j, k) = 1)
agents preferring the district k in which j is the high-
est utility customer. Yet, the actual number of agents
preferring k is Gaussian distributed around ϕΠ′ (k).
Pre f (pk, ϕΠ′ (j)) is the probability that district k with
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the highest utility customer j is preferred by exactly pk
agents.

Pre f
(

pk, ϕΠ′ (j)
)
=

(ϕΠ′ (j))pk

pk
· e−ϕΠ′(j) (78)

8.2.4. Occupancy
The occupancy of district k depends on the type of

choice: If agents decide randomly, the average number of
agents in district k is its capacity ck, otherwise, it is the
expected number of agents preferring it (ϕΠ′ (k)). In the
following, λk is the expected number of agents driving to
district k.

O (ok, λk) =
λ

ok
k

ok
· e−λk (79)

8.2.5. Expected Utility of Top Priority Customers
In the MPMC setting, all agents agree upon the same

“best” customer inside a district (Proposition 8.2.2).
To calculate the expected agent utility, I assume that

every customer in a district with capacity ck and highest
utility customer j yields on average ue (j, k) to the agent
carrying him. ūi (j) is the average individual utility of the
district k that j is located in.

ue (j, k) =
1
ck

(us (j) + ūi (j)) +
ck − 1

ck
·(

us (j)
2

+ ūi (j)
)

(80)

ūi (j) =
1

Π′ (j)
·

D

∑
k=1

ϕ · k︸︷︷︸
utility

·Π′l (j, ϕ, k) ·Π′h (j, ϕ, k)︸ ︷︷ ︸
if successful

(81)

The average utility of an agent who carries a customer
from his preferred district um = 0.785 is a weighted av-
erage of all possible ue (j, k) (weighted by the probability
B1 (j, ck)).

8.3. No Learning
Using the NL strategy, all agents drive to a randomly

selected customer. Thus, individual utility levels are irrel-
evant. The utilization fraction depends on (1) the capacity
ck of district k (associated with probability C (ck)) and (2)
the occupancy ok of district k (associated with probability

O (ok, ck)). C (ck) =
ϕc

k
ck ! · e−ϕ is the probability that ck cus-

tomers are randomly assigned the same district given an

average of ϕ customers per district. O (ok, ck) =
c

ok
k

ok ! · e−ck

is the probability of ok agents randomly driving to district
k containing ck customers.

f =
1
ϕ
·

N

∑
ck=1

C (ck) ·

ck −
ck−1

∑
ok=0

O (ok, ck) · (ck − ok)︸ ︷︷ ︸
expected remaining capacity


(82)

Thus, the utilization fraction is f = fNL = 83.0%. As
all agents decide randomly where to drive to, all success-
ful agents will receive average utility uavg. The utility is,
therefore, u = 0.415 · umax.

8.4. Rank Dependent Choice
In the MPMC model, for every customer j, I calcu-

late the average number of agents driving there if this
customer yields the highest utility of all customers in its
district k with ck customers.

The probability that a district is being selected utility-
dependent only depends on the customer with the highest
shared utility component us (j) in this district and the
individual utility ui (i, k) of the district but is ignorant
about the number of customers in this district and all
other customers’ shared utility component.

Bearing that in mind I define the utilization fraction
f as follows. The probability of being the customer with
the highest utility is B1 (j, ck) and the average number
of agents driving to a district k containing customer j
is ϕΠ′ (j). All agents drive to their preferred customer
(∀i, j : d (i, j) = p (i, j)).

f =
1
N
·

N

∑
j=1

j

∑
ck=1

B1 (j, ck)·(
ck −

ck−1

∑
pk=0

Pre f
(

pk, ϕ ·Π′ (j)
)
· (ck − pk)

)
(83)

The utilization fraction of agents using the RD strategy
is, thus, f = fRD = 30.6%. The expected average utility
u = 0.240 · umax is given by adapting equation 83 with the
expected utility ue (j, k) for all successful agents.

u =
1
N ∑

j∈J

j

∑
ck=1

B1 (j, ck)·(
ck −

ck−1

∑
pk=0

Pre f
(

pk, ϕΠ′ (j)
)
· (ck − pk) · ue (j, k)

)
(84)
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8.5. Limited Learning
Using the strategy LL, agents first drive to the dis-

trict a randomly selected customer is located in. Agents
who carried a customer at time t drive to their preferred
customer at time t + 1. The utilization fraction for the
MPMC model is calculated as follows: The left summand
comprises those agents who were successfully carrying
a randomly chosen customer in the previous iteration
( ft−1) and now drive to their preferred resource. These
agents are successful with probability fRD. fRD is the
utilization fraction of the RD strategy and thus the num-
ber of customers who are preferred by any agent. The
right summand comprises all other agents driving to the
remaining districts. The average number of customers
per district is adapted to λ = ϕ (1− ft−1) as the expected
number of remaining customers is reduced.

ft = ft−1 · fRD +
1
ϕ
·

N

∑
ck=1

C (ck)(
ck −

ck−1

∑
ok=0

O (ok, λ) · (ck − ok)

)
(85)

For the expected utility one has to differentiate be-
tween randomly choosing agents and those who return
to their preferred district, as both groups are comprised
in the right summand of equation 85. Of these agents,
a fraction of r̄ = 0.186 return to their preferred district,
1− r choose randomly.

u = f · fRD · um +
1
ϕ
·

N

∑
ck=1

C (ck)(
ck −

ck−1

∑
ok=0

O (ok, λ) · (ck − ok)

)
·(

r̄ · um + (1− r̄) · uavg
)

(86)

From equations 85 and 86 I derive f = 57.0% and
u = 0.357 · umax.

8.6. One Period Repetition
Agents adopting the OPR strategy randomly choose a

resource at time t, and return there at time t + 1 if they
were successful at time t. At time t + 2, agents drive to
their preferred customer (after being successful at time t
and t + 1).

The utilization fraction and utility are calculated as
follows. x = (1− 2x) · fNL is the fraction of agents who
return to the same district and who improve by driving
to their preferred resource after returning to a random
resource. 1− 2x agents randomly select any customer,
x = (1− 2x) · fNL of these agents are successful. fNL

is the utilization fraction of the NL strategy and, there-
fore, randomly behaving agents. Further, all districts are
utilized up to min (ck, pk), which comprises fRD. These
fRD · N agents constantly remain with their preferred
district ( fRD is the utilization fraction of the RD strategy).

f = (x + (1− 2x) · fNL) · (1− fRD) + fRD (87)

u = (x + (1− 2x) · fNL) · (1− fRD) · uavg + um · fRD
(88)

With fNL = 0.830, and fRD = 0.308 this results in
f = 73.9% and u = 0.457 · umax.

8.7. Crowd Avoiding
The CA strategy ignores the utility or “rank” of cus-

tomers; agents only drive to customers who were not
carried in the previous iteration. On average, agents
choose from of λ = 1

1− f of all customers, resulting in
λ · ck customers remaining per district.

f = (1− f ) · (
N

∑
ck=1

C (ck)·(
ck −

ck−1

∑
ok=0

O (ok, λ · ck) · (ck − ok)

)
) (89)

I, therefore, conclude that the utilization fraction is
f = 49.7%, and that the utility is u = 0.249 · umax.

8.8. Stochastic Crowd Avoiding
Agents applying the SCA strategy either return to

the same resource in the next iteration or divert to other
resources. An agent i remains at district k, if k’s capacity
is not fully used (ok ≤ ck), or with probability ck

ok
. If an

agent i does not return to the same district, he randomly
selects any resource k ∈ K.

Simulations suggest a utilization fraction of f̄ = 93.8%
and a utility of u = 0.469 · umax.

8.9. Stochastic Rank Dependent Choice
The strategy SRD dictates that agents stochastically

either drive to their preferred district or any other district,
depending on the number of agents with the same prefer-
ence (pk for p (i, k) = 1). Diverting agents drive to (1) any
underutilized district, (2) any other district, (3) the district
yielding second highest utility, or (4) the underutilized
district that yields the highest utility.

The overall utilization fraction f for every strategy is
calculated as a generalization of equation 18.

The utilization fraction sums up the expected number
of agents carrying a customer (F (ck, pk)) for the num-
ber of agents preferring district k (pk with probability
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Pre f (pk, ϕΠ′ (j))), the capacity of this district (ck with
probability C (k)), and the customer yielding highest util-
ity j. The utility function u analogously sums up all
individual utilities U (ck, pk) analogously.

f = ∑
j∈J

N

∑
ck=0

C (ck) ·
N

∑
pk=0

Pre f
(

pk, ϕΠ′ (j)
)
· F (ck, pk)

(90)

u = ∑
j∈J

N

∑
ck=0

C (ck) ·
N

∑
pk=0

Pre f
(

pk, ϕΠ′ (j)
)
·U (ck, pk)

(91)

The utilization function F (ck, pk) is pk, if the capac-
ity is not exceeded by those agents preferring district
k. In this case, no agent diverts and thus all agents can
carry a preferred customer. Otherwise, one sums up
the utilization retrieved from rk agents redirecting for all
rk ≤ pk weighted by the probability D (pk, ck, rk) that rk
agents divert in a district k containing ck customers that is
preferred by pk agents and is calculated as a Poisson dis-

tribution around pk − ck (D (ck, pk, rk) =
(pk−ck)

rk

rk ! · eck−pk ).
min (ck, pk − rk) agents remaining at district k carry a cus-
tomer in this district. If less agents divert than required,
not all of them will be able to carry a customer, but all
ck customers will be carried. If more agents divert than
required, all pk − rk agents carry a customer, but not all
customers are carried. Those rk agents who redirect to
another district can increase the utilization, if they are
able to carry the customer they divert to. The probability
of carrying a customer as a diverting agent is given by
success rate s. SRD2 and SRD3 allow diverting agents
to drive to fully capacitated districts. Yet, for calculating
the utilization fraction I assume without loss of general-
ity that not diverting agents favorably carry customers.
Diverting agents receive a certain utilization depending
on the success rate s which varies depending on the strat-
egy and its associated behavior in case of swapping. The
success rate factors in that diverting agents can only be
successful if no other agent is “bullied out” his preferred
district.

F (ck, pk) =



pk if pk ≤ ck
ck
∑

rk=0
D (ck, pk, rk)·

(s · rk + ck)

+
pk
∑

rk=ck+1
D (ck, pk, rk)·

(s · rk + (pk − rk)) otherwise

(92)

The utility function U (ck, pk) is given by adapting
equation 92 to cater for varying utility levels. Agents

carrying a customer from their preferred district receive
on average a utility of um (from section 8.2.5), diverting
agents receive on average ualt if they are successful. ualt
depends on the strategy.

U (ck, pk) =



pk · um if pk ≤ ck
pk
∑

rk=0
D (ck, pk, rk)·

(s · rk · ualt + ck · um)

+
pk
∑

rk=0
D (ck, pk, rk)·

(s · rk · ualt + (pk − rk) · um) otherwise

(93)

Table 9 compares the variables s, um, and ualt for strate-
gies SRD1 and SRD2. Strategies SRD3 and SRD4 perform
worse than random, as first preference and alternative
choice are not independent of each other (thus, diverting
agents rk are not uniformly distributed, making it impossi-
ble to analytically derive a success rate s). In simulations,
the utilization fraction of SRD3 is f̄ = 36.7%, and its util-
ity is u = 0.283 · umax. The utilization of strategy SRD4 is
f̄ = 47.4%, and its utility is u = 0.366 · umax.

In strategy SRD1, I assume that the success rate
is s = 0.866 as given by equation 94. On average
0.697N = (1− 0.303) N agents divert to other districts.
Thus, 0.697N customers are not being carried by an agent
to whom they are first preference. I furthermore assume
that these customers are Gaussian distributed across all
districts, resulting in on average λ = ϕ · 0.697 customers
per district. The success rate s is calculated as the utiliza-
tion fraction of the NL strategy with a reduced number
of customers per district.

s =
N

∑
ck=1

λck

ck!
· e−λ

ck−1

∑
ok=0

cok
k

ok!
· e−ck (94)

In strategy SRD2, the success rate is s = 0.850. In
this case, I calculate the expected number of previously
not carried customers (c′k = ck − ok + rk with probabil-
ity P

(
c′k
)
) and the probability that these customers are

carried by r′k agents who divert to district k.

s =
N

∑
ck=1

ck

∑
c′k

P
(
c′k
)

c′k −
c′k−1

∑
r′k=0

((1− fRD) · ck)
r′k

r′k!
· e−((1− fRD)·ck)


(95)

The utility um is the utility of strategy RD for those
who are successful. I set ualt = uavg, as the alternate
choice is independent from the actual utility.
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Strategy s um ualt f u

SRD1 0.866 0.79 0.50 78.5% 0.438
SRD2 0.850 0.72 0.50 77.3% 0.432

Table 9: MPMC: SRD Strategy – Variables

8.10. Results
Table 10 shows utilization and utility for the previ-

ously examined strategies in the MPMC model.
Of the two baseline comparisons, NL outperforms RD

both with respect to utilization and utility, as the number
of districts containing a preferred customer is lower than a
random selection of districts. None of the rank dependent
strategies (LL, OPR, SRD1-SRD4) reach the utilization of
the NL strategy, but OPR, SRD1 and SRD2 outperform
NL with respect to utility. SCA performs best both with
respect to utilization and utility.

9. Critical Discussion

In the previous sections I observe that utilization frac-
tion and utility of some strategy vastly depend on the
model variant: In general, one can state that using districts
(IPMC, MPMC) improves both optimization criteria. Ob-
viously, if there was only a single district (D = 1, ϕ = N)
in which all customers are located, one can expect a uti-
lization fraction of f = 1 regardless of the implemented
strategy, as all agents can divert to other customers in
the same district until every customer is carried. If there
are no districts, the utilization fraction is determined by
the KPRP, or the IP and MP model variant, depending
on the other assumptions. I thus advise “clustering” the
resources (customers) based on proximity, for example by
using taxi stands. They allow agents to serve another cus-
tomer in the same district if another agent already carries
the selected customer. I notice that all strategies always
perform at least as good in IP and IPMC as in their mixed
preferences counterpart. Obviously, NL, CA and SCA are
not affected, as agents never deterministically drive to
their preferred resource, but utilization fraction and av-
erage agent utility for the other strategies decrease when
introducing mixed preferences as the number of distinct
highest utility resources decreases. The number of dis-
tinct highest utility resources depends on the probability
that a resource is preferred by any given customer which
is not identical for all resources in the MP and MPMC
model variant but depends on the shared utility compo-
nent. Due to this, exceeding fNL with rank dependent
strategies becomes difficult for α = 0.5. With increasing α
the number of distinct highest utility resources decreases,
resulting in a decreasing utility of all rank-dependent
strategies, as shown in appendix ??. Thus, I conclude
that high individual utility components are preferred by

agents, as the probability of being able to carry the pre-
ferred customer increases. In mobility markets – that is
vehicle for hire markets – I derive that one would prefer a
high influence of the cost of driving to the pickup location
which can either be achieved by revenue in a small range
or by high distances to the pickup location. Alternatively,
a coordination instance could impose personalized incen-
tives, causing agents to distribute themselves in balance
with customers.

I also observe that stochastic rank dependent strate-
gies (SRD) outperform their strict counterpart (RD). This
is because a fraction of agents chooses its top prefer-
ence, whilst the other agents can receive utility from an-
other resource. I observe that SRD1 (and SRD4 in IP and
IPMC) perform best with respect to utilization fraction f
(most customers are carried). SRD1 and SRD4 outperform
SRD2 and SRD3 in the IP and IPMC model variants of
the VFHP, and SRD1 outperforms SRD2 in the MP and
MPMC model variants, as the success rate of redirecting
agents is higher. In IP and IPMC, SRD4 outperforms
SRD1 with respect to utility, as agents always choose a
district yielding high utility. SRD4 performs poorly for
mixed utility models (MP, MPMC), as most agents share
the same highest utility district with remaining utility.
Yet, SRD2 and SRD3 require less information about the
preferences of other agents and are therefore preferred in
environments without full information.

The CA strategy outperforms the NL strategy in none
of the models and is more complex as it requires informa-
tion about the occupancy rate of all resources, making it
unsuitable for implementation. The LL strategy is outper-
formed by the OPR strategy in all models, making it less
attractive for implementation. Yet, the two-step approach
is easier to establish in a larger group of agents. From
comparing the strategies LL and OPR I conclude that
waiting for m periods before choosing the highest util-
ity resource further improves both optimization criteria
(strategy m-Period Repetition, mPR). I observe that OPR
and SCA perform best regarding the utilization fraction
and utility. Yet, agents will not be able to carry their top
priority customer with SCA in most cases (probability 1

N ).
My findings recommend that taxi drivers consider both
history and associated utility when choosing a customer
or resource.

Yet, my model draws a rather theoretical picture of
the reality: I assume that utilities us (j) and ui (i, j) are
uniformly distributed and random ( 1

N . . . 1 with step size
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Strategy utilization f utility u

NL 83.0% 0.415
RD 30.6% 0.240
LL 57.0% 0.357

OPR 73.9% 0.457
CA 49.7% 0.249

SCA 93.8% 0.469
SRD1 78.5% 0.438
SRD2 77.3% 0.432
SRD3 36.7% 0.283
SRD4 47.4% 0.366

Table 10: MPMC: Comparing Strategies

1
N ), allowing for an analytical approach. In most cities,
one would rather assume a majority of customers return-
ing a low or medium utility and only very few trips with
very high utility. Also, assuming Gaussian-distributed
numbers of customer per district is a major abstraction,
in reality, a small number of hot spots such as airports or
railway stations draw more attention than a large num-
ber of residential neighborhoods. Yet, the VFHP game
model I discussed in chapters 5-8 can easily be adapted
by exchanging C (ck) by more suitable functions for the
given distribution. In the MP and MPMC model variants,
I model the distance between agent i and customer j as
ui (i, j). In real world examples, ui (i, j) depends on the
history, as agents move through the city. Also, two adja-
cent resources will result in similar utilities for all agents
which is not reflected in the presented model. Though, my
model allows for extensions addressing these limitations.

In reality, the individual utility of agents – that is
distance between agent and resource – changes in every
iteration, as agents drive to customers. Thus, the utility
agents can derive from customers has to be recalculated in
every iteration. Yet, varying utilities do not influence the
general idea VFHP game model; one only had to retrieve
information about the preferences of all other agents in
every iteration. Another abstraction concerns the timing
between agents: One cannot assume that all agents select
a resource at the same time. One could impose a discrete
time model assuming that every agent drives to one cus-
tomer per discrete time step, but as driving to a customer
takes differently long depending on the distance. In the
VFHP game model, it is sufficient to assume that the num-
ber of customers and agents is identical in all iterations,
but several of the history-dependent strategies (LL, OPR,
SCA) will perform differently for agents who did not
participate in the previous iteration, as these agents will
have to select a random resource rather than using a more
promising selection. For example, agents implementing
the OPR strategy receive a certain utilization of f (i) = 1
from customer j in the “return” phase, as no other agent

drives to this customer j if this resource was occupied
in the previous iteration. Yet, if agent i returns to a cus-
tomer after pausing for several iterations, it is possible
that another agent chose this resource as well, reducing
utilization fraction and utility. Also, drivers who did not
carry a customer will be able to drive to another customer
directly after, whilst agents carrying a customer first have
to finish this trip and are thus not available during the
next iteration. One can extend the VHFP game model
with a “continue carrying” phase for agents, in which
they are utilized ( f (i) = 1) and the utility the carried
customer yields is divided up over the all iterations this
trip takes. Customers disappear after being carried, and
new customers appear frequently. As the shared utility of
customers is the expected revenue, the VFHP game model
can easily incorporate appearing and disappearing cus-
tomers. Also, the expected utility yielded by customers
can be difficult to determine, as individual behavior can-
not be predicted precisely. It is possible to predict general
tendencies (e.g., customers at airports often travel down-
town and thus quite far), but for other locations, one
cannot predict precise travel distances or patterns of cus-
tomers (e.g. in city centers, most customers travel short
distance, but few customers need longer transport, yet,
it is difficult to predict when exactly customers require
these longer trips). The IP and IPMC model variant do
not use shared utilities in terms of customer revenue and
are therefore more suited if the utility is unknown. In
more rural areas, the expected number of customers in a
district can be below 1, but the VFHP assumes discrete
numbers of customers per district. Whilst rounding is
reasonable for larger numbers of customers per district,
rounding will frequently result in no expected customers
in rural areas. There, vehicles for hire are usually called
by phone. Thus, a dispatcher sends a driver to pick up
this customer. The VHFP on the opposite mimics taxi
hailing or calling a nearby taxi via app, if no dispatcher
is available.

Despite the above limitations, the VHFP presents a
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suitable game model for agent behavior in vehicle for hire
markets and lays ground work for improving utilization
and utility in mobility markets.

10. Conclusion and Future Work

In this thesis I analysed two different models for mobil-
ity markets, the Kolkata Paise Restaurant Problem (KPRP)
and four model variants of the Vehicle for Hire Problem
(VFHP). To adapt the KPRP for mobility markets, I grad-
ually drop or alter the assumptions of the KPRP: Agents
no longer agree upon the resources’ utilities (IP and MP
model variants), and resources are “clustered” in districts,
allowing agents to deviate from their first choice (IPMC
and MPMC model variants). Further, I compared those
five models by testing for utilization fraction and utility
for agents using one of seven different strategies. Three of
these strategies stem from Chakrabarti et al. (2009), two
further strategies were introduced by Ghosh et al. (2013).
I developed the strategies RD and SRD to specifically ad-
dress the requirements of dynamic mobility markets. In
dynamic matching markets, the behavior of other agents
in previous iterations cannot determine the utility agents
associate with resources in the future with absolute cer-
tainty as agents and customers enter and leave the market
at will, calling for history-independent rank-dependent
strategies.

Future research will be conducted on (1) behavior of
agents, if two or more strategies are implemented in one
market and the influence on utilization fraction and util-
ity, (2) performance of the discussed strategies in practice,
(3) incentive mechanisms and their effect in practice, and
(4) the influence of the rise of autonomous cars and suc-
cessive merge of the vehicle for hire and the car-sharing
market.

If agents apply different strategies, the overall utiliza-
tion fraction and utility might increase or decrease. Also,
the utility could be unevenly distributed. For example, if
N − 1 agents play NL in the KPRP and one agent plays
RD, this agent can expect a higher utility than the other
agents (0.632 · umax vs. 0.316 · umax). Unilateral deviation
can therefore be beneficial for agents. In the CA strategy,
unilaterally deviating agents can implement a strategy
in which they only choose from previously occupied re-
sources, if only one agent deviates, he is guaranteed a
utilization of f (i) = 1. The OPR strategy retrieves its
high utility from agents not randomly choosing resources
which were served by other agents the previous itera-
tion, including those agents who constantly carry their
preferred customer. Single agents implementing a NL
strategy reduce the number of agents returning to their
preferred resource, decreasing the performance of the
OPR strategy.

This thesis focuses on the performance of several
strategies in theoretical settings. As discussed in chapter 9,
utilization and utility can vary as the assumptions of the
VFHP deviate from reality. With real world data on the
location of customers during a given time frame and the
routes of drivers, one can evaluate whether the strategies
improve current driver behavior. With insight from this
data analysis, one can improve the strategies presented
in this thesis and continue with incentive mechanisms to
enforce beneficial behavior.

One can use the knowledge about the theoretic (and
real world) performance of different strategies to incen-
tivize behavior that is beneficial for the entire group. As
discussed in chapter 9, agents incorporating the strategy
OPR achieve a high utilization fraction and high utility in
the IP and IPMC model. The strategy dictates a three-step
approach: A random choice of a resource, returning to
this resource once, and driving to the preferred resource.
Yet, agents might be reluctant to wait for one iteration
prior to driving to the preferred resource (e.g. due to
missing trust in other agents, bounded rationality). For
these agents, a coordination instance can offer incentives
to return to the same resource.

Developments in the field of autonomous cars will
most likely result in the end of vehicle for hire markets in
its current setup, as drivers are no longer required, but
cars independently carry passengers. Another industry
that develops towards autonomous vehicles for passenger
transportation is the car-sharing market in which passen-
gers can rent cars for a short period (i.e. for one-way
trips in major cities). The vehicle for hire market and
car-sharing market steer towards offering the same ser-
vice, if drivers become obsolete. Obviously, strategies
and algorithms to redirect agents will become increas-
ingly important; future research should therefore focus
on improving the basic strategies presented in this thesis.
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