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Abstract

Using a relatively model-free approach to extract the risk-neutral expected variance from an extensive set of traded options
on 29 single stocks and eight stock indices, I derive the variance risk premium defined as the difference between the actually
realized variance and the expected variance under the risk-neutral measure. The analysis reveals that variance risk premia are
persistently negative for the majority of underlyings and show a clear link to the underlying’s exposure to systematic market
variance. Moreover, I find that both the risk associated with continuous as well as discontinuous price movements contribute
to observed variance risk premia.
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the risks to which an asset offers exposure is necessary in
the context of asset pricing to determine expected returns
and asset prices that are commensurate to their risk expo-
sure. Furthermore, this knowledge is of equal importance
for related applications such as performance evaluations and
attributions of institutional investors who engage in volatil-
ity related strategies and for risk management purposes since
an assessment of the risks to which one is exposed arguably
allows more efficient and successful hedging.

With reference to this, the objectives of this work are
twofold. The first objective is to extract the variance risk
premium from a set of traded options and to quantify its
magnitude. Despite the fact that this is an approach taken
by several other studies before (e.g. Bakshi and Kapadia
(2003)), doing so can nevertheless provide interesting in-
sights. Volatility related strategies are commonly regarded
as extremely profitable, allowing to obtain Sharpe ratios that
are substantially higher than simple equity investments (e.g.
Carr and Wu (2009)). However, such strategies are often
characterized by relatively frequent (small) gains but occa-
sional losses of excessive magnitude (Ilmanen (2012)). Since
unprecedented levels of volatility emanated during the pe-
riod around and following the recent financial crisis and
severely affected the returns on instruments whose value de-
pends on return volatility, the dataset applied in this work of-
fers interesting insights about how such strategies performed
during this period and how average returns are affected over
the long-run.

1. Introduction

1.1. Problem outline

Even though the option pricing model invented by Black 
and Scholes (1973) is probably the most famous of its kind 
and often used in practice (albeit with modifications), i t is 
well known that particularly the assumption of a constant 
return variance is not fulfilled in practice and volatility fluc-
tuates over time. By now a plethora of studies (e.g. Bak-
shi and Kapadia (2003), Coval and Shumway (2001), Carr 
and Wu (2009)) document evidence that certain option po-
sitions earn average returns significantly different from zero 
although these positions are constructed to be insensitive to 
fluctuations in the price of the underlying. Indeed, this return 
pattern is most often interpreted as evidence that investors 
price the risk associated with stochastic volatility, which gives 
rise to the so-called variance risk premium.

Over the years, a veritable market for volatility products 
has emerged and different parties such as for example hedge 
funds (e.g. Bondarenko (2004)) engage in volatility selling 
strategies or are otherwise exposed to the risk associated with 
changes in volatility.

With regard to this situation, it is important to know pre-
cisely whether return variance constitutes an independent 
risk factor that is priced by the market or whether the returns 
on financial i nstruments and s trategies that are t argeted at 
capturing the variance risk premium can be explained by 
other means. For one thing, a profound knowledge about
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The second objective is to assess whether the extracted
variance risk premium indeed represents compensation for
the risk associated with a fluctuating return variance or
whether the returns on such strategies can be explained by
commonly applied asset pricing models.

1.2. Course of examination
For this work, I use an extensive set of options data on

three stock indices from the United States (US) and five from
Europe as well as on 29 single names from the US over the
period from January 1996 until August 2015. In order to
quantify the variance risk premium on each of these underly-
ings, I follow the procedure proposed by Carr and Wu (2009)
and use the notion of a variance swap contract which is effec-
tively a forward contract that pays the difference between the
actually realized return variance over a predefined time pe-
riod and a variance strike. The variance strike in this contract
equals the expected risk-neutral variance and can be synthe-
sized from a set of European options using a relatively model-
free approach. Even though the estimate obtained with this
method is subject to an approximation error when the asset
price process is not purely continuous, it offers the advantage
of a theoretical basis and does not impose further structural
restrictions on the asset price process, which would inevitably
be the case if one tried to calibrate a certain model to real
data in order to derive the variance risk premium.

If the market does not require a non-zero risk premium
that is embedded in the prices of traded options, the variance
strike should equal the ex-post realized variance on average.
As a consequence, it is possible to quantify the average vari-
ance risk premium as the time series average of the difference
between the ex-post realized variance and the risk-neutral ex-
pected variance over the corresponding time period, i.e. the
variance strike, or alternatively as the average return on a
variance swap contract.

Since the results suggest that variance risk premia are in-
deed significantly different from zero and negative for all in-
dices and the majority of single names, but differ substan-
tially in their absolute magnitude, the analysis is continued
with an attempt to link the variance risk premium, or vari-
ance swap returns, to the underlying’s exposure to system-
atic variance. For this purpose, I compute a variance beta
that measures the covariation between the return variance
of a proxy for the market portfolio and that of the under-
lying under consideration. Variance swap returns are then
regressed on this variance beta. Because this analysis reveals
that the variance beta can only explain variance swap returns
for the US indices but not for single stocks, it is further ex-
amined whether variance swap returns can be explained by
a systematic variance risk factor that is proxied by the return
on a variance swap with the S&P 500 as underlying. The
underlying rationale for this course of action is that different
studies find evidence that idiosyncratic return variances have
a tendency to move together and possibly exhibit a common
factor structure (Herskovic et al. (2014)) to which a diversi-
fied index, however, should not be exposed. Investors may
require compensation for the risk associated with common

movements in idiosyncratic return variances and this com-
pensation may contribute to the observed variance risk pre-
mium (Schürhoff and Ziegler (2011), Gourier (2015)).

In order to further investigate whether return variance
constitutes an independently priced risk factor, it is examined
whether the classical Capital Asset Pricing Model (CAPM)
or the Fama and French (1993) three-factor model are able
to explain variance swap returns. Even though both mod-
els generate significantly negative regression betas with re-
spect to market excess returns that are consistent with the
commonly observed negative correlation between equity re-
turns and return variance (Glosten et al. (1993)), regression
alphas are mostly negative and significantly different from
zero, which is suggestive of one or more additional priced
risk factors.

Because the total return variance reflects the continuous,
i.e. pathwise variation as well as discontinuous price move-
ments or jumps, I attempt to examine whether the risk asso-
ciated with each of these types of price variation separately
commands compensation that contributes to the observed
variance risk premium. For this purpose I construct two risk-
factor-mimicking portfolios from traded options that are tar-
geted at offering exposure to one risk while being relatively
unaffected by the other. Since the validity of any conclusion
about the extent to which jump risk is priced crucially de-
pends on the ability of the jump-risk-mimicking portfolio to
reliably capture the exposure to jumps, it is tested whether
positive returns on this factor coincide with jumps detected
by the non-parametric jump detection test of Lee and Myk-
land (2008), which appears to be the case. Even though both
constructed risk factors significantly contribute to explaining
variance swap returns and continue to be significant when
commonly used risk factors are included as control variables,
abnormal returns remain mostly negative and significantly
different from zero. Due to this, I consider the effect of the
chosen specification of variance swap returns. In the initial
setting, regressions are performed using continuously com-
pounded variance swap returns to account for the substan-
tial skewness and kurtosis in the distribution of raw returns.
However, this has the drawback of shifting the mean return
further into the negative domain, which may contribute to
the persistently negative alphas. Due to this, robustness tests
with raw variance swap returns instead of continuously com-
pounded returns are performed and suggest that the specifi-
cation has a certain impact on results but abnormal returns,
especially for the US indices, often remain significant.

Finally, motivated by a relatively recent study by Drech-
sler (2013) who finds that model uncertainty can help sub-
stantially to explain the magnitude of the observed variance
risk premium, I examine the relation between a proxy for
model uncertainty and variance swap returns.

2. Literature review

For one thing, this work is related to prior studies that ex-
amine whether a variance risk premium exists and in partic-
ular to studies that examine the existence of the variance risk
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premium not only for stock indices but also for single stocks.
One of the earlier studies that provide empirical evidence for
the existence of a negative variance risk premium in index
options is the work by Bakshi and Kapadia (2003) in which a
long call option is dynamically hedged with the underlying.
Since this strategy is effectively market-neutral and should
therefore only be exposed to volatility risk, Bakshi and Ka-
padia (2003) interpret the negative average returns on the
strategy as evidence for the existence of a negative volatil-
ity risk premium. While the outlined approach allows to in-
fer the variance risk premium rather indirectly, Carr and Wu
(2009) are among the first who use a model-free approach
to synthesize variance swap rates from a sample of traded
options on five US stock indices and 35 individual stocks in
order to examine the existence and dynamics of the vari-
ance risk premium. This model-free approach allows a direct
quantification of the variance risk premium which is defined
as the difference between the risk-neutral expected and sub-
sequently realized variance. Their results suggest that aver-
age variance risk premia are negative and substantial for the
five indices whereas premia for individual stocks exhibit con-
siderable variation, are not always significant and can even
be positive. They further examine whether observed vari-
ance risk premia are related to a systematic variance factor
proxied by the return variance of the S&P 500. This analysis
reveals that assets with higher exposure to the variance fac-
tor are associated with more negative variance risk premia,
which leads them to conclude that investors dislike elevated
levels of market volatility and are willing to accept negative
average returns on variance swaps to insure against rising
market volatility. Moreover, Carr and Wu (2009) find that
frequently used asset pricing models such as the Capital As-
set Pricing Model or the Fama and French (1993) model are
unable to explain variance swap returns.

Driessen et al. (2009) use the same model-free approach
to derive variance risk premia embedded in S&P 100 stock
index options and options on all its individual constituents.
Similar to Carr and Wu (2009), they find a significantly nega-
tive variance risk premium for the S&P 100 whereas the vari-
ance risk premiums on individual stocks are often zero or
even positive. Since an index variance risk premium should
reflect the variance premia of all its constituents, they con-
clude that a negative variance risk premium for the index
together with non-existent or even positive variance risk pre-
mia on its constituents is only reconcilable with priced corre-
lation risk. In order to empirically test this hypothesis, they
implement a trading strategy that is targeted at capturing
the correlation risk premium and earns significant abnormal
returns. Based on their results, Driessen et al. (2009) also
link the expensiveness of index options relative to individ-
ual stock options to the insurance against undesirable mar-
ketwide correlation increases that index options offer but in-
dividual options do not.

Schürhoff and Ziegler (2011) also synthesize variance
swap rates to decompose total variance risk and examine the
separate pricing of systematic and idiosyncratic variance risk
for the S&P 100 and NASDAQ 100 index and all index con-

stituents. Consistent with previous findings, their results sug-
gest that systematic variance carries a negative risk premium.
Moreover, they also find that common idiosyncratic variance
risk, i.e. the risk of comovements in the variances of idiosyn-
cratic stock returns, carries a risk premium which is, on av-
erage, positive. Since the total variance risk premium is the
sum of the two components, Schürhoff and Ziegler (2011)
argue that the non-existent variance risk premium on indi-
vidual stocks documented by Driessen et al. (2009) is due to
the fact that the two components offset each other for S&P
100 constituents. They further attribute the positive risk pre-
mium on common idiosyncratic variance risk to financial in-
termediaries that are net-long in options on individual stocks.
Since these intermediaries are not able to perfectly hedge op-
tions and are exposed to the associated idiosyncratic variance
risk, they require compensation for upholding this position.
Moreover, with regard to the results by Driessen et al. (2009),
Schürhoff and Ziegler (2011) argue that the return on disper-
sion trading strategies that target to capture the correlation
risk premium does not represent compensation for the pure
risk of marketwide increases in correlation but rather reflects
a combination of risk premia on systematic variance and com-
mon idiosyncratic variance risk.

In a related study, Gourier (2015) introduces an affine
jump-diffusion model that considers the factor structure of
asset returns as well as that of idiosyncratic return variance,
in which variance swap rates and the variance risk premium
– using the same definition as Carr and Wu (2009) – can be
derived in closed-form. Further analyses show that model-
based variance swap rates match synthetic variance swap
rates remarkably well. Gourier (2015) finds a negative vari-
ance risk premium for all stocks that rises in absolute mag-
nitude when the time to maturity increases. In contrast to
Schürhoff and Ziegler (2011), she further finds that idiosyn-
cratic variance risk carries a negative risk premium whose
contribution to the overall variance risk premium is substan-
tial and amounts to 80% on average.

The presented selection of studies shows that the exis-
tence of a negative variance risk premium for stock indices
is well documented whereas the results and in particular the
sign of the variance risk premium for single stocks are more
ambiguous.

Apart from studies that document the existence of a vari-
ance risk premium, this work is also related to studies that
attempt to examine whether the wedge between risk-neutral
expected and actually realized variances predominantly re-
flects the risk that arises from stochastic volatility or rather
results from compensation for the risk of discontinuous price
movements, i.e. price jumps. For instance, Todorov (2010)
examines the dynamics of the variance risk premium over
time and especially how it is related to price jumps. For this
purpose he fits a general semiparametric stochastic volatil-
ity model to S&P 500 data and uses deep out-of-the-money
and close-to-maturity options to estimate the risk-neutral tail
jump intensity. The chosen approach allows him to infer the
contribution of stochastic volatility and jumps to the ex-ante
variance risk premium which he measures as the difference
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between a model-based estimate for the future expected vari-
ance under the physical measure and the VIX index. He con-
cludes that jumps play a crucial role in explaining the vari-
ance risk premium. Since it increases after the occurrence
of price jumps and reverts only slowly to its long-run mean
thereafter whereas the impact of jumps on future market dy-
namics is limited, he concludes that investors’ perception of
jump risk is time-varying.

In a related work, Bollerslev and Todorov (2011) employ
extreme value theory together with high frequency and op-
tions data in a nonparametric setting to decompose the eq-
uity risk premium and the variance risk premium into two
separate components for diffusive and jump risk. Their re-
sults suggest that on average approximately 5% (in absolute
terms) of the equity risk premium and more than half of the
variance risk premium represent compensation for jump tail
events.

3. Theoretical foundation of the variance risk premium

For a negative risk premium, such as the observed vari-
ance risk premium, to persistently occur, two complementary
forces that are outlined in the following must coincide. First,
the party requiring the risk premium must be exposed to es-
sentially non-diversifiable, i.e. systematic, or non-hedgeable
risk since otherwise a risk premium would not be justified
and competitors would underbid each other until the mar-
ket price of the asset equals its no-arbitrage price. The ex-
istence of such a non-diversifiable or non-hedgeable risk is
strongly linked to the assumed price process of the underly-
ing. It is well known that if the price of the underlying is
assumed to follow a Geometric Brownian motion with con-
stant return variance, as in the model by Black and Scholes
(1973), markets are essentially complete and options are re-
dundant securities because any option can be perfectly repli-
cated by holding the commensurate amount of the underly-
ing and the risk-free bond. The crucial aspect of such a set-
ting is that the option’s systematic risk is fully accounted for
by the price of the underlying used in the replicating port-
folio (Hull (2009)). Thus, in a world such as that described
by Black and Scholes (1973), any exposure to options can
be hedged perfectly and, if there is a competitive market for
options, option prices should be solely determined by no-
arbitrage conditions without the explicit consideration of risk
premia. If stochastic volatility or random jumps in the asset
price process are introduced, however, there are two addi-
tional variables that can change randomly and affect the price
of an option. Consequently, it is no longer possible to per-
fectly replicate an option’s payoff and thus hedge the option
through simple trading in the underlying and the risk-free
bond. As proven by Bajeux-Besnainou and Rochet (1996), in-
troducing stochastic volatility that fluctuates independently
of the price of the underlying (in contrast to a setting where
volatility is a deterministic function of the asset price (e.g.
Dupire (1994))) in a continuous time setting makes a clas-
sical European option always a non-redundant security. Be-
cause neither stochastic volatility nor jumps are traded assets,

the market is incomplete with respect to states in the world
where these variables change (Staum (2007)). Technically,
market incompleteness means that there is no unique equiv-
alent martingale measure, or risk-neutral probability distri-
bution, for which all discounted asset prices are martingales,
but multiple such measures exist (Bajeux-Besnainou and Ro-
chet (1996)). Due to the absence of assets that allow to trade
these particular risks, it is also not possible to complement
the underlying and the risk-free bond with an additional as-
set whose price exclusively depends on these variables and
thereby replicate and hedge the option perfectly. As a conse-
quence, the holder of an option position is left with the essen-
tially non-hedgeable risk of random changes in the variance
of the underlying or price jumps and associated changes in
the value of her option. Thus, depending on whether these
additional sources of risk are systematic and therefore cor-
related with aggregate consumption, they may command a
risk premium. For instance, in the model proposed by Hull
and White (1987)), stochastic volatility does not carry a non-
zero risk premium because it is explicitly assumed to be un-
correlated with aggregate consumption. Likewise, for exam-
ple Merton (1976) assumes that the source of price jumps
is company- or industry-specific information so that the con-
tribution of price jumps to stock returns is non-systematic.
However, there is considerable empirical evidence that re-
turn variances of different stocks tend to move together (e.g.
Andersen et al. (2001)) and correlations in changes of im-
plied volatilities make it difficult to eliminate vega risk by
simple diversification (Engle and Figlewski (2014)). Thus,
it can reasonably be assumed that variance risk is system-
atic and difficult to diversify. As a consequence, options will
be priced to reflect the required compensation for random
changes in the volatility (e.g. Bates (2000)). Similarly, Ang
and Chen (2002) examine how correlations differ for upside
and downside moves and find that correlation asymmetries
are more pronounced for extreme downward moves, which
can be interpreted as an indirect indication that jump risk
may be systematic, thus potentially justifying a jump risk pre-
mium.

Note that for example in the model by Heston (1993),
an additional option that is already traded would complete
the market (Staum (2007)) and theoretically allow to per-
fectly hedge the risk of random changes in return variance.
However, even in this situation, a perfect hedge still requires
that the applied option pricing model be correct and the cor-
rect input parameters be used to reliably estimate each op-
tion’s sensitivity with respect to random changes in the return
variance. This leads to the closely related practical problem
of model uncertainty. In this context Broadie et al. (2009)
argue that market makers in option markets may require a
risk premium since the necessary estimation of parameters
such as the spot volatility, long-run mean levels of volatility
and volatility mean reversion parameters and the associated
determination of hedge ratios in the presence of stochastic
volatility and jumps is subject to considerable estimation risk
and may lead to the effect that option market makers cannot
hedge their option exposure perfectly. For instance, Green
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and Figlewski (1999) analyze the effect of inaccurate volatil-
ity estimates on delta-hedged short positions in index options
by comparing the performance using as input to the option
pricing model the best historical estimate of volatility and
actually realized volatility over the remaining life of the op-
tion. Their results show that model risk due to an inaccurate
volatility estimate has economically substantial effects even
when positions are delta-hedged daily. Thus, the pricing of
this estimation risk by risk-averse market makers could also
contribute to the observed difference between option-implied
and realized variances.

Empirical evidence that option market makers may in-
deed find it difficult to hedge their inventory is given by Gâr-
leanu et al. (2009) who argue that option prices should not
be affected by demand pressures when competitive interme-
diaries can hedge their option positions perfectly. They for-
malize in a model the notion that risk-averse intermediaries
require compensation for their inability to hedge their ex-
posure and link the amount of unhedgeable risk to the net-
position these market makers hold. Their empirical results
suggest that option expensiveness, defined as the difference
between the average of options’ implied volatility and a vola-
tility forecast is indeed related to the net-position market
makers have in options. In particular, index options in which
intermediaries are net-short so that increases in volatility are
associated with losses to the intermediary are visibly more
expensive than individual equity options in which interme-
diaries are net-long. Further, Fournier and Jacobs (2015)
also assume that market makers face unhedgeable risks and
find that an option market makers’ increasing inventory ex-
posure to market variance risk, which is measured as the ag-
gregate Black and Scholes (1973) vega, is associated with
a significantly more negative variance risk premium (using
the same definition of the variance risk premium as applied
here). In this context, the results of Gârleanu et al. (2009)
and Fournier and Jacobs (2015) offer an interesting expla-
nation for the differential magnitude of variance risk pre-
mia in equity index options and options on individual stocks
(e.g. Carr and Wu (2009), Driessen et al. (2009)) with re-
gard to the net-position held by market makers in these con-
tracts. Note, however, that the cited studies take the demand
for options as exogenously given. Thus, they offer a poten-
tial explanation for why market makers may demand a vari-
ance risk premium but leave open the question why investors
should be willing to pay it. This leads to the second prereq-
uisite for the persistent existence of a variance risk premium.

While market makers seem to be exposed to unhedgeable
systematic risk which justifies a risk premium, the second pre-
requisite for its persistent existence is that the assets on which
an investor pays the premium, namely (index) options and
variance swaps, offer insurance against an undesirable state
of the world. If this was not the case, investors would not
be willing to pay the substantial negative premium that is of-
ten found. A risk-averse investor is usually characterized by
marginal utility that decreases with wealth. Due to the asym-
metry of changes in utility that result from positive and neg-
ative changes in wealth or consumption of equal magnitude

with a concave utility function, a risk-averse individual will
always be willing to give up wealth in the good state of the
world, i.e. reduce current consumption, and pay insurance
against realization of the bad state in which wealth is low and
marginal utility is high. In this context, the apparent question
is what exactly causes the risk-neutral expected variance to
frequently exceed the realized variance. A possible explana-
tion is a phenomenon called asymmetric volatility (e.g. Wu
(2001)) that describes a negative correlation between market
returns and return variance. Due to this negative correlation,
variance swaps naturally offer insurance against substantial
market declines, which may explain why investors are willing
to pay a premium for such instruments, i.e. accept a variance
strike that is too high relative to the variance one would ex-
pect to realize under the physical measure.

Moreover, a randomly changing return variance also im-
plies that an investor’s final wealth is not only risky but also
ambiguous1 or uncertain and there is empirical evidence of
ambiguity aversion, i.e. that people prefer to act on known
rather than on unknown probabilities (Ellsberg (1961)2).

An interesting and intuitive explanation how model un-
certainty, which is closely linked to ambiguity aversion, can
also help to explain risk-neutral expected variances that fre-
quently exceed realized variances is offered by
Drechsler (2013). He develops a model in which the rep-
resentative investor has a reference model about the evolu-
tion of certain economic fundamentals but is not confident
whether this model is indeed correct. To account for this sit-
uation and to derive decisions that are robust to model un-
certainty, the investor considers alternative models that are
statistically difficult to distinguish from the reference model
and evaluates his decisions under the model which represents
the “worst case”. The investor is particularly concerned that
the reference model underestimates the intensity and mag-
nitude of potential jumps. Thus, the risk-neutral probabili-
ties that are determined under this “worst case” model are
tilted toward states of the world in which wealth is low and
marginal utility is high, in particular to states in which large
negative jumps in the expected growth rate of cash flows oc-
cur. As such important shocks to the economic state affect as-
set prices and thus return variance, this mechanism directly
translates into a higher risk-neutral expected variance. Be-
cause, irrespective of the sign, the realized return variance
is positively affected by the occurrence of jumps, a variance
swap obviously offers insurance against such adverse move-
ments. Moreover, an implication of this model is that the

1Risk refers to a situation in which possible outcomes are uncertain but
the distribution of outcomes is known. In contrast, ambiguity refers to a
situation in which the outcome itself as well as the distribution of outcomes
is not known (e.g Anderson et al. (2009)).

2Ellsberg (1961) describes a situation in which people can choose a ball
to be drawn from two different urns that contain red and black balls. A
certain prize is received if a red ball is drawn and a smaller prize if a black
ball is drawn. Urn I contains exactly 100 balls but nothing is known about
the relative proportion of red and black balls. Urn II contains exactly fifty
black and fifty red balls. Once asked to bet on the outcome that a red (black)
ball will be drawn, the majority of people prefer Urn II (Urn I) over Urn I
(Urn II).
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magnitude of the variance risk premium depends on the de-
gree of investors’ uncertainty. A circumstance that gives sup-
port to this model is that, once calibrated, it is able to gen-
erate the variance risk premium with a comparatively low
level of risk aversion and to capture additional features of
asset returns.3 This is mainly a result of the explicit consid-
eration of model uncertainty. In a related model by Drechsler
and Yaron (2011) where this model uncertainty is not consid-
ered and the variance risk premium only arises from shocks
to long-run consumption growth, larger jumps and a higher
risk aversion are necessary to produce results that match im-
portant properties of the data. What both models (and many
others) have in common, however, is that jumps are typically
needed to produce variance risk premia that are close to the
data estimates.

4. Methodology and data

4.1. Theoretical basis for extracting the risk-neutral expected
variance

In this section, the methodology that is used to extract
the risk-neutral expected variance from a set of traded op-
tions is outlined. The derivation of the risk-neutral expected
integrated variance goes back to the work of Demeterfi et al.
(1999), Britten-Jones and Neuberger (2000),
Carr and Madan (1998) and others. Carr and Madan (1998)
show that the integrated variance of the futures price process
can be replicated through a static portfolio of European op-
tions across a continuum of strike prices and dynamic hedg-
ing in the underlying futures contract if continuous trading
is possible, interest rates are constant and the underlying fu-
tures price is a continuous semi-martingale. Their solution
builds on the work of Neuberger (1994) who finds that the
payoff from delta-hedging a contract that pays the log of the
spot price at maturity equals the difference between the real-
ized variance and the variance assumed for hedging. More-
over, this log contract can be replicated through a static po-
sition in options (Breeden and Litzenberger (1978)).

In particular Carr and Madan (1998) derive the following
expression for the time-0 conditional expectation of variance
of the futures price process over the time horizon [0,T] under
the risk-neutral probability measure Q where Ft denotes the
time t price of the futures contract that expires at time T and
RVt,T denotes the annualized realized variance over the time
horizon [t,T].
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2
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(log(

F0

FT
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3In particular, the model is able to generate the high equity risk premium,
low risk-free rate, excess volatility of equity returns relative to fundamentals,
a substantial variance risk premium that has predictive power for equity
returns and a realistic implied volatility surface that captures the implied
volatility skew for different maturities.

The second term on the right hand side of equation (1)
represents the payoff of a continuously rebalanced position
in the underlying futures contract. The first term represents
a log contract that pays f (FT ) at maturity. The final payoff
of this log contract can be expressed as the final payoff of
a static portfolio of European out-of-the-money (OTM) put
and call options on the underlying futures contract4 across a
continuum of strike prices K with expiration at time T where
each option is inversely weighted by the square of its strike
price K. Thus, the expression shown in equation (2) can be
derived.
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Note that the terminal option payoff in equation (2) is
the payoff on European options on the futures contract. How-
ever, since the options and the futures contract expire at time
T and the futures price has to equal the spot price at ma-
turity to prevent arbitrage, European options on the futures
and options on the spot are effectively equivalent. Moreover,
in a risk-neutral world, the drift of the futures price is zero
when the money market account is taken as numeraire im-
plying that the futures price is a martingale (Carr and Madan
(1998)). Thus, the expected value from continuous trading
in the futures contract is zero so that the last term in the
square brackets can be omitted.

Since the current price of any asset should equal the pres-
ent value of future expected cash flows, the final payoff of
the option portfolio can be rewritten as the terminal value of
the current price of the option portfolio. Thus, the time – t
conditional expectation of variance over a time horizon [t,T]
under the risk-neutral measure can be stated as

EQt [RVt,T ] = ert,T (T−t) 2
T − t

[

∫ F0

0

1
K2

Pt(K , T )dK+

∫ ∞

F0

1
K2

Ct(K , T )dK],

(3)

where rt,T is the time-t risk-free rate over the time horizon
[t,T] and Pt(K; T ) and Ct(K , T ) are the time-t prices of Eu-
ropean put and call options on the spot with strike price K
that expire at time T. Equation (3) also denotes the variance

4Carr and Madan (1998) formally show that any twice differentiable
payoff function, f (FT ), of the terminal futures price can be re-written as
f (FT ) = f (κ) + f ′(κ)[(FT − κ)+ − (κ − FT )+] +

∫ κ

0 f ′′(K)(K − FT )+dK +
∫∞
κ

f ′′(K)(FT − K)+dK . Setting the arbitrary parameter κ equal to F0 al-
lows to derive the expression shown in equation (2).
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strike in a variance swap contract that is initiated at time t
and expires at time T.

Equation (3) measures the risk-neutral expected variance
exactly when the price of the underlying evolves according
to a purely continuous price process without jumps. How-
ever, Jiang and Tian (2005) show that this expression also
yields an accurate estimate under more realistic assumptions
when the asset price process is allowed to exhibit jumps and
the effect of implied jumps is included in the above measure
so that an estimate of the total quadratic variation can be
obtained. Further, Carr and Wu (2009) show in a simula-
tion study that the jump-induced error is typically very small.
In general, the approximation error due to jumps, i.e. the
difference between the “true” risk-neutral expected variance
and the estimate obtained from equation (3) will be positive
when negative jumps dominate and can become significant
when jumps significantly contribute to overall volatility, pre-
sumably in times of stress (Du and Kapadia (2011)).

Moreover note that equation (3) theoretically captures
the risk-neutral integrated variance of the futures price pro-
cess. However, under the assumption of deterministic in-
terest rates and dividend yields, the spot and futures price
should have the same quadratic variation. Moreover, since
interest rates are at historically low levels for a substantial pe-
riod covered by the dataset and the time horizon over which
the risk-neutral expected variance is approximated is rela-
tively short (22 trading days), a violation of these assump-
tions would probably have no significant effect on the results.
Following the convention to determine the payoff on a vari-
ance swap that is described by Aït-Sahalia et al. (2015b), the
annualized realized variance over the 22 trading day hori-
zon [t,t+22], where t now denotes a specific trading day, is
defined as the annualized sum of daily squared log-returns
shown in equation (4) based on a day-count-convention of
255 business days per year. The spot price used in equation
(4) is adjusted for stock splits and spin-offs.

RVt,t+22 =
255
22

22
∑

i=1

(log(
St+i

St+i−1
))2 (4)

As noted by Bollerslev et al. (2011), the use of model-free
realized volatilities, computed by summing squared returns
from high-frequency data, generally allows a more accurate
ex post observation of historical volatility than the expres-
sion used in equation (4) and would therefore naturally lend
itself for an accurate measurement of the variance risk pre-
mium as defined below. However, in an earlier version of
their study, Bollerslev et al. (2008) find, based on the model
of Heston (1993), that the mean bias in the volatility risk pre-
mium using model-free implied volatility and realized volatil-
ity estimated from daily returns was only about 1.05% of the
theoretical volatility premium for a sample size of 600.5 I
consider this magnitude of bias sufficiently small to justify

5This can be seen by comparing the figures in Table 1 of their paper. The
mean bias in the volatility premium is about 0.0021 compared to a theoret-
ical premium of -0.20.

the use of equation (4) to measure the realized variance over
the relevant horizon.

4.2. The variance risk premium

Following Carr and Wu (2009), the variance risk premium
is defined as the difference between the actually realized vari-
ance over the time horizon [t,T] and the time-t expected vari-
ance under the risk-neutral measure over that same time pe-
riod, i.e. VRPt,T = RVt,T − EQt [RVt,T ]. In this sense, VRPt,T ·
100 is the payoff in monetary units to an investor who holds
a long position in a variance swap contract with notional
100 that is initiated at time t and expires at time T, whereas
RVRPt,T =

RVt,T

EQt [RVt,T ]
− 1 is the excess return to the investor

when the variance swap rate is thought to be the initial in-
vestment. LVRPt,T = log(RVt,T/E

Q
t [RVt,T ]) can therefore be

regarded as the continuously compounded excess return on
this variance swap contract.

When no confusion arises, I drop subscripts in the text.
Specifically, I use VRP, RVRP and LVRP to refer to VRPt,T ,
RVRPt,T and LVRPt,T in the text.

4.3. Data

The applied dataset includes daily option price informa-
tion on three US and five European stock indices as well as
29 single stocks from the US. A detailed overview of the in-
cluded indices and stocks along with further information is
shown in Table 1 below.

Daily settlement as well as bid and ask prices for options
on European indices as well as the corresponding index se-
ries and all overnight indexed swap (OIS) rates are retrieved
from Thomson Reuters Datastream. Bid and ask prices of
options on US indices and stocks, the corresponding prices
of the underlyings and the London Interbank Offered Rate
(LIBOR) curve are retrieved from OptionMetrics. For the Eu-
ropean indices, OIS rates are used as proxy for the risk-free
rate. For the US underlyings, LIBOR rates are used as prox-
ies for the risk-free rate prior to 2007 whereas from the year
2007 on, OIS rates are used as a proxy. The reason for this
change is that derivative dealers generally used LIBOR as a
proxy for the risk-free rate prior to 2007 but have switched
to OIS rates for collateralized transactions in later years as
a consequence of substantial rises in LIBOR rates during the
financial crisis (Hull and White (2015)). Since the data used
here stem from options traded on organized exchanges with
central clearing authorities and collateral requirements, the
application of these rates appears to be a reasonable choice.

If available, option prices for subsequent analyses are de-
fined as the average of bid and ask prices. Otherwise, the
daily settlement price is used. To obtain the final data sam-
ple, several exclusionary criteria are applied to the initial set
of options. First, if applicable bid prices are required to be
strictly positive and bid-ask-spreads to be equal or greater
than zero. Second, options with less than seven days to matu-
rity are excluded since prices of such options might be biased
by liquidity and microstructure concerns
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Table 1: Data description

Note: Entries list the name of included stocks and indices as well as their tickers which are sometimes used in other tables to reference the respective
underlying. Start and End denote the first and last day in the sample on which a valid estimate of the variance risk premium could be obtained. NOptions
denotes the number of option quotes available after filters are applied. NVSwap denotes the number of days on which a valid estimate for the VRP could be
obtained. NKLow and NKHigh denotes the average daily number of options with expiration date TL and TH , respectively, from which implied volatilities could
be derived and interpolated. TimeGap denotes the average distance in days between TL and TH over which the risk-neutral expected variance is interpolated.
A description of TL and TH is given in section 4.4.

Underlying Ticker Start End NOptions NVSwap NKLow NKHigh Time Gap

AEX Index AEX 06/06/2011 29/07/2015 54692 736 22.66 21.92 19.91
CAC40 Index CAC 04/01/2010 29/07/2015 66668 967 23.95 18.84 19.93
DAX Index DAX 18/04/2006 29/07/2015 257088 1660 44.43 45.23 19.73
Dow Jones Industrial Average DJX 31/12/2002 30/07/2014 95091 2061 15.40 13.93 19.58
Euro Stoxx 50 ESX 03/01/2011 29/07/2015 114076 813 40.54 40.96 19.69
NASDAQ100 NDX 04/01/1996 30/07/2014 304070 3278 31.26 25.01 18.60
SMI SMI 06/06/2011 29/07/2015 48250 717 22.97 18.99 19.49
S&P500 Index SPX 04/01/1996 30/07/2014 649410 3598 47.88 42.58 16.43
Alcoa AA 19/08/1997 30/07/2014 35747 803 5.13 6.56 18.46
Altria (Philip Morris) MO 05/01/1996 30/07/2014 55143 2163 5.29 6.42 18.35
Amazon AMZN 15/12/1997 30/07/2014 142691 2315 13.80 16.42 17.28
American Express AXP 26/01/1996 30/07/2014 65397 1949 7.77 8.82 17.93
Amgen AMGN 17/01/1996 30/07/2014 68730 2328 6.93 7.97 17.98
Analog Devices ADI 20/08/1996 20/05/2014 29604 685 5.74 5.95 18.05
Apple AAPL 04/01/1996 30/07/2014 272051 2392 23.22 28.25 16.81
Bank of America BAC 17/01/1996 30/07/2014 51899 1467 5.22 6.40 15.60
Boeing BA 27/02/1996 30/07/2014 77177 2032 7.77 8.83 17.24
Cisco CSCO 04/01/1996 30/07/2014 63305 1932 6.23 7.84 17.76
Exxon Mobil XOM 19/02/1997 30/07/2014 63227 1738 7.01 8.50 17.35
Facebook FB 29/05/2012 30/07/2014 57679 501 20.35 21.38 8.22
General Electric GE 17/01/1996 30/07/2014 60886 1860 5.63 7.18 17.14
Home Depot HD 17/01/1996 30/07/2014 62245 1789 6.48 7.84 17.55
IBM IBM 04/01/1996 30/07/2014 101647 2920 8.59 10.30 17.40
Johnson & Johnson JNJ 26/01/1996 30/07/2014 47892 1238 5.92 6.88 16.92
McDonald’s MCD 29/02/1996 30/07/2014 56254 1406 7.01 8.13 16.49
Merck MRK 22/02/1996 30/07/2014 62784 2038 6.38 7.60 17.96
Metlife MET 13/02/2007 30/07/2014 37523 945 9.65 10.79 19.32
Microsoft MSFT 04/01/1996 30/07/2014 87564 2441 7.78 9.91 18.13
Monsanto MON 19/03/1996 30/07/2014 43459 1295 8.59 9.81 19.27
Nike NKE 01/02/1996 30/07/2014 50464 1448 6.41 7.02 16.57
Pfizer PFE 23/10/1996 30/07/2014 54150 1442 5.46 6.62 16.62
Procter & Gamble PG 17/07/1996 30/07/2014 53938 1609 6.06 6.99 16.94
Starbucks SBUX 18/09/1996 30/07/2014 53567 1530 7.06 8.41 18.92
Tesla TSLA 21/07/2010 30/07/2014 64480 732 18.49 18.47 14.58
Valero VLO 04/06/2001 30/07/2014 64166 1747 8.31 10.37 18.02
Verizon VZ 25/03/1998 30/07/2014 59440 1399 7.12 8.69 16.65
WalMart WMT 22/10/1997 30/07/2014 58038 1882 5.92 7.09 17.39

(Jiang and Tian (2005)). Third, index options with zero trad-
ing volume are excluded from the dataset because the prices
of such options may not reflect true value (Jiang and Tian
(2005)). Since most single stock options are less frequently
traded than index options, a less strict criterion is applied to
such options in that only options with zero trading volume
and open interest smaller than 100 contracts are excluded.

Since the following applications require a dividend yield
for the indices of which a reliable estimate is difficult to ob-
tain, the option-implied dividend yield is obtained through a
combined application of the put-call parity and spot-futures
parity. In a first step, the time-t option-implied price, F i

t , of

the futures contract that expires at time T is inferred through
put-call-parity (e.g. Hull (2009)) that is shown in equation
(5).

F i
t = K + ert,T (T−t) · (Ct(K , T )− Pt(K , T )) (5)

In order to select the put and call option used in equation
(5), the methodology applied by the Chicago Board Options
Exchange for calculating its volatility index (CBOE (2015))
is used. For every maturity on a given day, the pair of op-
tions with the same strike price and maturity for which the
absolute price difference is smallest is used in equation (5).
The option-implied forward looking dividend yield at time t
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over the time horizon [t,T], θt,T , is then extracted through
the spot-futures parity (e.g. Hull (2009)) that is shown in
equation (6).

F i
t = St e

(rt,T−θt,T )(T−t) (6)

The outlined procedure ensures that the option pair used
in the estimation of the implied dividend yield consists of
at-the-money (ATM) options which are, especially for the in-
dices considered here, typically relatively liquid. Thus, prices
of such options and derived implied dividend yields can gen-
erally be expected to be reliable. Nevertheless, option-
implied dividend yields are occasionally negative. Such neg-
ative values occur remarkably often during times of finan-
cial turmoil, especially during October 2008 and November
2011. Due to this, the negative yields most likely capture
the effect of a discount rate used by market participants that
exceeds the rate that is used to derive the implied dividend
yield. Even though these negative dividend yields ensure that
put-call parity is technically satisfied, it is obviously implau-
sible to us them for further applications. Thus, the following
adjustments are made to replace negative values: whenever
possible, a replacement value for a negative forward looking
dividend yield at a given maturity is obtained through lin-
ear interpolation or extrapolation of implied dividend yields
at adjacent maturities on the same day. If a linear interpo-
lation or extrapolation is not possible because the number
of positive implied dividend yields at different maturities is
smaller than two on a given day, the implied dividend yield
for the same expiration date on the previous day is used as a
replacement value. If none of these two adjustments results
in a positive value or no value can be found, the implied div-
idend yield is set to zero. For those observations where the
implied dividend yield is replaced, a new forward price corre-
sponding to the adjusted implied dividend yield is computed.

For stocks a similar procedure is applied with the excep-
tion that the implied present value of dividends is derived
instead of an implied dividend yield.

After the derivation of implied dividend yields and present
values of dividends, a fourth exclusionary criterion is applied
before implied volatilities are derived. As outlined by Aït-
Sahalia and Lo (1998), in-the-money (ITM) options are
traded relatively infrequently compared to ATM or OTM op-
tions. Therefore, prices of such options, and implied volatili-
ties derived from these prices, tend to be unreliable. For this
reason, ITM options are removed from the dataset.

For European options, implied volatilities are inferred
based on the model of Black and Scholes (1973) (henceforth
referred to as B-S model).6 For American options, implied
volatilities provided by OptionMetrics are used. For such op-
tions, OptionMetrics uses a binomial tree approach account-
ing for the effect of the early exercise premium.

6This is done with an adjusted version of Mark Whirdy’s code ”Fast
Matrixwise Black-Scholes Implied Volatility” for Matlab that is available
under the following address: http://www.mathworks.com/matlabcent
ral/fileexchange/41473-fast-matrixwise-black-scholes-impli
ed-volatility.

Index options with implied volatilities greater than 80%
and single stock options with implied volatilities greater than
100% are removed from the dataset. Such observations are
probably outliers that would corrupt the implied volatility
surface.

In addition to the options data, price information from
the Center for Research in Security Prices, factor returns from
Kenneth French’s website and data from the Survey of Pro-
fessional Forecasters, which are introduced in detail when
applied, are used.

4.4. Implementation of the method to extract the risk-neutral
expected variance

In order to obtain an estimate of the risk-neutral expected
variance over the time horizon [t,T], equation (3) is numer-
ically evaluated using the trapezoidal method. A practical
problem arises since equation (3) requires an infinite num-
ber of options across a continuum of strike prices whereas
the number of traded options is finite. To cope with this situ-
ation, I generate 5000 artificial options that expire at the two
expiration dates TL and TU closest below and above T over
an equally-spaced range of strike prices of ±8 standard devi-
ations from the current spot price. This standard deviation is
estimated as the average of the implied volatilities of the two
options that are closest to being at-the-money and expire at
time TL . In a simulation based on a model with stochastic
volatility and jumps, Jiang and Tian (2005) show that trun-
cation errors are generally negligible if the truncation points,
i.e. the highest and lowest observed strike prices, are more
than two standard deviations from the current forward price,
F0, and can be further reduced by applying the extrapolation
scheme outlined below. They further show that discretiza-
tion errors resulting from non-continuous strike prices are
negligible when the gap between consecutive strike prices
is smaller than or equal to 0.35 standard deviations. Thus,
5000 options over a range of strike prices between ±8 stan-
dard deviations from the current spot should help to alleviate
truncation and discretization errors.

In order to generate the artificial option prices, implied
volatilities are needed. As noted in section 4.3, implied vola-
tilities for European options are obtained based on the model
by Black and Scholes (1973) whereas implied volatilities pro-
vided by OptionMetrics are used for American options. For
any given day t and the two expiration dates TL and TU ,
implied volatilities are then interpolated across moneyness,
defined as k ≡ log(K/F i

t ), between the highest and lowest
observed strike price using cubic splines. Jiang and Tian
(2007) argue that the use of cubic splines leads to the conve-
nient property that the implied volatility function is smooth
over the range of observed strike prices, which is a direct
implication of no-arbitrage constraints (e.g. Breeden and
Litzenberger (1978)). For strike prices below the smallest
and above the highest observed strike price, implied volatil-
ity is held constant at the value observed at these end points.7

7Jiang and Tian (2007) use a slightly different but similar linear extrapo-

http://www.mathworks.com/matlabcentral/fileexchange/41473-fast-matrixwise-black-scholes-implied-volatility.
http://www.mathworks.com/matlabcentral/fileexchange/41473-fast-matrixwise-black-scholes-implied-volatility.
http://www.mathworks.com/matlabcentral/fileexchange/41473-fast-matrixwise-black-scholes-implied-volatility.
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The prices of artificial European options that expire at time
TL and TU over the continuum of strike prices are obtained
by inserting the interpolated implied volatilities into the B-
S-formula. In the next step these option prices are used to
numerically evaluate equation (3) and obtain an estimate of
the risk-neutral expected variances over the two time hori-
zons [t, TL] and [t, TU]. An estimate of the risk-neutral ex-
pected variance over the desired horizon [t,T], can then be
obtained through linear interpolation between the expected
risk-neutral variances over the time horizons [t, TL]
and [t, TU]. Note that, in order to ensure that the interpo-
lation and extrapolation scheme can work properly and de-
rived estimates of the risk-neutral expected variance are reli-
able, this procedure is only applied on days on which at least
four traded options are available. Moreover note that the B-
S model is only used as a convenient way to derive implied
volatilities from and translate implied volatilities into options
prices. In particular, it is not assumed that this model is a true
representation of reality.

A description of the average time over which the risk-
neutral expected variance is interpolated along with the av-
erage number of options that expire at times TL and TH is
shown in Table 1.

5. Empirical analysis

5.1. Realized variance risk premia

Figure 1 plots the daily time series of annualized risk-
neutral expected and actually realized volatilities over the
subsequent 22 trading days, the variance risk premium, de-
fined as VRPt,T , and the index level for the S&P 500 index
between January 4th 1996 and July 30th 2014. From Figure
1 it is evident that the approximation of the expected vari-
ance captures the dynamic of the subsequently realized vari-
ance quite well and that substantial changes in the variance
risk premium go hand in hand with significant fluctuations
in the index level. This is also confirmed by the high correla-
tion coefficient of 0.6437 between risk-neutral expected and
subsequently realized variance for the S&P 500 index. At the
same time, however, the wedge between the two variance
measures is also apparent. For most of the time, the vari-
ance risk premium is negative and relatively stable but expe-
riences substantial fluctuations when major market changes
occur and reaches unprecedented levels during the financial
crisis.

Table 2 shows summary statistics for the variance risk
premium over a 22 trading day horizon in three different
forms, defined either as the time series average of VRPt,T ·

lation scheme where the slope of the extrapolated segment is set equal to the
slope of the interior segment at the endpoints. Even though this procedure
better captures the observed skew in implied volatility surfaces for certain
strike sections, it can lead to the implausible drawback that further-out-of-
the-money call options have higher artificial prices than nearer-out-of-the-
money call options, which occasionally happens here. Thus, the constant
extrapolation scheme with zero slope is applied.

100, LVRPt,T or RVRPt,T . The reason for introducing a loga-
rithmic version of the variance risk premium is that the VRP
and RVRP distributions exhibit substantial skewness and kur-
tosis, indicating that the two stem from a highly non-Gaussian
distribution, while LVRPs generally appear more normal
which might be beneficial for subsequent regression analy-
ses.

Consistent with previous studies, the mean VRP is neg-
ative on all stock indices and statistically significantly dif-
ferent from zero at the 1%-level for the S&P 500, the AEX,
and the Euro Stoxx 50 and significant at the 5%-level for the
Dow Jones and NASDAQ 100. Only for the Swiss SMI and
the DAX, the variance risk premium is not significant on any
conservative level. The distributions of both, VRP and RVRP
show substantial kurtosis and positive skewness and are re-
flective of high and positive returns which fatten the right
tail of the distributions. In contrast, LVRPs exhibit a consid-
erably lower skewness and kurtosis, which is due to the fact
that especially the excessively high, positive returns during
the recent financial crisis are alleviated through the logarith-
mic transformation. In this context, it is also noticeable that
the standard deviations of the VRPs are excessive, especially
for single stocks, which partly explains why the VRP is statis-
tically different from zero only for comparatively few stocks.
Indeed, even though VRP is negative in most cases, the null
hypothesis that realized and expected risk-neutral variances
do not differ on average cannot be rejected at the 5% signif-
icance level for 21 of the 29 stocks.

Mean LVRPs are negative for all underlyings and t-statis-
tics8 are generally higher. The mean LVRP is significantly dif-
ferent from zero at the 1%-level for all underlyings. How-
ever, as pointed out by Driessen et al. (2009), a necessary
remark in this context is that due to the concavity of the
logarithmic function, Jensen’s inequality implies that mean
log variance risk premia are negative even under the null hy-
pothesis of equality between risk-neutral expected and subse-
quently realized variance. When raw variance swap returns
(RVRPt,T =

RVt,T

EQ[RVt,T ]
− 1) are used instead, mean returns are

generally smaller in absolute magnitude than for the LVRPs
but still negative for 35 underlyings. However the mean raw
return is statistically significantly different from zero at the
5%-level for only 14 underlyings.

Qualitatively, the results in the left panel of Table 2 are
similar to those obtained by Carr and Wu (2009) who find sig-
nificantly negative variance risk premia for stock indices but
only comparatively few single stocks for which the premia
are significant. Despite this tendency, the results are quite
different from those of Driessen et al. (2009) who find a sig-
nificantly negative variance risk premium for the S&P 100
index but no evidence for the presence of a generally neg-
ative variance risk premium in individual constituents. In-

8Except for equation (9), all t-statistics and regressions, as well as stan-
dard deviations adjusted according to the method of Newey and West (1987)
are obtained using Kevin Sheppard’s MFE Toolbox for Matlab throughout this
work. The toolbox is available under http://www.kevinsheppard.com/
MFE_Toolbox.

http://www.kevinsheppard.com/MFE_Toolbox.
http://www.kevinsheppard.com/MFE_Toolbox.
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Figure 1: Time series of risk-neutral expected and realized volatility, variance risk premium and the S&P 500

Note: The first plot shows the time series of annualized risk-neutral expected and subsequently realized volatility over 22 trading days in the period from
January 4th 1996 to July 30th 2014 for the S&P 500 Index. Both measures are annualized on a basis of 255 trading days in a year. The second plot shows the
realized variance risk premium over 22 trading days, VRP0,T , over the corresponding sample period. The red horizontal line indicates a VRP equal to zero.
The third plot shows the index level of the S&P 500 index over the same sample period.



A. Wahl / Junior Management Science 1 (2016) 1-3312

Table
2:

Sum
m

ary
statistics

of
variance

risk
prem

ia

N
ote:

Entries
refer

to
the

tim
e

period
from

January
4

th
1996

untilJuly
29

th
2015.

RV
and

EV
denote

the
realized

and
risk-neutralexpected

variance,respectively.
R

ealized
volatility

is
calculated

from
daily

returns
and

annualized
by
p

255
/22.

t-stat
denotes

the
relevant

t-statistics
adjusted

for
serial

correlation
according

to
the

m
ethod

by
N

ew
ey

and
W

est
(1987)

w
ith

a
lag

length
of

22
days.

Sam
ple

std.,
Skew

,and
Kurt

denotes
the

sam
ple

standard
deviation,skew

ness
and

kurtosis.
Sharpe

ratio
is

the
annualized

Sharpe
ratio

calculated
as

the
annualized

m
ean

LV
R

P
or

RV
R

P
divided

by
the

corresponding
sam

ple
standard

deviation
adjusted

for
serialdependence

according
to

N
ew

ey
and

W
est

(1987)
w

ith
22

lags
and

annualized
by
p

255
/22.

D
escriptive

statistics
of

varian
ce

risk
prem

ia

V
R

P
as
(R

V
−

E
V
)·100

LV
R

P
as

ln(RV/EV
)

RV
R

P
as

RV/EV-1

Ticker
R

ealized
volatility

M
ean

t-stat
Sam

ple
std.

Skew
Kurt

M
ean

t-stat
Sam

ple
std.

Skew
Kurt

Sharpe
R

a-
tio

M
ean

t-stat
Sam

ple
std.

Skew
Kurt

Sharpe
R

a-
tio

N

A
EX

16.12%
-0.68

-3.01
2.18

1.22
8.51

-0.32
-4.61

0.59
0.43

3.27
0.58

-0.12
-1.70

0.65
2.56

11.20
0.11

736

C
A

C
19.88%

-0.62
-1.93

3.38
2.30

12.56
-0.27

-4.61
0.57

0.45
3.40

0.50
-0.09

-1.35
0.66

2.99
16.70

0.07
967

D
A

X
20.21%

-0.84
-1.65

5.78
4.02

37.84
-0.34

-6.46
0.61

0.50
3.85

0.54
-0.12

-1.91
0.74

3.51
19.47

0.06
1660

D
JX

15.17%
-0.84

-1.99
4.95

4.92
51.04

-0.50
-10.72

0.58
0.74

5.04
0.80

-0.25
-4.63

0.67
4.46

28.23
0.14

2061

ESX
19.60%

-0.95
-3.02

2.88
1.30

7.73
-0.33

-5.05
0.55

0.27
2.96

0.60
-0.15

-2.60
0.53

1.91
7.70

0.18
813

N
D

X
26.05%

-1.17
-2.52

7.38
3.17

24.10
-0.33

-10.68
0.51

0.59
4.65

0.64
-0.17

-4.55
0.60

4.50
33.35

0.13
3278

SM
I

14.05%
-0.24

-0.65
3.06

3.18
16.51

-0.33
-4.26

0.64
0.91

4.36
0.54

-0.08
-0.68

0.93
3.61

17.74
0.03

717

SPX
17.10%

-1.25
-3.65

5.15
5.72

60.03
-0.54

-15.05
0.57

0.79
5.07

0.85
-0.29

-6.61
0.67

5.61
46.08

0.14
3598

A
A

40.18%
-0.37

-0.17
21.06

6.71
58.86

-0.22
-3.99

0.55
0.67

4.81
0.48

-0.04
-0.51

0.77
3.93

22.72
0.03

803

M
O

25.68%
-1.16

-1.79
9.53

2.97
27.06

-0.37
-7.32

0.71
0.42

4.46
0.54

-0.07
-0.78

1.25
8.63

96.92
0.01

2163

A
M

ZN
47.01%

1.65
1.01

24.60
2.74

14.05
-0.23

-5.31
0.62

0.45
3.91

0.38
-0.01

-0.23
0.86

4.11
27.72

0.01
2315

A
X

P
35.11%

1.13
0.90

15.47
4.26

26.86
-0.18

-4.34
0.57

0.64
4.44

0.33
0.00

0.01
0.80

3.53
18.79

0.00
1949

A
M

G
N

32.06%
-1.54

-2.12
10.51

1.42
12.37

-0.30
-7.05

0.59
0.10

2.95
0.50

-0.12
-2.83

0.59
2.17

10.59
0.10

2328

A
D

I
51.22%

0.52
0.17

23.07
2.16

10.88
-0.19

-3.19
0.49

0.20
3.35

0.41
-0.06

-0.94
0.53

2.11
9.26

0.07
685

A
A

PL
39.31%

-1.31
-0.63

39.51
14.80

242.03
-0.31

-8.64
0.54

0.80
7.11

0.60
-0.11

-1.76
1.15

14.55
275.48

0.04
2392

B
A

C
39.00%

7.30
1.52

46.18
5.19

31.82
-0.19

-3.42
0.61

0.77
4.64

0.30
0.03

0.36
0.98

4.54
32.94

-0.01
1467

B
A

28.94%
-1.35

-2.45
7.92

2.96
27.29

-0.26
-7.18

0.51
0.26

4.00
0.54

-0.12
-3.16

0.56
3.80

29.38
0.14

2032

C
SC

O
39.36%

-0.11
-0.10

14.34
1.92

10.54
-0.24

-5.38
0.62

0.29
3.22

0.42
-0.04

-0.73
0.72

2.55
11.85

0.02
1932

XO
M

22.53%
-0.33

-0.33
12.02

9.05
98.71

-0.31
-6.73

0.57
0.72

5.26
0.55

-0.11
-1.45

0.90
7.55

84.13
0.04

1738

FB
43.97%

-2.21
-0.68

19.40
1.88

8.67
-0.25

-2.60
0.60

0.88
4.22

0.40
-0.03

-0.23
0.85

3.19
13.74

0.01
501

G
E

30.84%
-0.82

-1.03
10.46

2.38
17.44

-0.23
-5.83

0.54
0.59

4.45
0.46

-0.06
-1.12

0.73
4.26

29.99
0.04

1860

H
D

30.48%
-0.80

-1.01
12.18

7.80
93.72

-0.32
-7.60

0.55
0.49

4.77
0.61

-0.13
-2.54

0.78
7.69

87.12
0.09

1789

IB
M

26.61%
-1.32

-3.14
6.87

1.22
12.72

-0.34
-9.08

0.58
0.22

3.21
0.57

-0.15
-4.08

0.58
2.49

12.76
0.13

2920

JN
J

19.07%
-1.26

-2.61
5.81

2.82
23.23

-0.43
-7.77

0.64
0.21

3.97
0.75

-0.19
-3.35

0.72
5.24

44.45
0.16

1238

M
C

D
18.85%

-1.29
-3.28

4.68
1.67

26.08
-0.41

-9.26
0.50

0.69
3.82

0.84
-0.24

-5.43
0.50

3.07
17.35

0.30
1406

M
R

K
26.06%

-0.81
-1.47

8.06
2.71

22.74
-0.29

-6.57
0.63

0.32
2.98

0.50
-0.08

-1.67
0.70

2.37
10.97

0.06
2038

M
ET

34.99%
1.02

0.35
30.18

10.83
140.21

-0.22
-4.11

0.53
1.35

9.33
0.46

-0.02
-0.16

1.28
9.28

104.98
0.00

945

M
SFT

32.20%
-0.81

-1.20
9.94

3.09
20.24

-0.24
-6.53

0.55
0.34

3.39
0.45

-0.08
-1.86

0.62
2.71

14.56
0.06

2441

M
O

N
32.56%

-1.04
-0.81

13.47
5.17

42.87
-0.29

-6.24
0.50

0.53
4.07

0.59
-0.14

-2.68
0.55

2.83
13.40

0.14
1295

N
K

E
29.08%

-0.99
-1.25

9.93
2.60

16.39
-0.31

-6.18
0.61

0.41
3.36

0.55
-0.10

-1.77
0.70

2.86
13.87

0.07
1448

PFE
27.28%

-1.32
-3.05

6.10
1.90

13.01
-0.30

-6.50
0.56

-0.01
3.78

0.58
-0.13

-2.96
0.56

2.56
13.24

0.16
1442

PG
21.38%

0.87
0.50

18.83
8.20

75.10
-0.39

-6.31
0.68

1.03
5.98

0.54
-0.06

-0.44
1.44

7.22
62.59

0.01
1609

SB
U

X
33.55%

-0.39
-0.43

12.89
4.39

37.57
-0.26

-5.59
0.56

0.51
3.28

0.49
-0.08

-1.67
0.65

2.77
14.51

0.07
1530

TSLA
54.35%

-5.68
-2.16

22.93
1.66

6.89
-0.32

-4.59
0.60

0.31
2.74

0.58
-0.12

-1.71
0.61

1.85
6.57

0.11
732

V
LO

38.84%
0.12

0.08
17.15

5.42
44.52

-0.18
-4.17

0.52
0.48

3.68
0.34

-0.03
-0.62

0.62
2.68

13.15
0.02

1747

V
Z

22.19%
-1.31

-2.11
6.85

3.76
40.91

-0.33
-8.23

0.49
0.41

3.72
0.75

-0.18
-4.31

0.50
3.38

22.50
0.25

1399
W

M
T

24.47%
-1.11

-2.31
6.02

1.09
12.29

-0.35
-8.19

0.54
0.32

3.30
0.64

-0.17
-4.20

0.54
2.56

12.94
0.18

1882



A. Wahl / Junior Management Science 1 (2016) 1-33 13

deed, the mean VRP is significantly negative at the 5%-level
for only 7 of 129 (5%) stocks in their sample whereas this is
the case for 9 of 29 stocks (31%) here. In this context, it is
necessary to point out that the 29 stocks in this dataset have
specifically been selected according to the number of price
quotes provided by OptionMetrics and the number of valid
price quotes following the criteria outlined above to allow the
computation of a high number of estimates of the risk-neutral
expected variance. Options that are comparatively illiquid
and thus carry a substantial illiquidity premium should trade
at lower prices, which would directly translate into lower im-
plied volatilities. Applying the same procedure to derive the
risk-neutral expected variance to such options should then
naturally lead to lower expected risk-neutral variances and,
holding realized variance constant, to less negative or even
positive variance risk premia. Thus, the results here do not
necessarily contradict the findings by Driessen et al. (2009)
but could simply reflect different sample selection criteria
and resulting differences in the sample composition.

When turning to the profitability of variance swap invest-
ments, the results show that the average continuously com-
pounded return on shorting a 22-day variance swap on one
of the major indices over the entire sample period is in the
range of 27% in case of the CAC40 to 54% in case of the S&P
500. In this context, it is noticeable that the average returns
on single stock variance swaps are lower than those on some
indices, especially the US indices, but not substantially lower.

However, even though the variance premia are substan-
tial, they are relatively low compared to the figures found by
other studies. This circumstance is most obvious when one
turns to the left panel of Table 2 where the payoff on a long
variance swap for a notional of 100 currency units is shown.
For instance, Carr and Wu (2009) find average payoffs of
$2.5 and above for the S&P 500, the Dow Jones and NAS-
DAQ. The lower payoffs over the entire sample might in part
be due to the fact that especially during the financial crisis in
2008 and 2009 and its aftermath, realized variance has fre-
quently and substantially exceeded expected variance.9 This
observation is also in line with the argument of Carr and Lee
(2009) who point out that short positions in variance swaps
led to significant and unprecedented losses especially during
the final quarter of 2008. They further outline that market
makers’ difficulty to hedge their exposure to variance swaps,
in particular for single names, led to a complete collapse of
the single name variance swap market in 2009. For the sake
of completeness, however, it is necessary to point out that the
variance risk premia obtained here are generally smaller, in
absolute terms, even over the same time period covered by
Carr and Wu (2009).

9In addition, the smaller variance risk premiums found here compared to
those found by Carr and Wu (2009) on the same data are due to the different
interpolation schemes. While Carr and Wu (2009) use a linear interpolation
scheme, the cubic spline interpolation applied here usually leads to lower
implied volatilities and therefore lower option prices since the typical shape
of implied volatilities across moneyness is convex. However, as shown below,
the influence of the interpolation scheme is comparatively small.

In order to evaluate the profitability of variance swap in-
vestments with regard to their risk-return profile Table 2 also
shows the annualized Sharpe Ratios. Since a variance swap
contract is essentially a forward contract that does not tie
up capital until maturity, the given variance swap returns di-
rectly represent excess returns and the Sharpe Ratios are sim-
ply computed as the annualized average return on the vari-
ance swap divided by the annualized return standard devia-
tion which is again adjusted for serial correlation according
to the method of Newey and West (1987). Considering the
risk-return trade-off of shorting a 22-day variance swap, the
high Sharpe Ratios for LVRPs of up to 0.85 for the S&P 500
index are relatively close to the estimates of Carr and Wu
(2009) and suggest that variance swaps can be attractive in-
vestments. The premia that investors are obviously willing to
pay for holding long variance swaps appear substantial com-
pared to the risk to which the short side is exposed. However,
when one considers the right panel in Table 2 for RVRPs, it is
apparent that the high Sharpe Ratios for the LVRPs are mainly
the result of the logarithmic transformation which not only
alleviates the effect of large positive returns and thereby re-
duces the mean but also lowers the standard deviation. Both
effects cause the Sharpe Ratios from shorting variance swaps
to be substantially higher for LVRPs.

Of course, the extent to which the reported results are
reflective of the profitability of actual variance swap invest-
ments crucially depends on how well the synthetic variance
swap rates approximate the prices of actually traded instru-
ments. However, at least for the S&P 500 index, Aït-Sahalia
et al. (2015b) find that the methodology applied here leads
to synthetic variance swaps rates for maturities of up to six
months that are roughly in line with those of actually traded
instruments.

As outlined before, the unprecedented levels of realized
variance that manifested during the financial crisis also led
to previously unseen returns on variance swaps. In order
to evaluate the extent to which these returns affect the re-
sults reported in Table 2, Table A1 shows the same descrip-
tive statistics for the time period from January 4th 1996 until
December 31st 2007. For most underlyings the payoffs on
a variance swap per 100 currency units notional is slightly
higher in absolute terms than for the entire sample, whereas
the continuously compounded returns as well as the raw re-
turns are comparable and sometimes even lower in absolute
terms than for the entire sample. The comparable mean re-
turns over the two different samples can be explained by the
fact that a long position in a variance swap earned substan-
tial positive returns during the turmoil of 2008. However,
after return variances had exploded, the variance swap rates
increased accordingly and remained at their elevated levels
even when realized variances reverted to lower levels so that
average returns appear to be relatively unaffected over the
entire sample period. This pattern is also apparent in the
first plot in Figure 1. With regard to the relatively stable av-
erage variance swap returns, it is obvious that the Sharpe
Ratios which are higher compared to those over the entire
sample period for LVRPs as well as for RVRPs are predomi-
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nantly driven by substantially lover standard deviations. Be-
cause the average returns are close to each other for the two
samples, the sheer magnitude of variance swap returns that
were realized during the financial crisis is disguised and it is
not immediately apparent what could have led to the sub-
sequent collapse of the single stock variance swap market
mentioned by Carr and Lee (2009). In this context, it is
helpful to consider the magnitude of variance swap returns
only during this time period. The average maximum raw re-
turn on a long position in a 22-day single stock variance swap
that was initiated during the final quarter of 2008 across all
underlyings except the indices was a substantial 496.99%.
For the S&P 500, the Dow Jones, and the NASDAQ, aver-
age 22-day returns on a long variance swap initiated dur-
ing the last quarter of 2008 were 162%, 96%, and 107%.
However, note that these figures are based on synthetic vari-
ance swap rates and especially when jumps significantly con-
tribute to volatility, which was certainly the case at this time,
the approximation error of the applied procedure to derive
the risk-neutral expected variance can be high and the “true”
risk-neutral quadratic variation is likely to be significantly un-
derestimated (Du and Kapadia (2011)). Accordingly, actual
variance swap rates would probably have been higher and
realized variance swap returns lower. As a consequence, the
stated figures can only serve as a rough indication of actual
returns. Nevertheless, when considering the fact that mar-
ket makers faced substantial problems in hedging their vari-
ance swap exposures at these times (Carr and Lee (2009)),
the sheer magnitude of potential losses helps to understand
why the single stock variance swap market could have broken
down. All in all, it can be said that shorting variance swaps
would have been a profitable strategy over the entire sam-
ple period despite the substantial losses during the financial
crisis and its aftermath. However, when one considers raw
returns, it is apparent that these losses have a deteriorating
effect on Sharpe Ratios and these investments do not appear
to be much more attractive than simple equity investments.

In order to ensure that the previously reported and fol-
lowing results are not substantially affected by the applied
cubic spline interpolation scheme that is used to derive the
risk-neutral expected variance and that has been chosen
mostly independent from a guiding theory, a robustness test
is performed. In order to do so, I recalculate the previously
shown descriptive statistics based on a linear interpolation
of implied volatilities in the range of traded strikes and ap-
ply the same extrapolation procedure as before. Results are
shown in Table A2 in the Online-Appendix. As can be seen,
the results under the two different interpolation procedures
are almost identical. In general, the payoffs per 100 currency
units of notional and the realized variance swap returns have
a tendency to be slightly more negative when the linear inter-
polation scheme is used. This is due to the fact that the typi-
cal shape of implied volatilities across the applied moneyness
measure is convex so that the cubic spline interpolation leads
to lower interpolated implied volatilities on average. There-
fore option prices are lower than under the linear interpo-
lation scheme which then translates into lower estimates of

the risk-neutral expected variance. However, the deviations
are small and can reasonably be expected not to significantly
alter the results.

5.2. Explaining variance risk premia
5.2.1. Exposure to overall market variance

From the previous results, it is obvious that the gap be-
tween risk-neutral expected and subsequently realized vari-
ance is persistent and statistically significant for indices as
well as individual stocks. Investors are apparently willing to
pay a significant premium for holding long positions in vari-
ance swaps. Since standard asset pricing theory postulates
that only systematic risk factors can command such premia
(e.g. Ross (1976)), it is instructive to investigate which sys-
tematic factors help to explain variance swap returns.

Payoffs on variance swaps naturally depend on the return
variance of the underlying asset. However, only that portion
of the asset’s return variance that is systematic and cannot
be diversified away in a portfolio of variance swaps can the-
oretically command a risk premium. Consequently, it is a
reasonable starting point to test whether the covariation in
an asset’s return variance with that of the market portfolio
helps to explain variance swap returns. This covariation is
measured by a variance beta for each asset i as defined in
equation (7). Because the distributions of return variances
are heavily skewed, the logarithm of the return variance is
used in equation (7), which allows to make the distributions
more normal.

β var
i =

cov[log(RVi), log(RVmarket)]
var[log(RVmarket)]

(7)

Initially, the variance beta for each stock or index is cal-
culated over the entire horizon for which options data for
the specific underlying are available. Over the entire com-
mon time period, the return variance over non-overlapping
periods of five trading days is calculated for the underly-
ing and the market portfolio. These figures are then used
to determine the variance beta according to equation (7).
Even though the variances are computed over a compara-
tively short period of only five trading days, the results are
relatively robust to the use of alternative time horizons. The
value-weighted portfolio of all stocks traded at the New York
Stock Exchange (NYSE), American Exchange (AMEX) and
NASDAQ is used as a proxy for the US market portfolio. Daily
returns on this portfolio are obtained from the Center for Re-
search in Security Prices (CRSP). For the three US indices
and 29 individual stocks a regression of the mean LVRP over
the entire horizon on the respective variance beta obtains the
results shown in equation (8).

LVRPi = − 0.2424− 0.1044 · β var
i + ei R2 = 4.94%

(−4.0327) (−0.8976)

(8)

t-statistics are based on heteroskedasticity-robust standard
errors and shown in parentheses. The goodness of fit is rel-
atively poor with only 4.94%. The slope coefficient is nega-
tive but insignificant while the intercept is not substantially
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smaller in absolute magnitude than the average risk premium
and highly significant. Even though this result does not sug-
gest any relation between market variance and the observed
variance risk premium, it is misleading. The relation between
the variance beta and the variance risk premium for the three
US indices alone is virtually linear with an R2 of 99.90% while
the poor goodness of fit for equation (8) is mainly the result
of an apparently non-existent relationship between exposure
to market variance and realized variance risk premia for in-
dividual stocks. Of course, due to the limited number of only
three index observations, this figure is far from meaningful.

In order to increase the number of observations, the re-
gression approach is changed in the following way. For each
of the three US indices, the mean logarithmic variance risk
premium is calculated on a yearly basis for all calendar years
between 1996 and 2014. The yearly mean logarithmic vari-
ance risk premium is defined as the average 22 trading-day
variance swap return on all variance swaps whose initiation
date falls into the respective calendar year. The correspond-
ing variance beta for the specific year is calculated as outlined
before using the returns that occurred in a particular calen-
dar year.

Equation (9) shows the result for a pooled OLS regression
with cluster-robust standard errors to control for the corre-
lation between observations of the same index in different
years.

LVRPi t = 0.1746− 0.7018 · β var
i t + ei t R2 = 16.66%

(1.79) (−6.94) N = 51

(9)

For the three US indices, there is a pronounced relation
between the variance beta and the average logarithmic vari-
ance risk premium. The slope coefficient is negative and
highly significant at the 1%-level whereas the intercept is not
significant at the 5% level. These results are in line with the
expectation that the average variance risk premium should
be more negative for underlyings that have more exposure to
overall market variance and suggest that exposure to overall
market variance is indeed priced in US stock index options
and variance swaps. However, the relatively low R2 of only
16.66% shows that a significant proportion of overall vari-
ability in variance swap returns remains unexplained by the
variance beta.

For a similar analysis with the five European stock in-
dices, the Stoxx Europe 600 index is used as a common proxy
for a European market portfolio. When the relation between
the variance risk premium and the variance beta is examined
over the entire common sample, the intercept is negative and
highly significant whereas the slope coefficient is positive but
insignificant. The positive slope coefficient is counterintu-
itive since it implies that investors are willing to pay a pre-
mium for additional exposure to systematic variance risk, a
relation that is not supported by the assumption of risk-averse
decision makers who dislike uncertainty. However, due to the
limited number of only five observations this result should be
considered with the appropriate degree of skepticism. In the
corresponding regression with annual observations, the slope
coefficient remains positive and insignificant.

In contrast, for the individual stocks, there is no discern-
ible relation between exposure to overall market variance,
as measured by the variance beta, and the variance risk pre-
mium. Estimating regression (8) and (9) for the stocks only
leads to an insignificant slope coefficient and an R2 indistin-
guishable from zero but a negative and highly significant in-
tercept. Consequently, there is no evidence that exposure to
systematic market variance is priced in variance swaps on in-
dividual stocks.

A possible explanation for this observation might be that
the observed negative variance risk premium in options on
single stocks does not, or only to a small extent, represent
compensation for exposure to changes in market variance.
There is an increasing amount of literature that documents
a common factor structure in the volatility of idiosyncratic
returns of stocks, i.e. the return component that cannot be
explained by commonly applied factor models (e.g. Her-
skovic et al. (2014)), and increasing evidence that the risk
of common changes in idiosyncratic volatility may indeed
be priced (e.g. Gourier (2015), Cao and Han (2013)10).
While standard-asset pricing theory would predict that id-
iosyncratic risk can be diversified away and should therefore
not carry a risk premium, advocates of priced idiosyncratic
risk argue that there might be structural issues, such as non-
traded assets (Herskovic et al. (2014)), that cause market
participants to hold undiversified portfolios. In the context of
variance swaps, Schürhoff and Ziegler (2011) find a positive
price of idiosyncratic variance risk whereas Gourier (2015)
finds that idiosyncratic variance risk carries a negative price.
In particular, Gourier (2015) finds that the idiosyncratic com-
ponent of variance risk explains on average about 80% of the
total variance risk premium. As a consequence, the appar-
ently missing relation between exposure to market variance
and the variance risk premia in stock options could possi-
bly be explained if the observed premia entirely or in part
represented compensation for changes in idiosyncratic vari-
ance. In order to test this hypothesis, I follow Schürhoff and
Ziegler (2011) and use the excess returns on synthetic vari-
ance swaps on the S&P 500 Index as proxy for a systematic
variance risk factor or price of overall market variance risk.
The excess returns from variance swaps on single stocks and
US indices are then regressed on this proxy. Using the vari-
ance swap returns on the S&P 500 index as a proxy for a sys-
tematic variance factor appears justifiable since the previous
regression results show that returns on variance swaps on the
three US indices are significantly associated with exposure to
overall market variance. Moreover, in a simple factor decom-
position Schürhoff and Ziegler (2011) show that index vari-
ances are predominantly determined by factor variances and
the effect of idiosyncratic returns on index variances is negli-
gible. If a significant proportion of single stock variance swap

10Cao and Han (2013) examine the returns on delta-hedged options that
are sorted according to their idiosyncratic volatilities. They find that the
average return from delta-hedging options on stocks with high idiosyncratic
volatility is significantly lower than returns from hedging options on stocks
with lower idiosyncratic volatility.



A. Wahl / Junior Management Science 1 (2016) 1-3316

returns can then be explained by the systematic variance risk
factor, these returns do probably not represent compensation
for (common) idiosyncratic variance risk.

Table 3 shows the corresponding regression results. Ex-
cept for Facebook, the slope coefficient on the systematic vari-
ance risk factor is positive and significant at the 1%-level
for almost all regressions. R2s frequently exceed 30% and
achieve values of up to 93.20% and 70.06% for the two in-
dices. This result clearly shows that variance swap returns on
different underlyings have a pronounced tendency to move
together. The systematic variance risk factor is obviously able
to explain a substantial portion of the returns on single stock
variance swaps. Even though the alpha is significant for sev-
eral underlyings, including the two indices, it is not signifi-
cantly different from zero at the 5%-level for 21 of 29 stocks.
This finding supports the view that exposure to the system-
atic variance risk factor is mostly sufficient to explain vari-
ance swap returns and that the previously stated notion of
priced idiosyncratic variance risk appears to play only a mi-
nor role for explaining single stock variance swap returns, at
least for the sample at hand.

5.2.2. Commonly used risk factors

Sources of variance fluctuations and their implications for the
pricing of variance risk

The results in the previous section suggest that returns
on index as well as on single stock variance swaps have a
strong tendency to evolve together and are captured well by
the systematic variance risk factor. In this subsection, the ob-
jective is to further examine which risk factors precisely drive
variance swap returns and to assess whether these returns
can be explained by commonly used risk factors or whether
exposure to changes in market variance indeed appears to
command a separate risk premium. A prerequisite for vari-
ance risk to be priced as an independent risk factor is that re-
turn variance can evolve independently and affect aggregate
consumption. Thus, it is important to consider the possible
sources of changes in return variance and their implications
for the pricing of variance risk.

Most reduced form option pricing models embed a neg-
ative correlation between equity returns and volatility (e.g.
Cox (1996), Heston (1993)). Indeed, the presence of this
negative correlation, often referred to as asymmetric volatil-
ity, is empirically well documented (e.g.
Glosten et al. (1993)) and most apparent during significant
market downturns that frequently come along with substan-
tial increases in market volatility (Wu (2001)).

The phenomenon of asymmetric volatility is often ex-
plained by either the so-called leverage effect or the volatil-
ity feedback effect. According to the leverage effect hypothe-
sis, a substantial stock price decline causes the market value
of equity to fall more rapidly than the market value of a
fixed amount of debt, thus increasing the debt-to-equity ra-
tio. As a consequence the stock’s risk rises, which in turn in-
creases volatility (Black (1976)). Since the payoff of a vari-
ance swap is positively related to the level of realized vari-

ance, it obviously offers insurance against increases in mar-
ket or stock volatility and, given the empirically documented
negative correlation between market volatility and returns,
also insurance against substantial declines in stock prices.
This provides a rationale for the negative average return on
long variance swaps. The important implication of the lever-
age effect hypothesis, however, is that volatility does not e-
volve independently but rather varies as a result of fluctua-
tions in the stock price. If the functional relationship is even
deterministic as for example in the model proposed by Dupire
(1994), this also has important ramifications in the context
of option pricing. An instantaneous volatility that evolves ac-
cording to a deterministic function of the price of the under-
lying does not necessarily cause the market to be incomplete
and can still allow to hedge an option solely with the un-
derlying (Dupire (1994)). In such a setting, return variance
does not represent an independent risk factor that could com-
mand a risk premium and the arguments outlined in section
3 that link the variance risk premium to market participants’
inability to perfectly hedge an option position would not ap-
ply. Consequently, it may well be the case that the returns on
variance swap contracts solely result from their directional
stock price exposure rather than from explicitly priced vari-
ance risk. If this is indeed the case, the classical capital asset
pricing model should be able to fully explain variance swap
returns. A regression of variance swap returns on the ex-
cess market return can therefore reveal whether the observed
variance risk premium reflects compensation beyond the cor-
relation between market and variance swap returns.

The volatility feedback effect offers a second potential
explanation for the observed negative correlation between
volatility and equity returns. In this case, however, the causal-
ity between negative equity returns and increasing volatility
is reversed as compared to the leverage effect. Here, volatil-
ity varies over time, for instance as a result of changes in busi-
ness risk (Carr and Wu (2011)). Because volatility can fluc-
tuate independently, it can theoretically command a risk pre-
mium and is indeed assumed to be priced. If volatility then
rises, the required return on equity increases and stock prices
fall, thus causing the negative correlation (Wu (2001)).

A third channel through which market returns can neg-
atively interact with return variance is the so-called self-ex-
citing behavior of financial markets which describes the phe-
nomenon that substantial negative financial events seem to
increase the likelihood of similar events to follow (Carr and
Wu (2011)). Conceptually, this third channel is related to
time-varying jump intensity (Carr and Wu (2011)).

Intuitively, all three explanations imply a negative mar-
ket beta for variance swaps. However, only if volatility can
fluctuate independently, it can constitute an additional risk
factor that justifies a risk premium.

Capital Asset Pricing Model
In order to test whether the capital asset pricing model

can explain observed variance risk premia, variance swap
returns are regressed on the market excess return. For US
underlyings, daily overlapping regressions as well as non-
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Table 3: Regression of logarithmic variance risk premium on return on systematic variance risk factor

Note: Entries report the OLS estimates and t-statistics (in parentheses) of regressions of the continuously compounded excess return on variance swaps over
a horizon of 22 trading days on Varmarket. Varmarket denotes the systematic variance risk factor or market price of overall market variance risk that is
proxied by the continuously compounded excess return over a horizon of 22 trading days on synthetic variance swaps on the S&P 500 Index. t-statistics are
adjusted for serial correlation according to the method of Newey and West (1987) with a lag length of 22 days. N denotes the total number of observations.

Underlying alpha Varmarket R2 N

Dow Jones Industrial 0.031 (2.268) 0.961 (53.952) 93.20% 2049
NASDAQ100 0.059 (2.537) 0.747 (24.823) 70.06% 3265
Alcoa -0.039 (-0.669) 0.463 (6.107) 32.68% 776
Altria (Philip Morris) -0.169 (-2.719) 0.363 (4.712) 8.23% 2103
Amazon -0.023 (-0.507) 0.395 (7.385) 13.45% 2211
American Express 0.158 (4.571) 0.695 (16.063) 55.36% 1864
Amgen -0.066 (-1.638) 0.483 (10.918) 23.31% 2223
Analog Devices 0.056 (0.895) 0.493 (7.536) 36.17% 662
Apple -0.078 (-1.921) 0.446 (8.047) 22.60% 2282
Bank of America 0.113 (1.879) 0.642 (9.273) 39.68% 1423
Boeing -0.009 (-0.264) 0.485 (10.315) 33.04% 1966
Cisco 0.043 (1.028) 0.539 (11.479) 27.75% 1850
Exxon Mobil 0.027 (0.684) 0.671 (12.879) 51.36% 1679
Facebook -0.280 (-2.408) -0.050 (-0.229) 0.15% 501
General Electric 0.077 (2.462) 0.670 (16.918) 53.68% 1800
Home Depot 0.008 (0.215) 0.614 (13.373) 44.67% 1732
IBM -0.024 (-0.624) 0.588 (13.531) 33.50% 2770
Johnson & Johnson -0.067 (-1.375) 0.699 (10.159) 42.43% 1203
McDonald’s -0.182 (-4.333) 0.452 (9.918) 32.39% 1358
Merck 0.008 (0.172) 0.550 (11.732) 25.80% 1963
Metlife 0.153 (2.193) 0.621 (6.990) 51.90% 914
Microsoft 0.015 (0.421) 0.491 (8.943) 28.20% 2318
Monsanto -0.028 (-0.688) 0.513 (9.936) 42.92% 1240
Nike 0.002 (0.029) 0.548 (8.604) 27.84% 1403
Pfizer 0.039 (0.924) 0.606 (10.807) 34.19% 1398
Procter & Gamble -0.057 (-0.820) 0.649 (8.760) 34.88% 1555
Starbucks -0.022 (-0.416) 0.442 (7.149) 23.10% 1496
Tesla -0.303 (-3.156) 0.024 (0.205) 0.05% 718
Valero 0.031 (0.582) 0.400 (5.760) 20.96% 1674
Verizon -0.083 (-1.857) 0.441 (7.363) 30.08% 1352
WalMart -0.081 (-2.157) 0.537 (12.801) 35.18% 1815

overlapping regressions of 22 trading day variance swap re-
turns on the corresponding excess market returns are con-
ducted with the same proxy for the market portfolio as out-
lined above. The excess market return is calculated as the 22
trading day return on the market portfolio minus the four-
week Treasury-Bill rate. For the regressions in Panel A of Ta-
ble 4, the sample covers only the time period from July 31st

2001 until August 31st 2014, which is due to the fact that the
daily time series of four-week Treasury bill rates is available
only from July 2001 on. The results reported for regressions
in Panel B generally cover the entire sample period for the
respective underlying.

For the five European indices, results refer to non-over-
lapping monthly regressions of 22 trading day variance swap
returns on the monthly excess return on a proxy for the Euro-

pean market portfolio. This excess return is publicly available
at a monthly frequency from Kenneth French’s online data li-
brary.11 The regressions are estimated by OLS and standard
errors are adjusted for serial correlation according to the me-
thod by Newey and West (1987) with 22 lags for the US un-
derlyings in Panel A and unadjusted for the non-overlapping
regressions shown in Panel B.

As predicted, the beta is negative and significant at the
1% level for almost all underlyings. The negative beta is

11The internet address is: http://mba.tuck.dartmouth.edu/pages/f
aculty/ken.french/data_library.html#International. The coun-
tries considered in the European market portfolio proxy include Austria,
Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, the
Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United
Kingdom. This information is also available at Kenneth French’s website.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#International
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html#International
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consistent with the empirically found negative correlation be-
tween return variance and equity returns. However, with a
R2 somewhere between 10% and 30% for the majority of re-
gressions a substantial portion of the variation in variance
swap returns remains unexplained. Furthermore, with only
few exceptions, the alpha is negative and highly significant at
the 1%-level, with the absolute magnitude of the alpha not
significantly lower than the average variance risk premium
reported in Table 2. Indeed, based on the average 22 trading
day market excess return for the US market of approximately
0.89% over the sample period in Panel A, the market beta
accounts on average for only approximately 7.01%12 of the
logarithmic variance risk premium across all US underlyings.
A comparison of the two panels moreover shows that the re-
sults are qualitatively unaffected by the sample frequency.

For the five European indices, the situation is very sim-
ilar. The market beta as well as the alpha is negative and
highly significant leading to the same conclusion as for the
US underlyings. What is striking, however, is that the R2s
for the European indices are mostly in the range of 50% and
therefore substantially higher than for the US indices, which
suggests that the selected market portfolio proxy is appro-
priate and captures the dynamic in European variance swap
returns quite well.

All in all, the fact that the market beta cannot fully ac-
count for the realized variance swap returns represents an
indication that the observed variance risk premium reflects
compensation for other factors than the correlation between
variance swap returns and market excess returns.

Fama-French three-factor model
Considering the fact that the CAPM has been found to

be insufficient to explain stock returns (Fama and French
(2004)), there is no apparent reason to believe the CAPM
should perform much better in explaining variance swap re-
turns. Thus, in order to evaluate whether these returns can
be better explained when additional factors are considered,
they are regressed on the excess market return and the two
additional factors identified by Fama and French (1993), a
firm size factor (SMB) and a book-to-market factor (HML).
The excess return realizations for the market portfolio proxy
and the SMB and HML factor portfolios, both for the US and
Europe, are publicly available at Kenneth French’s website at
a monthly frequency.13 The market portfolio proxies are the
same as those used for the CAPM regressions. Since the ex-
cess returns are published on a monthly basis, the regression
results in Table 5 refer to monthly non-overlapping regres-
sions.

The magnitude of neither the alpha nor the market beta
changes substantially compared to the values obtained in
the CAPM regressions. Moreover, both parameters remain
highly significant. Consistent with the findings of Carr and

12For each underlyings, this contribution is calculated as market beta ·
0.89%/(α+market beta · 0.89%).

13The internet address is: http://mba.tuck.dartmouth.edu/pages/f
aculty/ken.french/data_library.html.

Wu (2009), the loading on the SMB factor is usually nega-
tive and often significant for the US underlyings, which sug-
gests a negative correlation not only between return variance
and market returns but also between return variance and re-
turns on the SMB factor. Long variance swaps thus appear to
offer insurance against a situation in which small stocks un-
derperform relative to large stocks. The sign of the loadings
on the HML factor is less persistent and the loading is mostly
insignificant. For the European indices the situation is again
very similar. Altogether, the persistently negative regression
alphas suggest that variance swap returns reflect compen-
sation beyond the swap’s pure correlation with the market
portfolio and that commonly used risk factors are not able to
explain this additional compensation. The results therefore
point towards additional risk factors that command a persis-
tent and economically substantial risk premium.

5.2.3. Jump and variance risk

Construction of risk-factor-mimicking portfolios
Thus far, commonly used risk factors do not appear to

be able to satisfactorily explain variance swap returns, which
is indeed supportive of the notion that these returns reflect
compensation for one or more additional priced risk factors.
As a consequence, I construct alternative factor portfolios
that allow to gain separate exposure to the risks that theory
suggests to be priced in option returns and evaluate whether
the returns on these risk factor portfolios help to explain vari-
ance swap returns.

The total realized quadratic variation is the result of con-
tinuous as well as of discontinuous price movements and
the uncertainty associated with each of these kinds of move-
ments may induce investors to command separate risk pre-
mia for them. Indeed, as outlined in section 3 and noted by
Bollerslev and Todorov (2011), the commonly observed vari-
ance risk premium does not only reflect compensation for
stochastic volatilities but also for time-varying jump inten-
sities and fears for jump tail events. The latter can explain
up to three quarters of the variance risk premium (Bollerslev
and Todorov (2011)). Especially the fact that jumps are typi-
cally required in models to generate a variance risk premium
whose magnitude is reconcilable with that observed in reality
(e.g. Drechsler (2013)) or in option pricing models to fit cer-
tain characteristics of the cross-section of option prices (e.g.
Pan (2002)) may point to the importance of jump risk when
explaining the variance risk premium.

Thus, to examine the degree to which the returns on vari-
ance swaps represent compensation for presumed jump risk,
i.e. risk associated with discontinuous price movements, and
diffusive risk, I construct two factor portfolios from traded
options that are intended to offer exposure to one of the two
risk factors while being relatively unaffected by the other. For
this purpose, I follow Cremers et al. (2015) who use the same
factor portfolios to examine the influence of jump and volatil-
ity risk on the cross-section of stock returns.

On any given day t in the sample, I construct two delta-
neutral straddles with different maturities. For the US un-

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Table 5: Fama-French Three-Factor regressions

Note: Entries report the OLS-estimates and t-statistics (in parentheses) of monthly, non-overlapping regressions of 22-day continuously compounded variance
swap returns on the corresponding excess return on the market portfolio and the two additional factors, SMB and HML, identified by Fama and French (1993).
For the US, the market excess return is proxied by the 22-day excess return on the value-weighted portfolio of all stocks traded at the NYSE, NASDAQ, and
AMEX. For the European indices, the market excess return refers to the excess return on a proxy for a European market portfolio retrieved from Kenneth
French’s website. t-statistics are not adjusted for serial correlation. N denotes the total number of observations.

Underlying alpha t-stat market t-stat SMB t-stat HML t-stat R2 N

S&P 500 Index -0.474 -13.818 -7.020 -7.642 -2.073 -1.585 -1.780 -1.578 33.20% 213
Dow Jones Industrial -0.423 -10.521 -9.717 -7.252 1.164 0.636 3.798 1.840 41.10% 134
NASDAQ100 -0.299 -9.323 -5.848 -7.217 -2.552 -2.893 -0.832 -0.808 31.90% 207
Alcoa -0.268 -4.114 -6.933 -4.305 -2.553 -1.530 4.212 2.364 44.10% 50
Altria (Philip Morris) -0.345 -5.994 -2.871 -2.433 -2.698 -1.913 -3.409 -2.176 6.40% 155
Amazon -0.174 -3.309 -2.160 -1.831 -2.967 -1.860 -4.557 -2.476 7.90% 154
American Express -0.117 -2.460 -4.296 -4.222 -0.978 -0.715 -1.495 -1.060 15.30% 129
Amgen -0.253 -5.641 -3.408 -3.362 -1.988 -1.240 -2.081 -1.285 11.40% 154
Analog Devices -0.067 -0.904 -2.043 -1.629 -3.645 -1.987 -2.790 -1.696 15.00% 46
Apple -0.261 -5.877 -5.282 -4.240 -0.680 -0.573 0.291 0.169 17.20% 153
Bank of America -0.093 -1.697 -6.328 -5.769 -2.642 -2.138 -4.000 -2.744 32.30% 89
Boeing -0.202 -4.903 -3.753 -4.321 -2.962 -1.744 -0.366 -0.271 18.90% 134
Cisco -0.216 -4.439 -5.654 -6.032 -0.140 -0.105 1.332 1.081 22.10% 127
Exxon Mobil -0.286 -5.783 -6.261 -4.543 -0.581 -0.334 -0.055 -0.030 28.50% 114
Facebook -0.287 -3.932 -2.697 -0.561 2.281 0.443 6.983 1.823 4.90% 24
General Electric -0.202 -4.350 -3.885 -4.134 -2.034 -1.553 -2.115 -1.875 16.00% 119
Home Depot -0.220 -4.059 -4.465 -4.996 -1.242 -0.736 0.261 0.221 17.60% 114
IBM -0.308 -8.118 -4.378 -6.029 -2.629 -2.231 -1.391 -1.148 18.30% 190
Johnson & Johnson -0.421 -6.001 -3.530 -2.369 -2.622 -1.162 -2.520 -1.102 11.60% 82
McDonald’s -0.379 -7.339 -4.638 -2.927 1.083 0.677 1.632 0.601 17.90% 92
Merck -0.257 -4.474 -3.399 -2.827 -0.123 -0.064 0.575 0.344 6.70% 131
Metlife -0.107 -1.399 -8.161 -2.621 0.820 0.244 3.120 0.799 31.00% 64
Microsoft -0.192 -4.874 -3.594 -4.154 -2.993 -2.803 -1.209 -0.988 16.50% 160
Monsanto -0.216 -4.421 -4.154 -3.008 -2.919 -1.337 -0.847 -0.356 23.40% 90
Nike -0.244 -3.734 -3.616 -2.493 -5.066 -2.219 -2.298 -1.161 16.50% 87
Pfizer -0.230 -4.355 -2.867 -2.946 -2.519 -2.051 -2.429 -1.834 11.80% 94
Procter & Gamble -0.357 -5.439 -4.066 -2.583 -4.183 -1.158 0.570 0.321 18.90% 97
Starbucks -0.238 -4.362 -4.597 -4.080 0.325 0.249 -2.208 -1.465 15.30% 103
Tesla -0.373 -3.771 -0.975 -0.344 4.394 0.802 -5.421 -0.874 4.80% 45
Valero -0.150 -3.052 -5.179 -3.570 2.468 0.971 1.470 0.680 12.60% 121
Verizon -0.251 -4.420 -4.725 -3.470 -1.505 -0.678 1.911 0.981 21.80% 85
WalMart -0.304 -6.276 -4.369 -4.858 -0.952 -0.475 -0.996 -0.703 16.60% 125
AEX Index -0.246 -4.060 -8.005 -4.824 0.083 2.233 -0.021 -0.540 58.60% 26
CAC40 Index -0.237 -4.577 -8.238 -6.063 0.045 1.426 -0.004 -0.142 63.00% 38
DAX Index -0.287 -5.337 -8.039 -7.546 0.038 1.160 0.033 0.997 50.70% 63
Euro Stoxx 50 -0.251 -4.033 -8.167 -5.347 0.056 1.529 0.000 -0.014 54.80% 30
SMI Index -0.396 -4.317 -5.731 -2.400 0.091 1.628 -0.025 -0.451 31.40% 22

derlyings, these straddles are constructed from options on
the S&P 500 index. The choice falls on this specific index be-
cause the corresponding options are highly liquid, have the
highest number of valid price quotes of all underlyings and
cover the longest time period in the sample. Moreover, since
the S&P 500 represents the most diversified portfolio among
the three US indices considered here, straddles constructed
from options on it are most likely to capture exposure to
purely systematic risks. In case of the European indices, sepa-
rate straddle portfolios are constructed for each of the indices
from options on the respective index. In general, the same
criteria apply as those outlined in section 4.2 with the ex-
ception that in-the-money options are not excluded since the

construction of straddles involves put and call options with
identical strike and time to maturity that are close to being
at-the-money.

Following Cremers et al. (2015), the straddle with the
shorter maturity is constructed from the call and put options
that are closest to being at-the-money and which expire in
the calendar month following the month during which the
straddle is constructed while the at-the-money options used
to form the straddle with the longer maturity expire in the
calendar month that follows. Each straddle return is con-
structed by solving the following problem

wc
t−1δ

c
t−1 + (1−wc

t−1)δ
P
t−1 = 0, (10)
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RS
t = wc

t−1RC
t + (1−wc

t−1)R
P
t , (11)

where wc
t denotes the weight of the call in the straddle, RC

t
and RP

t denote the one-day returns on the call and put, re-
spectively, δc

t and δP
t denote the Black and Scholes (1973)

deltas relative to the option price of the call and put and RS
t

is the weighted one-day return on the straddle, all at time
t. In a second step, the JUMP factor which is intended to
capture jump risk, and the VOL factor which is intended to
capture the diffusive component of volatility risk, are con-
structed as a weighted combination of the previously created
delta-neutral straddles with different maturities.

In order to construct the JUMP factor, a long position in
one short-maturity straddle is combined with a short position
in n long-maturity straddles such that the combined position
is vega-neutral and thus insensitive to moderate changes in
implied volatility. Analog to Fournier and Jacobs (2015), the
one-day return on the JUMP factor, JUMPt , is thus given by

JUMPt = RS1
t −

VegaS1
t−1

VegaS2
t−1

RS2
t , (12)

where RS1
t and RS2

t denote the one-day returns on the short-
and long-maturity straddle, respectively and VegaS1

t and
VegaS2

t denote the Black and Scholes (1973) vegas of the
short- and long-maturity straddles relative to their market
prices, all at time t. JUMPt can also be interpreted as the re-
turn on a portfolio that consists of a long position in the short-
maturity straddle worth $1 and a short position in the long-
maturity straddle worth VegaS1

(t−1)/VegaS2
(t−1) dollars. Since the

vega of an option increases with time to maturity, the num-
ber of long-maturity straddles, n, is always lower than the
number of short-maturity straddles held in the combination.
At the same time, the gamma of an at-the-money option is
higher when the time to expiration is lower. Thus, the com-
bined position of the two delta-neutral straddles has positive
gamma. In particular this positive gamma constitutes the the-
oretical exposure to jumps. Whereas the option delta postu-
lates a linear relation between the option price and the price
of the underlying, the option gamma measures the convexity
in this relation. Due to this convexity, the established hedge
is not perfect (Hull (2009)) and the corresponding hedging
error increases with the magnitude of changes in the price of
the underlying. Moreover, this hedging error always works
in favor of a long position in the constructed portfolio since,
holding everything else constant, a given increase in the price
of the underlying causes a stronger price appreciation in the
short-term straddle (that is held long) than in the long-term
straddle (that is held short). Similarly, a given reduction in
the price of the underlying causes a smaller price deprecia-
tion in the short-term straddle than in the long-term strad-
dle. At the same time, however, the theta of an at-the-money
option is usually more negative when the remaining time to
expiration is shorter (Hull (2009)). Because the theta of the
short-term straddle is more negative than that of the long-
term straddle and the number of short-term straddles held is
larger, the overall combination has a negative theta. Thus,

holding everything else constant, the option portfolio will
lose value from one day to the next. Consequently, the overall
return on the jump factor will usually be negative and pos-
itive only when the hedging error overcompensates for the
value reduction that results from the time decay. This will
usually be the case when comparatively large movements in
the price of the underlying, i.e. jumps, occur.

The VOL factor, in contrast, is specifically designed to be
relatively unexposed to jump risk and to only capture the dif-
fusive component of volatility risk. In order to achieve this
goal, it is constructed to be delta-neutral and gamma-neutral
but to have positive vega. Thus, the VOL factor consists of a
long position in one long-term straddle and a short position
in n short-term straddles so that the one-day return on the
VOL factor, VOLt , is given by

VOLt = RS2
t −

GammaS2
t−1

GammaS1
t−1

RS1
t , (13)

where GammaS1
t and GammaS2

t denote the time-t Black and
Scholes (1973) gammas of the short- and long-maturity strad-
dles relative to their prices.

Empirical characteristics of risk-factor-mimicking portfolios:
Average returns

Table 6 shows descriptive statistics for the JUMP and VOL
factor portfolios for both discrete and continuous returns. In
case of the factor portfolios for the US, the JUMP factor earns
substantial negative average returns for both forms, discrete
and continuous, even though they are significantly negative
only for the continuous form. Note, however, that the in-
significance for the discrete form of the JUMP factor is due
only to two extreme outliers of +83.68% and +45.93%. Ex-
cluding these returns leads to a t-statistic of -2.096.

The picture is similar for the VOL factor which also earns
significantly negative average returns although the magni-
tude is somehow smaller than for the JUMP factor. The low
correlation between the two factors of only -0.14 moreover
suggests that they capture mostly unrelated return sources.
Nevertheless, the negative correlation between the two fac-
tors is somewhat surprising since for example Todorov (2010)
finds that price jumps are associated with corresponding
spikes in stochastic volatility.

Figure 2 shows the cumulative returns on the JUMP and
VOL factors over the period from January 5th 1996 to August
29th 2014 and further illustrates the economic magnitude of
the negative average returns investors would have incurred
if they had revolved the positions daily.

Even though long positions in both factors would have
earned substantial positive returns around some major events
such as the Asian crisis, or the bankruptcy of Lehman Broth-
ers, the cumulative returns quickly converge to -100%. Con-
sidering the fact that both factor are market-neutral per con-
struction, these results suggest that the JUMP and VOL fac-
tors indeed capture different factors that are both heavily
priced by the market, presumably jump risk and volatility
risk.
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Table 6: Descriptive statistics for the risk factor mimicking portfolios JUMP and VOL

Note: JUMP denotes the daily return on a delta-neutral, vega-neutral and positive gamma calendar spread option strategy. VOL denotes the daily return on a
delta-neutral, gamma-neutral and positive vega calendar spread option strategy. The additives (disc.) and (cont.) indicate the use of discrete and continuously
compounded daily returns, respectively. t-statistics are shown in parentheses. N denotes the number of observations and SD denotes the standard deviation.

Annualized Mean Annualized
SD

Annualized
Sharpe Ratio

Daily Median Skewness Kurtosis N

S&P 500
JUMP (disc.) -0.172 (-1.347) 0.544 -0.317 -0.005 5.157 95.821 4597

(cont.) -4.856 (-51.766) 0.398 -12.191 -0.016 -1.759 25.465 4597

VOL (disc.) -0.138 (-2.332) 0.252 -0.549 -0.001 2.376 46.496 4597
(cont.) -0.122 (-2.011) 0.258 -0.474 -0.001 0.731 35.327 4597

AEX
JUMP (disc.) 0.213 (0.877) 0.496 0.431 -0.004 3.322 39.396 1057

(cont.) -4.318 (-24.836) 0.354 -12.193 -0.014 0.583 32.682 1057

VOL (disc.) 0.185 (1.536) 0.245 0.754 -0.001 5.804 80.325 1057
(cont.) 0.158 (1.418) 0.226 0.696 0.000 4.529 57.356 1057

CAC40
JUMP (disc.) 0.591 (2.231) 0.478 1.236 -0.003 1.862 8.917 829

(cont.) -5.136 (-26.264) 0.353 -14.558 -0.017 -1.516 8.755 829

VOL (disc.) -0.052 (-0.477) 0.196 -0.264 -0.001 0.564 6.292 829
(cont.) 0.014 (0.135) 0.193 0.075 0.000 0.720 8.169 829

DAX
JUMP (disc.) 0.016 (0.100) 0.480 0.033 -0.004 4.836 60.087 2306

(cont.) -4.576 (-37.536) 0.367 -12.480 -0.015 -0.789 112.567 2306

VOL (disc.) 0.038 (0.627) 0.182 0.208 0.000 2.111 37.169 2306
(cont.) 0.102 (1.361) 0.225 0.453 0.000 11.306 361.090 2306

Eurostoxx
JUMP (disc.) 0.229 (1.003) 0.485 0.471 -0.005 2.947 28.961 1153

(cont.) -4.497 (-27.107) 0.353 -12.742 -0.015 -0.347 33.886 1153

VOL (disc.) -0.079 (-0.806) 0.210 -0.379 -0.001 -1.068 49.187 1153
(cont.) -0.041 (-0.446) 0.197 -0.210 -0.001 0.604 33.659 1153

SMI
JUMP (disc.) 1.180 (2.277) 0.650 1.816 -0.003 3.712 30.644 400

(cont.) -5.868 (-15.198) 0.484 -12.120 -0.019 -3.473 34.358 400

VOL
(disc.) 0.118 (0.572) 0.260 0.456 -0.001 0.464 8.787 400
(cont.) 0.024 (0.115) 0.260 0.092 0.000 -1.157 19.515 400

Moreover, the negative sign of the average returns is con-
sistent with models where investors dislike jumps or fear a
deteriorating investment opportunity set due to increased
variance and are therefore willing to accept lower or even
negative average returns on assets or combinations of such
assets that offer a hedge against jumps or increased variance
(e.g. Drechsler (2013)).

For the five European indices, the picture is remarkably
different. Discrete returns on the JUMP factor are on average
positive for all indices even though insignificant for three of
them. However, for the CAC40 and the SMI, the annualized
returns are substantial and significant. In general, positive
average returns on the JUMP and VOL factors are counter-
intuitive and contradict the idea that investors are willing to
accept lower average returns on assets that offer insurance
against undesirable states of the world. In this context, a pos-
sible bias that results from the factor portfolio construction
methodology should be taken into account. This bias could
particularly concern the risk factor returns for the CAC40 and
SMI. As can be seen in Table 6, the two indices for which av-
erage factor portfolio returns are remarkably high (CAC40
and SMI) are also the two indices with the lowest number
of valid days on which straddle returns could be computed.
This situation occurs even though the raw data on the AEX

and SMI cover exactly the same time horizon and the data on
the CAC40 cover an even longer time period than on the Euro
Stoxx 50. The reason for the different numbers of valid days
is that the straddles that are used for the two factor portfolios
can only be formed when the same ATM-options have posi-
tive trading volume on two consecutive trading days, which
apparently is not always the case. If one now suspects that
investors’ trading in options is, at least in part, driven by the
desire to insure against substantial negative price movements
or rising volatility or otherwise take speculative positions, in-
vestors are probably more likely to trade immediately around
the time of certain events, for instance when the underly-
ing has incurred unexpected price fluctuations or volatility
has unexpectedly risen. Indeed, Cao and Ou-Yang (2009)
conclude that differences of opinion are more likely to ex-
ists when a big rare event occurs and that option trading
should be clustered during the time of such events. How-
ever, if this is indeed the case, the likelihood to observe op-
tions with positive trading volume on two consecutive trad-
ing days is also higher at such times. The potential bias re-
sults from the fact that the JUMP and VOL factors are con-
structed to earn positive returns precisely when such events
occur. As a consequence, the likelihood to obtain valid re-
turn observations for the JUMP and VOL factors is probably
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Figure 2: Cumulative daily returns on risk-factor-mimicking portfolios JUMP and VOL

Note: The black line shows the cumulative daily returns on the jump-risk mimicking portfolio JUMP (calculated from discrete returns) over the sample period
from January 5th 1996 August 29th 2014. The red line shows the cumulative daily returns on the VOL factor over the same period. Vertical dashed lines
indicate major events.

higher on days on which the two factors earn positive returns,
which erroneously biases the average return upwards. Since
positive returns on the constructed factor portfolios are fre-
quently double-digit, this bias can potentially be substantial.
This may partly explain the remarkably high positive aver-
age returns on the CAC40 and the SMI reported in Table 6.
Note that for the two factors constructed from S&P 500 op-
tions, valid returns could be computed on more than 97.8%
of all days in the sample so that the previously explained situ-
ation is unlikely to bias average returns on these two factors.
For the VOL factors, the sign is not persistent across the five
European indices and the mean return is never significantly
different from zero.

Due to the frequent and often extended time gaps be-
tween valid factor return observations for the European in-
dices, cumulative returns are significantly less meaningful
than for the US factors. Nevertheless, for the sake of com-
pleteness, Figure A1 in the Online-Appendix shows the cu-
mulative returns for the European indices.

As with the variance risk premium before, the returns on
the two factor portfolios appear to stem from a non-normal
distribution with substantial skewness and kurtosis that can
partly be alleviated by using continuous returns instead of
discrete. However, as noted by Coval and Shumway (2001)
and indicated by the descriptive statistics for the JUMP fac-
tor shown above, logarithmic option returns are significantly
lower than the raw option returns and this relocation is
markedly more pronounced than for variance swap returns.

Due to this, discrete returns will be used for the following
analyses.

Empirical characteristics of risk-factor-mimicking portfolios:
Determination of jump risk exposure

Because the validity of any conclusion drawn about the
extent to which the variance risk premium reflects compen-
sation for jump risk requires that the JUMP factor be able to
measure jump risk accurately and not simply other priced fac-
tors, I examine whether positive returns on the JUMP factor
coincide with jumps indicated by the non-parametric jump
detection test of Lee and Mykland (2008) which allows to de-
termine if a jump has occurred at a particular point of time.
The underlying idea is that large price movements and associ-
ated returns can either be due to a discontinuous movement,
i.e. represent a jump in the true sense, or simply be the result
of a comparatively high spot volatility at the particular point
of time. In order to reliably distinguish the two cases, the au-
thors propose to standardize the return that is to be analyzed
by the instantaneous volatility and derive the following test
statistic, which determines whether a jump occurred from
time (t − 1) to t.

Λ(t)≡
log(St/St−1)
Õσ(t)

, (14)

where Õσ(t) represents the square root of the estimated
bipower variation based on the previous W observations of
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the spot price St at time t.

×σ(t)2 ≡
1

W − 2

t−1
∑

j=t−W+2

(| log(S j/S j−1)|

| log(S j−1/S j−2)|)

(15)

In constructing the test statistic and computing the re-
alized bipower variation, I follow the recommendation of
Lee and Mykland (2008) to use an optimal window size of
W = 16 for daily observations. The test statistic follows ap-
proximately a normal distribution if there is no jump at the
testing time, but becomes very large otherwise. A reason-
able rejection region can be determined by comparing the
test statistic with the usual region of maximums of the test
statistic. If the test statistic is outside this usual region, it
is probable that the examined price movement represents a
jump in the true sense. Thus, the null hypothesis of no jump
at a particular point of time can be rejected if |Λ(t)|−Cn

Sn
exceeds

the critical value β∗, where β∗ = − log(− log(1 − α)), Cn =
(2 log(n))1/2

c − log(π)+log(log(n))
2c(2 log(n))1/2 , Sn =

1
c(2 log(n))1/2 and c =

p

2/π for
a given confidence level α and sample size n.

The analysis whether the JUMP factor truly captures ex-
posure to price jumps is limited to the JUMP factor based on
S&P 500 options. The reason is that the JUMP time series for
the S&P 500 index is by far the longest and can therefore be
expected to offer the most meaningful results.

Figure 3 shows the time series of daily returns on the
JUMP factor. The vertical dashed lines indicate the occur-
rence of jumps determined by the applied jump detection
test. Based on a confidence level of α = 5%, the jump test
identifies 66 days in the time series of the S&P 500 index on
which jumps occur. As can be clearly seen in the figure, jumps
in the index are usually accompanied by positive returns on
the JUMP factor. In particular, the returns on the JUMP fac-
tor are positive for 62 of the 66 days on which a jump is
detected with an average daily return of +8.39% on jump
days compared to an average daily return of -0.19% on days
without a jump. Even though this is a first indication that
the JUMP factor indeed captures the effect of price jumps, it
is also apparent in Figure 3 that returns on the JUMP factor
are positive on many days on which the test does not detect
a jump. In this context note that the asymptotic arguments
used for setting up the test statistic and the rejection region
strongly depend on the assumption that the time period be-
tween consecutive observations converges to 0. As a conse-
quence, the use of daily data naturally inhibits the detection
of jumps. Lee and Mykland (2008) point out that only 2% of
jumps can be detected using daily return data. Thus, the test
results should only be regarded as an additional indication to
support the theoretical argument for the JUMP factor’s expo-
sure to price jumps given above, and not as an independent
attempt to prove this exposure.

To further link the returns on the JUMP factor to price
jumps, daily JUMP factor returns that occur on days that are
no jump days but directly follow such days are compared with
the corresponding returns on days that neither immediately

follow nor are jump days. The average daily return on days
that immediately follow a jump day is -0.87% compared to
-0.18% on other days. A regression of the daily JUMP fac-
tor returns on non-jump-days on an indicator variable that is
one when the return occurs on a day that immediately fol-
lows a jump day but is not a jump day itself, and zero when
the return occurs on a day that does not follow a jump day
and is not a jump day itself, obtains a t-statistic of -1.8595 for
the indicator variable. Thus, it seems that investors require a
higher compensation for bearing the risk to which the JUMP
factor offers exposure, presumably jump risk, immediately
after a price jump has occurred. Conceptually, this observa-
tion is plausible with regard to an investor who reevaluates
the jump probability and deems the occurrence of a further
jump more likely after a jump has occurred. Such a behavior
would also be consistent with the empirical evidence that fi-
nancial markets exhibit strong self-excitation over time (e.g.
Aït-Sahalia et al. (2015a)), i.e. that jumps are often followed
by further jumps or substantial price movements. Possible
reasons that could explain this pattern include credit and liq-
uidity shocks and margin calls that are caused by preceding
jump events and then trigger further jumps (Aït-Sahalia et al.
(2015a)). An alternative explanation could be investors’ in-
creased desire to protect against further market drops as in
the model by Bates (2008) where wealth redistributions due
to preceding market drops increase average crash aversion.

All in all, the return behavior appears to be reconcilable
with the notion that the JUMP factor indeed captures expo-
sure to jump risk, which is therefore assumed for the remain-
der.

Compensation for jump risk and diffusive risk in variance swap
returns

For the following analyses, I follow Cremers et al. (2015)
and treat the returns on the two risk factors directly as ex-
cess returns that can be used in the regressions. In order
to compare variance swap returns and returns on the JUMP
and VOL factors over the same time horizon, the cumulative
factor returns over 22 trading days are used in the following
regressions. Note that the requirement to have returns on 22
consecutive trading days substantially reduces the numbers
of available observations compared to those reported in Ta-
ble 6. For example for the SMI there is no single period with
valid returns over 22 consecutive trading days.

Table 7 shows the results of overlapping regressions of
the LVRP on the JUMP and VOL factors.

The obtained R2s are generally high and exceed 60% for
five of the seven indices with more than 90% for the CAC40.
As expected, the coefficient on the VOL factor is positive and
significant at the 1% level for most regressions, which con-
firms that exposure to changes in systematic variance is heav-
ily priced not only in variance swaps on indices but also in
such on individual stocks. Moreover, consistent with prior
studies which find that a substantial portion of the observed
variance risk premium represents compensation for jump risk
(e.g. Todorov (2010), Bollerslev and Todorov (2011)), the
JUMP factor is significant at the 1% level for all underlyings
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Figure 3: Daily returns on jump risk proxy

Note: The figure shows the time series of daily discrete returns on the jump risk factor JUMP over the period from January 5th 1996 August 29th 2014.
Vertical dashed lines indicate the occurrence of jumps based on the jump detection test of Lee and Mykland (2008) using a confidence level of α= 5%.

except for Tesla Motors and Facebook. The obtained sign of
the coefficient is also consistent with the notion that vari-
ance swaps offer protection against jumps. Jumps increase
the realized variance, and if their impact is sufficiently large,
payoffs on variance swaps are positive just as are payoffs on
the JUMP factor. The fact that both factors are jointly sig-
nificant suggests that investors clearly distinguish between
pure volatility risk and jump risk and that each of these risks
commands a separate premium that contributes to variance
swap returns. The average contributions (in absolute terms)
of the compensation for jump risk and diffusive risk to vari-
ance swap returns appear to be of comparable magnitude.
Multiplying the respective regression coefficient by the aver-
age risk factor return and taking the average across all un-
derlyings results in a mean contribution of -2.95% for the
JUMP factor and -2.34% for the VOL factor. However, even
though the JUMP and VOL factors should directly proxy for
the two risk factors most commonly thought to be priced in
options, the alpha is still highly significant and persistently
negative for all underlyings except the CAC40, for which vari-
ance swap returns are fully explained by the two factors.

In order to further investigate the explanatory power of
the JUMP and VOL factors in the presence of traditional fac-
tors, I augment the previous regressions with the Fama and
French (1993) factors. The results are shown in Table 8.
First, even in the presence of the three traditional factors,
the coefficients on both the JUMP and VOL factors remain
positive and significant at the 1% level for the majority of re-
gressions, which suggests that the two factors contain infor-

mation that are not already captured by the Fama and French
(1993) factors.

Second, for the majority of regressions, the absolute mag-
nitude of the SMB coefficient as well as the total number of
regressions for which it is significant is smaller than in Table
5 after the inclusion of the two risk-factor-mimicking portfo-
lios, which points to a link between the SMB factor and either
jump or volatility risk or both. Individual regressions with the
Fama and French (1993) factors and the VOL and JUMP fac-
tor separately show that only the JUMP factor leads to this
reduction in the number of significant SMB coefficients. In
contrast, for regressions with the VOL factor and without the
JUMP factor, the number of significant coefficients on the
SMB factor does not change. In this context, the presence
of priced jump risk in variance swap returns may also help
to rationalize the negative and often significant coefficient
on the SMB factor in previous regressions with the Fama and
French (1993) factors (c.f. Table 5), that is also documented
by Carr and Wu (2009). A possible relation between the SMB
factor and jump risk can be substantiated by recent findings
of Bollerslev et al. (2015) who examine how individual eq-
uity prices are affected by continuous and discontinuous mar-
ket price movements. For this purpose, they calculate sepa-
rate betas to measure the continuous and discontinuous co-
movements. Portfolio sorts on the discontinuous betas lead
to statistically significant positive return spreads between the
High-Low-portfolio but less so for the continuous beta. More-
over, their results show that particularly smaller firms and
stocks with lower book-to-market ratio tend to have higher
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Table 7: Regression of variance swap returns on returns on jump-risk mimicking portfolio JUMP and volatility-risk mimicking
portfolio VOL

Note: Entries show the OLS estimates and t-statistics (in parentheses) from regressions of continuously compounded 22 day variance swap returns on the
22-day cumulative returns on the jump-risk mimicking portfolio JUMP and the VOL factor. t-statistics are based on standard errors that are adjusted for serial
correlation according to the method of Newey and West (1987) with a lag length of 22 days. N denotes the number of total observations.

Underlying alpha JUMP VOL R2 N

S&P 500 -0.433 (-16.574) 2.589 (15.635) 2.976 (8.739) 62.93% 2881
Dow Jones Industrial -0.396 (-11.696) 2.322 (11.512) 2.999 (7.508) 57.72% 1904
NASDAQ100 -0.282 (-9.686) 2.008 (9.625) 2.080 (5.914) 45.08% 2637
Alcoa -0.233 (-4.142) 1.106 (3.718) 1.376 (1.541) 19.01% 703
Altria (Philip Morris) -0.338 (-6.209) 0.740 (2.275) 2.480 (3.486) 8.42% 1658
Amazon -0.222 (-5.173) 1.099 (3.978) 1.608 (2.966) 12.33% 2023
American Express -0.137 (-3.592) 1.905 (9.443) 2.714 (5.134) 39.49% 1616
Amgen -0.289 (-7.176) 1.421 (6.846) 1.618 (2.796) 20.04% 1933
Analog Devices -0.162 (-3.072) 1.325 (5.780) 1.203 (1.802) 18.08% 536
Apple -0.299 (-7.656) 1.080 (3.976) 1.306 (2.994) 15.39% 1962
Bank of America -0.152 (-2.652) 1.770 (5.213) 1.210 (2.057) 23.60% 1236
Boeing -0.213 (-6.337) 1.090 (5.506) 1.390 (2.807) 17.23% 1778
Cisco -0.197 (-4.056) 1.250 (4.704) 2.699 (4.993) 21.55% 1436
Exxon Mobil -0.253 (-6.377) 1.557 (6.869) 2.946 (5.880) 37.04% 1565
Facebook -0.340 (-4.501) 0.345 (0.696) -3.853 (-2.098) 8.67% 486
General Electric -0.169 (-4.821) 1.840 (11.456) 1.932 (3.739) 35.11% 1446
Home Depot -0.265 (-7.672) 1.400 (7.201) 2.308 (5.750) 27.27% 1537
IBM -0.295 (-8.682) 1.447 (7.250) 2.430 (6.567) 24.33% 2298
Johnson & Johnson -0.330 (-7.060) 2.101 (6.843) 2.996 (4.689) 34.08% 1058
McDonald’s -0.384 (-9.678) 0.839 (3.929) 2.514 (5.009) 22.97% 1286
Merck -0.237 (-5.920) 2.012 (8.218) 1.679 (3.194) 23.77% 1663
Metlife -0.126 (-2.836) 1.669 (4.114) 3.286 (6.193) 47.67% 900
Microsoft -0.208 (-5.128) 1.213 (5.149) 1.200 (2.482) 14.99% 1863
Monsanto -0.244 (-6.749) 1.319 (6.487) 2.094 (4.115) 30.19% 1217
Nike -0.249 (-5.134) 1.165 (4.071) 2.882 (5.091) 21.57% 1241
Pfizer -0.223 (-5.263) 2.009 (8.171) 2.010 (4.329) 26.51% 1139
Procter & Gamble -0.357 (-6.448) 1.806 (5.367) 2.757 (6.146) 29.64% 1393
Starbucks -0.229 (-4.446) 0.729 (3.455) 1.565 (2.006) 9.45% 1316
Tesla -0.277 (-3.817) 0.096 (0.214) 0.758 (0.781) 0.74% 701
Valero -0.151 (-3.473) 1.086 (3.482) 0.905 (1.534) 14.11% 1607
Verizon -0.257 (-6.726) 1.075 (4.184) 2.136 (3.336) 22.76% 1326
WalMart -0.317 (-7.693) 1.006 (5.173) 2.372 (5.218) 19.25% 1584
AEX -0.382 (-8.334) 2.496 (4.356) 4.337 (5.929) 61.52% 523
CAC40 0.013 (1.141) 6.140 (30.556) 0.438 (2.296) 90.14% 22
DAX -0.267 (-6.701) 3.337 (9.152) 3.544 (6.155) 66.22% 940
Euro Stoxx 50 -0.295 (-6.519) 3.266 (10.115) 2.105 (4.067) 64.26% 485
SMI - - - - - - - -

discontinuous betas.
This implies that small stocks have a more pronounced

tendency to co-jump with the market than larger stocks. Ang
and Chen (2002) also document that correlation asymme-
tries are stronger for smaller stocks and conclude that such
stocks are more exposed to common downward movements
with the market. Thus, the SMB factor should have a ten-
dency to perform well in good times but less so in bad times
when negative jumps occur and variances usually increase.
This relation is also supported by the negative correlation of
-0.2468 (p-Value 0.0003) between the returns on the JUMP
factor and on the SMB factor for the US. As a consequence
variance swap returns appear to be negatively correlated with

returns on the SMB factor due to their differential exposure
to jumps.

Third, even though the coefficient on the excess market
return is still negative and significant at the 1% level for al-
most all regressions, its magnitude is substantially smaller
by an amount of as much as approximately one half com-
pared to the previous regressions without the two additional
factors. This finding suggests that information contained in
the market excess return is also captured by the JUMP and
VOL factors. The negative correlations of -0.2643 (p-Value
0.0003) between returns on the US market portfolio and on
the US JUMP factor and of -0.3091 (p-Value 0.0000) between
the US market excess return and returns on the VOL fac-
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tor for the US further support this view. For one thing, the
negative correlations are not surprising since the JUMP fac-
tor usually earns positive returns at times when substantial
(mostly negative) market moves occur and such moves are
often associated with elevated levels of volatility, which in
turn affect returns on the VOL factor. However, the underly-
ing economic rationale to which this association can probably
be attributed is the notion that a substantial portion of the
equity risk premium itself represents compensation for jump
risk and volatility risk (e.g. Bollerslev and Todorov (2011)).
The intuitive explanation for this relation is that an increased
volatility adversely affects investors’ investment opportunity
sets and that jumps may be associated with tail risk.14 If in-
vestors then feel that the likelihood of a tail event or return
volatility increases, they may require a higher return, which
leads to an immediate, often substantial, reduction in asset
prices. This mechanism is quite similar to the volatility feed-
back effect explained before. A possible explanation for why
elevated volatility levels or perceived fear of extreme events
can have important impacts on asset prices and thus on mar-
ket excess returns is that such factors are suspected to affect
aggregate economic output. This is the so-called uncertainty
shock channel. For instance, Bloom (2009) finds evidence
that uncertainty shocks have substantial effects on the aggre-
gate economy, leading to significant drops in production, out-
put, and productivity growth since higher uncertainty causes
firms to delay investments and hiring. While Bloom (2009)
relates uncertainty to volatility, Gourio (2012) and Kelly and
Jiang (2014) find that perceived tail risk can have similar
effects on aggregate economic activity. The changing magni-
tude of the coefficient on the market excess return after the
introduction of the VOL and JUMP factor can therefore be
regarded as a further indication that the equity risk premium
is linked to jump or tail risk as well as volatility risk.

Finally, even though the alpha coefficient is slightly less
negative when the JUMP and VOL factors are included as ad-
ditional explanatory variables, their overall influence on its
magnitude is negligible and it remains significant in all re-
gressions. While it presumably is comprehensible that com-
monly used risk factors such as those proposed by Fama and
French (1993) cannot satisfactorily explain the returns on
variance swaps when overall market variance and jump risk
constitute independently priced risk factors, it is astonishing
that adding the two constructed factor portfolios does not
appear to perceptibly reduce the alpha. Especially with re-
gard to the fact that the coefficients on the JUMP and VOL
factors behave as one would expect them to do, so that it
can reasonably be assumed that these two factors are indeed
able to effectively capture the isolated compensation for jump
and volatility risk, this is intriguing. Moreover, even if one
considers the possibility that a certain portion of single stock
variance swap returns represents compensation for the risk

14For instance, Bollerslev and Todorov (2011) find that the magnitude of
the left jump tail which captures fears of dramatic market declines signifi-
cantly exceeds that of the right-jump tail which is associated with substantial
market appreciations.

of common changes in idiosyncratic variance, as for exam-
ple suggested by Gourier (2015), this is unlikely to be the
case for highly diversified stock indices such as the S&P 500
for which the alpha is also significant. Consequently, it ap-
pears that the pricing of variance swaps is either inefficient,
allowing to earn significant abnormal returns that appear to
be unrelated to systematic risk factors or that sources of sys-
tematic risk other than jump and volatility risk are priced in
variance swap rates.

Robustness considerations
Since the assertion that financial assets are inefficiently

priced should be made with caution only, it is imperative
to take into account possible misspecifications and conse-
quences of transformations of variance swap returns that may
have an impact on the results. As previously outlined, the
logarithmic version of the variance risk premium, defined
as LVRPt,T = log(RVt,T/E

Q
t [RVt , T]), is introduced in order

to account for the substantial kurtosis and positive skewness
of raw variance swap returns – particularly driven by exces-
sively high, positive returns on long variance swap positions
during the recent financial crisis – and thereby make the dis-
tribution more Gaussian. The underlying rationale for this
transformation is to make the regression residuals more nor-
mal. Even though this transformation is also applied by other
studies (e.g. Carr and Wu (2009)) and the use of log returns
in the context of stock return applications is widely accepted
since deviations between continuously compounded returns
and discrete returns are typically negligible for small price
differentials, its application to variance swap returns comes
with potential drawbacks. While both, skewness and kurtosis
can indeed be mitigated through the log transformation, the
often substantial divergence between realized variance and
the variance swap rate can lead to considerable deviations
between raw returns (RV0,T/E

Q
t [RV0,T ] − 1) and their loga-

rithmic version. As a consequence, the logarithmic transfor-
mation tilts the mean of the variance swap return distribu-
tion disproportionately into the negative domain, which may
contribute to the persistently negative alpha.

In order to investigate the impact of the logarithmic trans-
formation on reported results, several robustness regressions
are performed. Since the aim is only to provide qualitative in-
sights, the corresponding results can be found in the Online-
Appendix.

Table A3 in the Online-Appendix shows the results from
robustness regressions of raw 22-day variance swap returns
on monthly realizations of the three Fama and French (1993)
factors and the two risk factor portfolios JUMP and VOL over
the entire sample horizon from January 1996 to July 2015.
For raw variance swap returns, the alpha is consistently less
negative and significant at the 5%-level for only 12 underly-
ings including the indices, compared to 33 significant alphas
for the logarithmic specification.

In order to further emphasize the influence of the loga-
rithmic transformation, the sample is divided into two sub-
samples. The first subsample is restricted to cover only the
time period from January 1996 to December 2007 and there-
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fore to exclude the time period of unprecedented uncertainty
during and following the financial crisis. Since extremely
positive as well as extremely negative variance swap returns
predominantly occur in later periods, the effect of the loga-
rithmic transformation can be expected to be comparatively
moderate in this subsample. Note that this subsample only
comprises the US underlyings since the time series for the
European underlyings either start later or it is not possible to
obtain at least ten valid observations for all regressors (this
is the case for the DAX). The second subsample is restricted
to cover the time period from January 2008 until July 2015
during which the qualitative and quantitative deviations be-
tween raw returns and their logarithmic version can be ex-
pected to be more pronounced. Results for the first and sec-
ond subsample for the same regression specifications as be-
fore are reported in Tables A4 and A5 in the Online-Appendix.

Comparing the results for the entire sample and the first
subsample, the results differ and deviations between the two
specifications are less pronounced for the latter. For the first
subsample, the number of negative and significant alphas for
the logarithmic specification reduces substantially from 33
to only 15 underlyings whereas the specification with raw
returns produces significantly negative alphas for eight un-
derlyings. For both specifications, however, the alphas re-
main significant for the indices. As expected, qualitative and
quantitative differences are more pronounced for the second
subsample since the most extreme returns – positive and neg-
ative – occur in this period. Regressions with continuously
compounded returns again produce 32 significantly negative
alphas compared to 12 for regressions with raw returns.

These robustness regressions clearly highlight the impor-
tance of the chosen specification of the variance risk premium
as well as of the chosen time period and provide evidence that
the two specifications might lead to qualitatively different
conclusions for certain underlyings when the objective is to
determine whether variance swap returns are completely ex-
plained by a given set of risk factors. However, even though
the number of significant alphas is obviously lower when raw
variance swap returns are used, none of the applied regres-
sion models is able to fully explain these returns for all under-
lyings over the entire time horizon or subsets of it. Thus, even
though variance swap returns clearly include compensation
for jump and volatility risk, these risks are not the only factors
that appear to influence the pricing of options and variance
swaps, which points toward alternative or additional expla-
nations such as for example model uncertainty (e.g. Drech-
sler (2013)) or demand-based explanations (e.g. Gârleanu
et al. (2009)).

5.2.4. Model uncertainty and uncertainty about macroeco-
nomic fundamentals

In this final section, variance swap returns are related
to model uncertainty and uncertainty about macroeconomic
fundamentals. The purpose is explicitly not to explain the
variance risk premium through risk factors but rather to shed
some light on one of the factors that could contribute to the
time-varying differences in investors’ perception of variance

risk or jump risk that are presumably associated with the sub-
stantial fluctuations of the variance risk premium over time
(c.f. Figure 1) and to assess whether a measure of model
uncertainty could be helpful in explaining variance swap re-
turns in a richer setting than that used here.

The variable to be considered in this setting is motivated
by the work of Drechsler (2013) who considers how the vari-
ance risk premium is affected when investors face model un-
certainty. Due to the model uncertainty, the investor is not
only uncertain about a possible outcome but also about the
data generating process and thus evaluates his decisions un-
der the ”worst case” scenario, in which he particularly over-
estimates the magnitude and frequency of jumps. Since the
investor knows that realized variance will be high if the worst
case scenario manifests, his willingness to pay for variance
swaps will also be high when model uncertainty is high.
Therefore, a direct implication of the model is that the size of
the variance risk premium will fluctuate and reflect investors’
degree of model uncertainty. In particular, this relation is un-
der consideration in the following.

In order to measure model uncertainty, I follow Drechsler
(2013) and use the cross-sectional dispersion (DispGDP), i.e.
the variance of implied quarterly growth rates of the nominal
gross domestic product (GDP). Consequently, higher values
are associated with greater model uncertainty.

The necessary data is taken from the Survey of Profes-
sional Forecasters to which the Federal Reserve Bank of Phil-
adelphia provides access.15 The Survey of Professional Fore-
casters contains forecasts by individual forecasters for the
quarterly level of nominal GDP in billions $, based on a sea-
sonally adjusted annual rate.

The forecasted growth rate is based on the forecasted
level of nominal GDP for the current quarter and the realized
level of nominal GDP in the previous quarter. In order to mit-
igate the effect of outliers, dispersion figures which are more
than two standard deviations from the sample mean are re-
moved. Drechsler (2013) argues that information asymme-
tries can be expected to play only a minor role in the con-
text of forecasting macroeconomic quantities such as GDP
because essential information are publicly available. As a
consequence, the dispersion of GDP forecasts can naturally
be interpreted as the result of different economic models.

Since the individual GDP forecasts are made each quar-
ter based on an adjusted annual growth rate whereas the
variance swap returns refer to a period of only 22 trading
days, I assume that the DispGDP measure does not only re-
flect model uncertainty for a particular day but reflects un-
certainty around the time the forecasts are made, i.e. at the
beginning of a quarter. As a consequence the DispGDP mea-
sure at the beginning of a given quarter is matched with the
variance swap return over the 22 trading day period start-
ing on the day on which the DispGDP measure is computed.
If no such return could be computed on this specific day, I

15The internet address is: https://www.philadelphiafed.org/rese
arch-and-data/real-time-center/survey-of-professional-for
ecasters/

https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/
https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/
https://www.philadelphiafed.org/research-and-data/real-time-center/survey-of-professional-forecasters/
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use the next available return calculated on a later day but
not later than three calendar days after the day the DispGDP
measure is computed. The log of the realized variance over
the 22 trading day period ending immediately before the pe-
riod starts over which the variance swap returns are com-
puted is included as an additional control variable because
other studies (e.g. Bollerslev et al. (2011)) document a sig-
nificantly positive relationship between previously realized
volatility and risk-aversion as measured by the variance risk
premium. The reason for taking the log of realized variance is
that variances have right-skewed distributions whereas log-
arithmic variances tend to have near Gaussian distributions,
which may improve predictions from linear models (Bekaert
and Hoerova (2014)).

Since both variables, DispGDP and the preceding variance
are measures of uncertainty, including them simultaneously
in the regressions could lead to flawed inferences if both mea-
sures are highly correlated and convey widely identical infor-
mation. However, for 23 of the 32 underlyings, the absolute
value of the correlation between DispGDP and the previously
realized variance is below 0.15 with a maximum correlation
of 0.47 and an average value across all underlyings of 0.0306.
Thus, the two measures appear to convey information about
relatively unrelated sorts of uncertainty.

Table 9 shows the results from regressions of the log vari-
ance risk premium on the log of the realized variance during
the preceding 22 trading days and DispGDP.

The coefficient on the DispGDP measure is negative for all
but two underlyings and significant for some of them albeit
not for all suggesting that model uncertainty is indeed asso-
ciated with a more negative realized variance risk premium.
The sign of the coefficient is therefore consistent with the no-
tion that investors are willing to pay more for an instrument
that offers insurance against undesirable states when the de-
gree of model uncertainty, i.e. uncertainty about the distribu-
tion of possible outcomes, is higher. Even though the regres-
sion specification applied here is of course not directly com-
parable with the model specification of Drechsler (2013), the
results are in line with his argumentation that model uncer-
tainty and the associated uncertainty or disagreement about
macroeconomic fundamentals may help to explain the mag-
nitude and often substantial fluctuations in the observed vari-
ance risk premium. When turning to the realized variance
over the preceding 22 trading days, the mostly positive sign
on the coefficient contradicts the expected relation that higher
variance could be associated with higher risk-aversion in the
aftermath. However, the coefficients are mostly insignificant.

The chosen regression specification in this section is rela-
tively parsimonious. As a consequence the results have lim-
ited meaning only. However, especially in consideration of
the fact that the two factor portfolios that capture jump and
volatility risk are not able to fully explain variance swap re-
turns for several underlyings suggests that these returns may
reflect compensation for further systematic risks. With re-
gard to this, the findings in this section suggest that model
uncertainty may be a potential candidate for such a risk factor
whose influence on the pricing of options, and particularly

of variance swaps, could be assessed with more advanced
econometric techniques in the future.

6. Conclusion

In this work, I apply a relatively model-free method to
extract the expected variance under the risk-neutral measure
from prices of traded options and to quantify the realized
variance risk premium.

Consistent with prior studies, I find a persistently nega-
tive variance risk premium for all stock indices. Moreover,
the average return on a long single stock variance swap in-
vestment is also negative for all considered underlyings even
though the absolute magnitude is often smaller than for the
indices and returns exhibit a substantially greater variation.
The finding of a negative variance risk premium for single
stocks is in line with the results of some studies but contra-
dicts those of others. However, these differential findings
may, at least in part, be due to the application of different
sample selection criteria since any additional factors and cir-
cumstances that systematically affect the cross-section of op-
tion prices, such as for example illiquidity discounts, will nec-
essarily be reflected in the estimates of the risk-neutral ex-
pected variance and the variance risk premium.

All in all, the persistently negative premium suggests that
investors regard variance swaps or the associated option posi-
tions as valid instruments to insure against undesirable states
and are therefore willing to accept negative average returns
on them. Even though the results suggest that continuously
selling variance swaps would probably have been profitable
for most underlyings over the entire sample period, an anal-
ysis of variance swap returns during the last quarter of 2008
reveals that the short side is exposed to considerable risks and
the losses can be of excessive magnitude. The maximum re-
turns on synthetic variance swaps during this period amount
to several hundred percent for many underlyings.

Apart from quantifying the variance risk premium, the
objective of this work is to assess whether return variance
constitutes an independently priced risk factor for which the
variance risk premium offers compensation.

The analysis reveals that the variance risk premium on
the US indices is clearly linked to the return variance on the
market portfolio and is more negative when the return vari-
ance of the index exhibits stronger covariation with that of
the market portfolio. This is indicative of priced market vari-
ance risk. In contrast, a similar relation is not discernible for
single stocks. However, excess returns on single stock vari-
ance swaps can often be fully explained by a systematic vari-
ance risk factor proxied by returns on variance swaps with
the S&P 500 as underlying which suggests that returns on
index as well as on single stock variance swaps are, to a con-
siderable extent, driven by the same factors.

Further analyses show that the classical capital asset pricing
model as well as the Fama and French (1993) three-factor-
model are not able to explain variance swap returns and leave
a significantly negative alpha, which further supports the notion
of an independently priced market variance risk factor.
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Table 9: Regressions of variance swap returns on a measure of model uncertainty

Note: Entries report the OLS-estimates and t-statistics (in parentheses) of non-overlapping regressions of 22-day continuously compounded variance swap
returns on a DispGDP and the realized variance over the preceding 22 trading days (pastVariance). t-statistics are not adjusted for serial correlation. N
denotes the total number of observations.

Underlying const DispGDP pastVariance R2 N

S&P500 Index -0.391 (-4.599) -0.385 (-3.927) 2.765 (1.316) 15.33% 70
Dow Jones Industrial -0.358 (-3.547) -0.527 (-2.731) 2.876 (0.815) 15.77% 42
NASDAQ100 -0.210 (-2.680) -0.151 (-1.935) 1.057 (2.189) 8.19% 68
Alcoa -0.742 (-3.272) 0.409 (1.301) 2.234 (1.538) 22.46% 19
Altria (Philip Morris) -0.531 (-3.450) -0.083 (-0.576) 1.632 (1.279) 3.77% 43
Amazon 0.166 (1.395) -0.064 (-0.629) -0.024 (-0.445) 0.46% 51
American Express -0.083 (-0.915) -0.305 (-2.591) 0.494 (3.560) 13.13% 46
Amgen -0.099 (-0.804) -0.484 (-2.726) 0.270 (0.605) 7.25% 46
Analog Devices 0.177 (0.724) -0.490 (-1.556) -0.011 (-0.189) 8.89% 15
Apple -0.231 (-3.075) 0.001 (0.005) -0.010 (-4.200) 1.50% 51
Bank of America -0.169 (-1.671) -0.004 (-0.053) 0.501 (7.752) 20.97% 30
Boeing -0.159 (-1.989) 0.061 (0.701) 0.052 (2.642) 1.42% 50
Cisco -0.179 (-1.995) -0.048 (-0.386) 0.039 (0.703) 1.45% 37
Exxon Mobil -0.410 (-2.636) -0.231 (-1.377) 3.062 (0.854) 11.67% 39
Facebook -0.728 (-5.322) -0.350 (-1.708) 2.347 (6.695) 57.60% 7
General Electric -0.001 (-0.011) -0.218 (-2.283) -0.560 (-1.890) 11.75% 37
Home Depot -0.303 (-1.822) -0.387 (-1.363) 0.966 (1.424) 7.05% 31
IBM -0.209 (-2.208) -0.202 (-2.051) 0.672 (0.912) 3.57% 68
Johnson & Johnson -0.177 (-1.156) -0.418 (-1.791) 1.203 (1.446) 7.52% 27
McDonald’s -0.340 (-2.793) -0.728 (-5.236) 1.711 (0.498) 22.15% 26
Merck 0.006 (0.053) -0.360 (-3.467) 0.561 (1.416) 11.56% 46
Metlife -0.207 (-1.532) -0.306 (-1.296) 0.384 (0.536) 4.80% 18
Microsoft -0.044 (-0.579) -0.208 (-1.652) 0.032 (1.077) 5.56% 52
Monsanto -0.460 (-4.929) -0.260 (-1.221) 1.229 (1.368) 16.64% 30
Nike -0.267 (-2.039) -0.041 (-0.138) -0.048 (-1.208) 0.88% 31
Pfizer 0.064 (0.506) -0.121 (-0.889) -0.058 (-7.275) 9.54% 26
Procter & Gamble -0.109 (-0.897) -0.673 (-2.801) 0.113 (5.212) 13.81% 38
Starbucks -0.008 (-0.059) -0.184 (-1.041) 0.147 (0.261) 2.54% 32
Tesla -0.547 (-1.277) -0.383 (-1.248) 0.234 (0.127) 8.12% 12
Valero -0.073 (-0.671) 0.115 (0.554) -0.001 (-0.023) 0.60% 36
Verizon -0.083 (-0.827) -0.166 (-0.632) -0.258 (-0.131) 1.41% 31
WalMart -0.384 (-2.401) -0.243 (-1.090) 2.793 (3.746) 15.27% 35

In order to gain isolated exposure to the risks associated
with the two sources of realized variance, namely continu-
ous and discontinuous price movements, I construct two risk-
factor-mimicking portfolios from traded options that are in-
tended to offer exposure to one of these risks while being rel-
atively unaffected by the other. Using these two risk factor
portfolios, I find evidence that compensation for jump risk in
addition to compensation for diffusive risk represents a sub-
stantial part of variance swap returns. The contribution of
the two types of risk to average variance swap returns ap-
pears to be of comparable magnitude.

Even when the Fama and French (1993) factors are in-
cluded as additional control variables, the coefficients on the
two risk-factor-mimicking portfolios remain positive and
highly significant, which further supports the view that jump
risk and diffusive volatility risk constitute independently
priced risk factors that are not already accounted for by com-
monly used risk factors.

However, none of the applied regression specifications is
able to fully explain observed variance swap returns. Regres-

sion alphas are negative and significant for virtually all un-
derlyings. This circumstance can either result from inefficient
pricing of options and variance swaps that allows to earn sub-
stantial abnormal returns which are unrelated to systematic
risks, or from exposure to additional risk factors that are not
considered in the regressions but priced by the market.

Motivated by the work of Drechsler (2013) who links the
variance risk premium to model uncertainty and ambiguity
aversion, I consider model uncertainty as one such potential
factor and find that higher model uncertainty is associated
with a more negative variance risk premium. Even though
the chosen specification is relatively parsimonious and po-
tentially neglects several important control variables, these
results could therefore point toward a variable that may help
explain variance swap returns. An interesting extension for
future research could therefore be to find a reliable measure
of model uncertainty that is available at a relatively high fre-
quency, for example daily or weekly, and test whether this
measure helps to explain variance swap returns.
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